Estimating Pool-depth on Per Query Basis

Sukomal Pal, Mandar Mitra, Samaresh Maiti

sukomal_r@isical.ac.in

Information Retrieval Lab, CVPR Unit

Indian Statistical Institute

Kolkata - 700108, India.

http://www.isical.ac.in/~sukomal_r

Background

- Evaluation Test Collection: Cranfield Method
 - corpus: a set of documents
 - topics: a set of information need
 - qrels: a set of relevance judgments for each topic
- Exhaustive ground-truth generation impossible ⇒ POOLing
- examples: TREC, CLEF, NTCIR, INEX, FIRE

Background

- Cranfield Method: Pooling
 - Biased Sampling from submissions or runs
 - top-k documents are shortlisted from each of n runs for each topic
 - set-based union of the documents so chosen ⇒ POOL
- Exhaustive judgment (relevant or non-relevant) of pool

Motivation

- size of the pool $\sim O(kn)$ per topic
- e.g. TREC-8
 - k = 100, n = 129, qrels = 86, 830 judgments for 50 topics
 - Smaller than corpus-size = 500,000
 - BUT cost of evaluation: HIGH
- Cost prohibitive if n & nos. of topics higher
- Solution: low-cost evaluation

Observation: Pooling

Rate of finding new reldocs is query-specific!

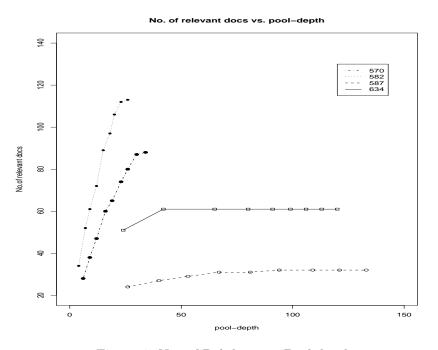


Figure 6: No. of Rel docs vs. Pool-depth.

So is its point of saturation or *critical pool-depth* (k_{cr}) !!

Observation: Pooling

Table 1: Pool saturation at k_{cr}

ad hoc track	topic-id	k_{cr}	nrels	pool-size at	
				k_{cr}	k = 100
TREC-7	363	20	16	348	1597
	384	76	51	926	1225
TREC-8	403	14	21	148	1382
	410	47	65	943	2183
NTCIR-5	31	25	32	538	1723
	4	20	10	451	1788

Our Approach: Per Query based Pooling

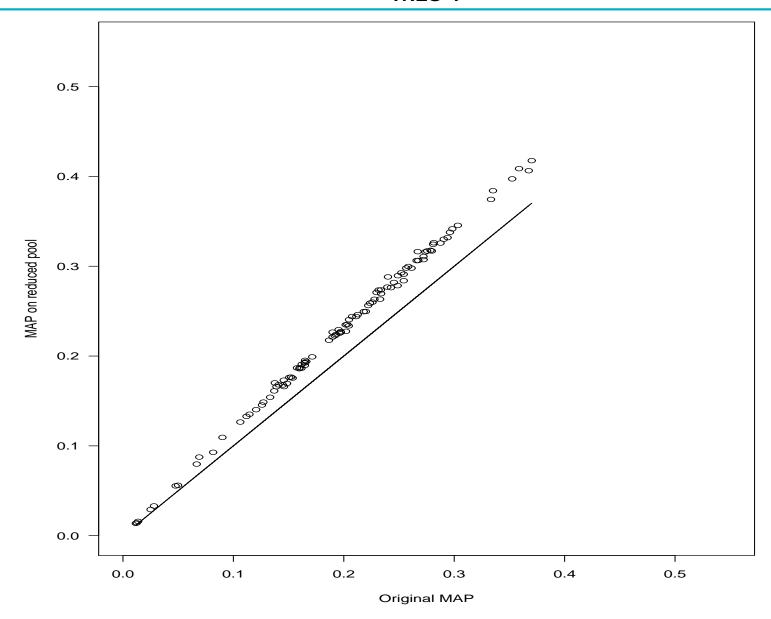
- *Motivation*: Estimate critical pool-depth (k_{cr})
- Algorithm Overview
 - incrementally build pool from runs starting from k=1 to k=100
 - find *poolsize* and nrels (or #reldocs) at each pool-depth
 - find rate of new nrels at each pool-depth
 - stop if rate drops near zero (no change in #reldocs for sufficiently long run of pool-depth)

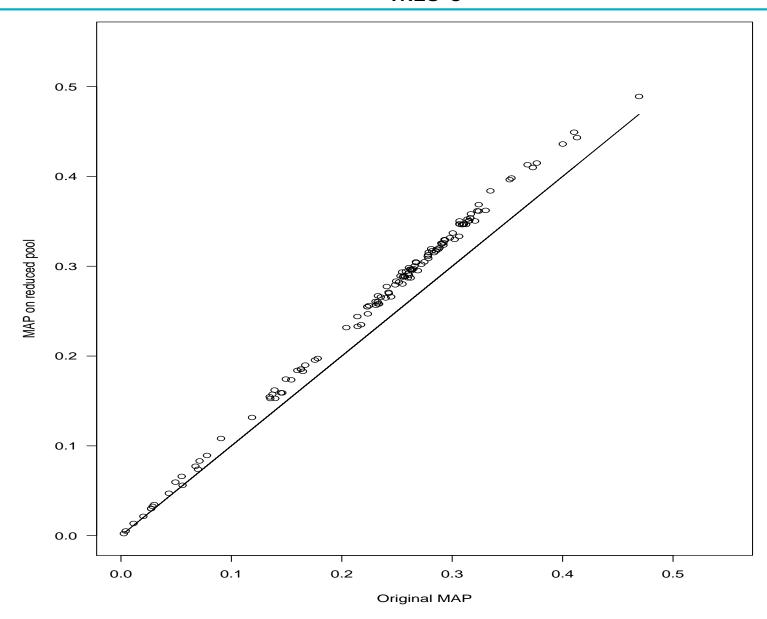
Per Query based Pooling: Algorithm

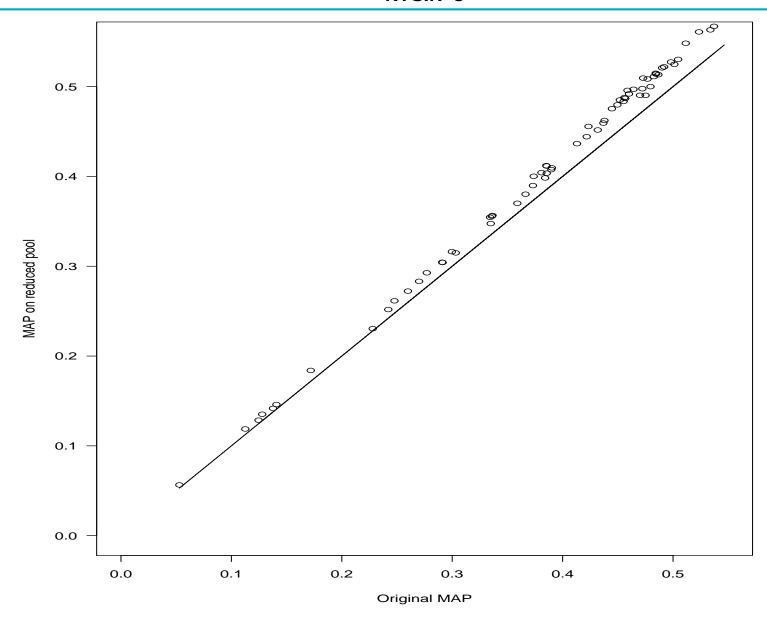
- lacktriangleright as k increases, nrels increases, BUT rate of increase in nrels decreases
- increment in nrels and rate of increment in nrels non-uniform
- 2-stage smoothing
 - smoothing of nrels using window w (= 6, 8, 10, 12, 14)
 - smoothing of rate of new reldocs using W (= 2, 3, 4, 5, 6)
 - Stop if smoothed rate of 'new' reldocs < threshold t (= 0.05, 0.10, 0.20, 0.40, 0.80) for length l (= 3, 4, 5, 6) of k
- lacksquare estimate k as k_{cr}

Test data

- *TREC-7:* topics 351-400, 103 runs
- *TREC-8:* topics 401-450, 129 runs
- NTCIR-5: topics 1-50, 67 X-E runs (X: J,C,K,E)
- $(5 \times 5 \times 5 \times 4 =)$ 500 qrels generated
- All runs evaluated and compared with their original baseline







Results: Graph-summary

- Graphs show most aggressive stopping criteria (worst-case scenario)
- MAPs in close agreement with original MAP(baseline)
- New MAPs slightly overestimated
- aggressive stopping ⇒ smaller recall-base ⇒ increased AP
- MAP difference NOT alarmingly high (lower RMS error)
- relative ranking is more important (higher correlation)

Results: Per Query-based Pooling

Table 2: Guaranteed Performance in reduced pool

track	Kendall's $ au$			RMS error(ϵ)		
	$ au_{min}$	E	R	ϵ_{max}	E	R
TREC-7	0.979	0.381	0.847	0.033	0.379	0.846
TREC-8	0.967	0.368	0.821	0.030	0.369	0.821
NTCIR-5	0.970	0.341	0.850	0.026	0.331	0.846

With respect to original pool

E: fraction of effort

R: ratio of nrels.

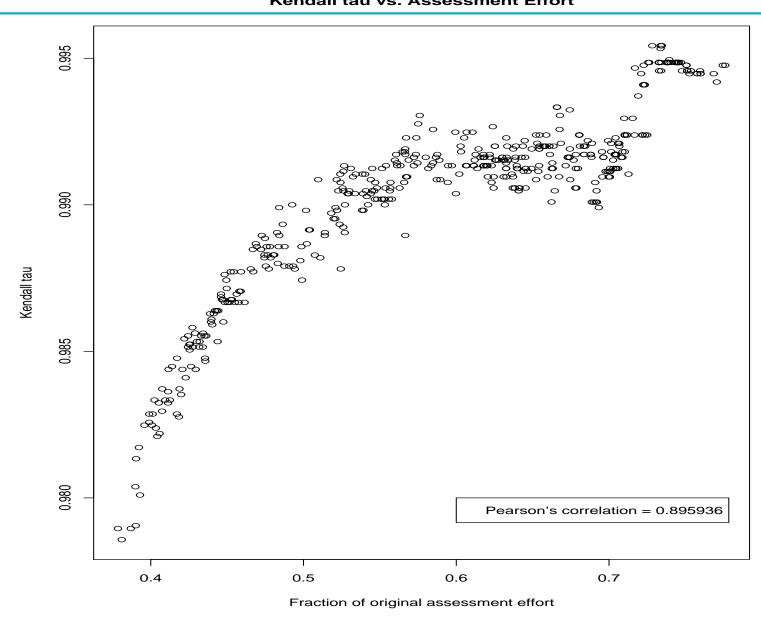
Discussion

- Less than 40% effort
 - identfies more than 80% reldocs
 - produces Kendall's $\tau > 0.96$
 - guarantees less than 3.3% RMS error
- \blacksquare Actual Kendall's τ higher
 - TREC-7: $\tau \in [0.979, 0.996]$
 - TREC-8: $\tau \in [0.967, 0.999]$
 - NTCIR-5: $\tau \in [0.970, 0.996]$
- Actual RMS error lower
 - TREC-7: $\epsilon \in [0.006, 0.033]$
 - TREC-8: $\epsilon \in [0.0009, 0.030]$
 - NTCIR-5: $\epsilon \in [0.002, 0.026]$

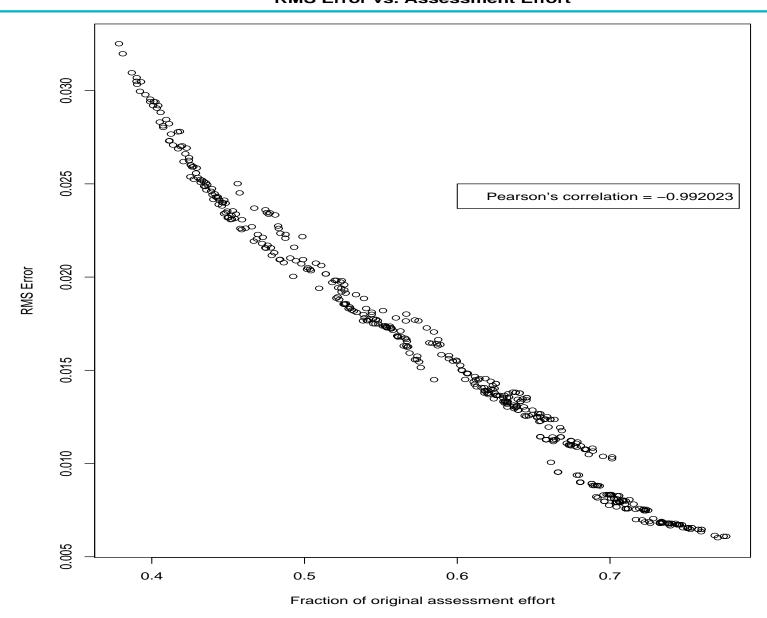
Discussion

- RMS error inversely varies as assessment effort
- Rank correlation (τ) proportional to assessment effort
- lacktriangle Assessment effort increases with w or W or l
 - if any of w, W or l increases $\Rightarrow k_{cr}$ increases \Rightarrow effort increases
- Assessment effort decreases with increase in t
 - acceptable threshold increases ⇒ coarse smoothing ⇒lower effort

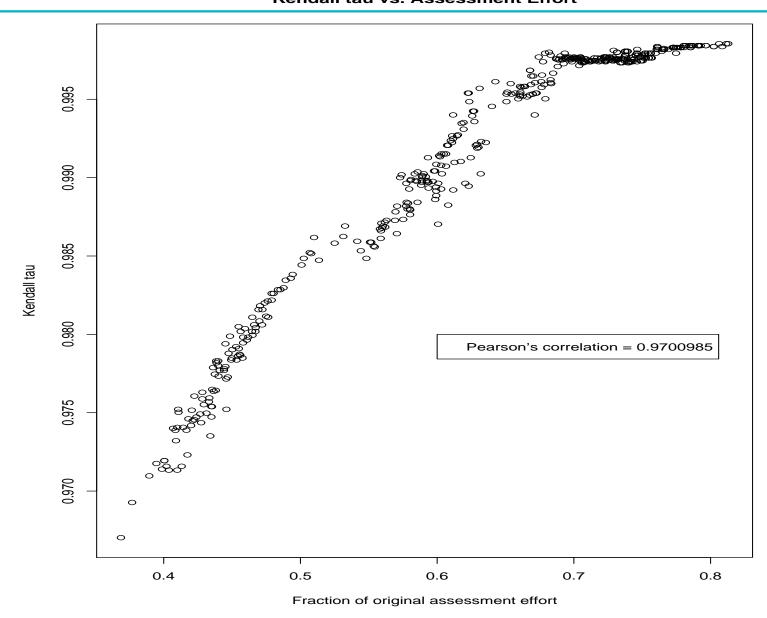
TREC-7: Kendall's au vs. Assessment Effort



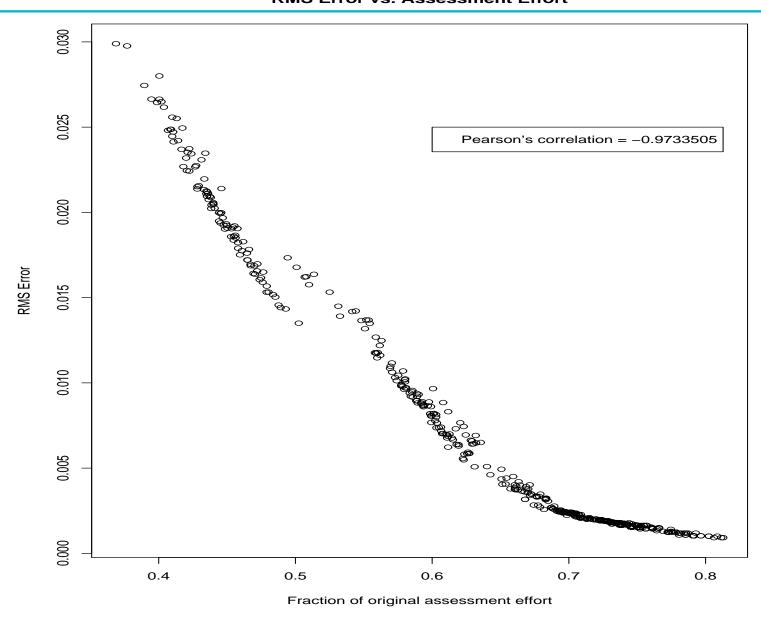
TREC-7: RMS error vs. Assessment Effort



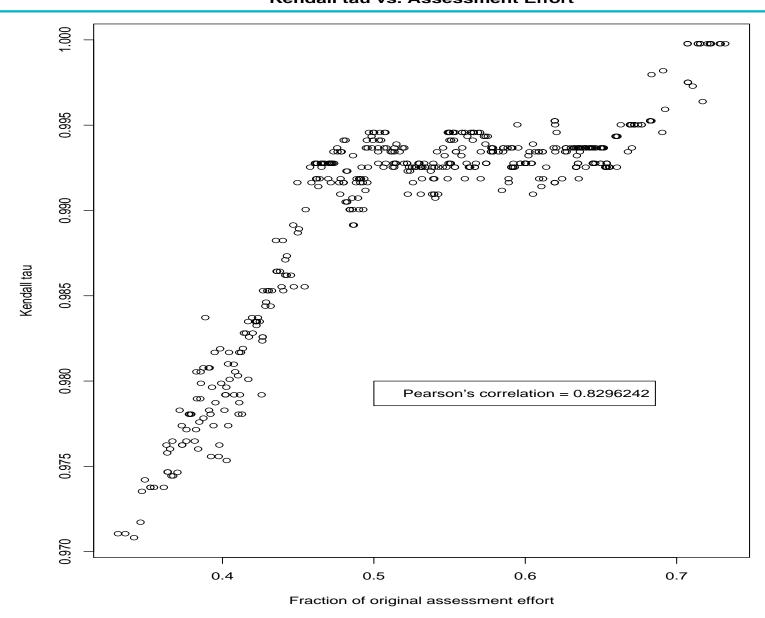
TREC-8: Kendall's au vs. Assessment Effort



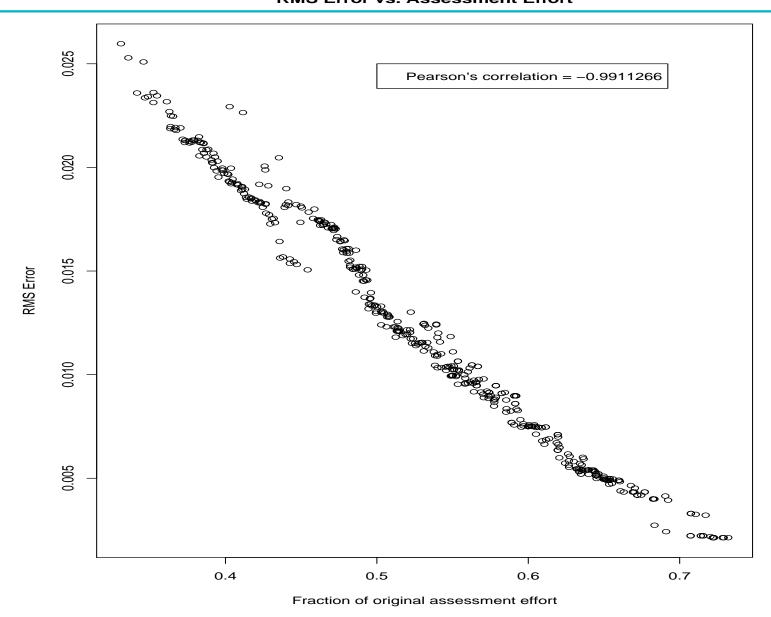
TREC-8: RMS error vs. Assessment Effort



NTCIR-5: Kendall's au vs. Assessment Effort



NTCIR-5: RMS error vs. Assessment Effort



Conclusion

- Unlike other low-cost evaluation methods, our method is very simple
- For most topics where pool saturates quickly, method pays great dividend
- For topics with high nrels, better recall estimates can be achived with high k(>100)
- Tuning 4 parameters (w, W, l, t) gives trade-off betn. cost and reliability
- Reusuability study needs to be done

Acknowledgments

■ Data: TREC, USA & NTCIR, Japan

Work: Dept. of IT, Govt. of India.

■ Travel: Google Inc., USA.

!! THANK YOU!!