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ABSTRACT

Accurate classification of patent documents according to the
IPC system is vital for the interoperability between differ-
ent patent offices and for the prior art search task involved
in a patent application procedure. It is essential for com-
panies and governments to track changes in technology in
order to asses their investments and create new branches of
novel solutions. In this paper, we present our experiments
from the NTCIR-8 challenge to automate paper abstract
classification into the IPC taxonomy and to create a techni-
cal trend map from it. We apply the k-NN algorithm in the
classification process and manipulate the rank of the nearest
neighbours to enhance our results. The technical trend map
is created by detecting technologies and their effects pas-
sages in paper and patent abstracts. A CRF-based system
enriched with handcrafted rules is used to detect technology,
effect, attribute and wvalue phrases in the abstracts. Our
experiments use multi patent databases for training the sys-
tem and paper abstracts as well as patent applications for
testing purposes, thus characterising a cross database and
cross genre task. In the subtask of Research Papers Clas-
sification, we achieve a MAP of 0.68, 0.50 and 0.30 for the
English and 0.71, 0.50 and 0.30 for the J2E subclass, main
group and subgroup classifiers respectively. In the Techni-
cal Trend Map Creation subtask, we achieve an F-score of
0.138 when detecting technology /effect elements in patent
abstracts and 0.141 in paper abstracts. Our methodology
provides competitive results for the state of the art, with
the majority of our official runs being ranked within the top
two for both trend map (papers) and IPC coding. That
said we see room for improvements especially in the detec-
tion of technologies and attributes elements in abstracts.
Finally, we believe that the subtask of Technical Trend Map
Creation needs to be adjusted in order to better produce a
patent map. The classification system is available online at
http://pingu.unige.ch:8080/IPCCat.
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1. INTRODUCTION

The four most relevant official patent classification sys-
tems are the European Patent Classification (ECLA), the
Japanese File Index and File-forming Terms (FI/F-terms)
classification, the US Patent Classification (USPC) and the
International Patent Classification (IPC). However, only the
IPC is used in a worldwide context, having 95% of all patent
documents classified according to it and used in more than
100 countries. As such it is a very powerful tool for search-
ing different patent-related databases, unlike ECLA, FI/F-
terms or USPC, which are restricted to their respective of-
fices. IPC is a taxonomy developed and managed by the
World Intellectual Property Organisation (WIPO). The cur-
rent version (8th) has been available since 2006 in English
and French and contains approximately 70000 codes.

Automating the attribution of TPC codes to patent ap-
plications is important for several reasons: it assists patent
experts in the patent classification task, aids inventors with
the prior art search and helps referees to validate or refute
a given application. Moreover, the use of the assigned IPC
code is key information for searching patents across nations.
Furthermore, when a patent application is considered or sub-
mitted, the search for previous inventions in the field - known
as prior art - relies crucially on accurate patent classification.

Due to the increased rate of technological development
and to a tougher economic scenario, it is important to com-
panies and governments to understand how technology fields
evolve over time. Comprehending the path and the effects
of a given technology helps stakeholders to direct R&D in-
vestments and plan new products. A simple example that
illustrates how important it is for companies to know the ten-
dencies in the market, is a company that in the last decade
worked with analog photograph cameras and had to change
quickly to digital, losing and gaining market share depending
on how fast they realised the new trend. Moreover, techno-
logical mapping is an important step in the generation of
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new inventions.

In this paper, we report the experience of the BiTeM
group! in the Patent Mining task of the NTCIR-8 work-
shop [19]. The task is subdivided into two subtasks: 1) Re-
search Papers Classification (RPC) and 2) Technical Trend
Map Creation (TTMC). In subtask 1, paper abstracts are
automatically encoded using the IPC categories. Our team
joined two sub-subtasks of subtask 1: English, which con-
sists of classifying English paper abstracts using English
patent databases and J2E, where Japanese paper abstracts
are classified using English patent collections. In subtask 2,
technology and effect passages in paper and patent abstracts
are tagged. We participated in the English sub-subtask .

We use two patent collections and a set of manually tagged
abstracts to train our system. The assessment of our ap-
proaches are performed using 633 English and 639 Japanese
paper abstracts in the RPC subtask and 200 paper and 200
patent abstracts in the TTMC. In order to improve classi-
fication we develop several re-ranking techniques which are
further described. For the TTMC, handcrafted rules are
created to help in the named entity recognition task.

The rest of this paper is organised as follows. In Section
2, the state of the art in automatic patent classification and
patent mapping are introduced. In Section 3, the corpora
and training data are depicted. Furthermore, we describe
the k-NN re-ranking techniques and the methods used to
detect technology and effect phrases in abstracts. In Sec-
tion 4, the results obtained are presented. In Section 5,
concluding remarks are discussed.

2. BACKGROUND

Due to delay in patent application analysis caused by
the growth of applications, new areas of knowledge, size
of patent databases and of the IPC taxonomy, automatic
patent classification has become a hot topic for research in
the last few decades.

Chakrabarti et al. [1, 2] implemented a hierarchical Baye-
sian classification system. In their system, between 5 and
10% of the vocabulary is used to distinguish documents
at each level of the taxonomy. The hierarchical scheme is
claimed to be faster and to increase slightly the system’s
accuracy. Larkey [15] presented a web-based system for the
retrieval and classification of patent text implemented for
the USPTO. The classification part of the system is based
on the k-NN algorithm. Unfortunately, the authors do not
present any results of the system’s accuracy. Krier and Za-
cca [13] describe a challenge carried out by several compa-
nies and institutions to classify applications into the ECLA
taxonomy. From their tests, it turned out that the classifica-
tion precision requested by the EPO, 81% at the directorate
level at 100% recall, was too high. For 100% recall, the best
reached precisions at the cluster, directorate, subclass and
team levels were 80%, 72%, 61% and 57% respectively.

These methods could not be compared due to the lack
of benchmarks and a freely available collection. In 2003
with the change of IPC version 7th to 8th, Fall et al. [3]
developed a new collection, WIPO-alpha, and proposed a
new evaluation method for patent documents (TOP, ALL
and 3 GUESSES). Since then, some authors [26, 27] have
reported using this evaluation method in addition to the
classical precision/recall performances. In the same work,

"http://eagl.unige.ch/bitem

Table 1: Code’s distribution for the PAJ and
USPTO corpora.
# \ depth class sub- main sub-
corpus class group | group
codes PAJ 104 420 4738 | 30885
USPTO 104 428 6588 | 38491
average PAJ 1.4 1.5 1.9 2.3
codes/doc | USPTO 1 1 1 1
max PAJ 333413 | 180552 | 123062 | 24364
docs/code | USPTO | 83409 | 50103 | 17830 | 5026
min PAJ 54 13 1 1
docs/code | USPTO 19 1 1 1
average PAJ 22910 5673 503 77
docs/code | USPTO | 8549 5602 135 23
median PAJ 12737 3497 181 35
docs/code | USPTO | 2722 706 14 5

the authors reported their results of applying a variety of
machine learning algorithms to automate categorisation of
English-language patent documents into the IPC. Their re-
sults show that SVM outperforms the Naive Bayes, k-NN
and SNoW approaches under similar conditions, particularly
for categorisation at the IPC subclass level.

Recently, Trappey et al. [28] developed a classification
system based on neural network technology. Their system
extracts key phrases from the corpus by means of auto-
matic text processing and determines the significance of key
phrases according to their frequency in the document set.
Then, it applies the back-propagation network model in the
classification process. The results yielded are above 90% of
accuracy at the subclass level. The system is limited by
the availability of computational resources but also, their
training set is restricted, covering a small part of the IPC.

Xiao et al. [32] reported their experience in the NTCIR-7
workshop to classify paper abstracts according to the IPC
taxonomy. Their approach is based on the k-NN framework,
in which various similarity calculation and ranking meth-
ods are used. They achieved 48.86% of performance (MAP)
when classifying according to the subgroup level. Addition-
ally to their report, the workshop produced a series of other
valuable works [18, 31, 4, 24].

With the need for new solutions, keeping track of tech-
nologies already developed is crucial for companies. An ef-
ficient way to find out how a given technology field evolves,
its effects and how it interacts with other technologies is by
means of a patent map. Recently, the subject has been in-
creasingly explored in the literature and most of the work
published is based either on keyword clustering [16, 11] or
on citation networks [30, 7, 8, 9.

No and Park [20] analyse how technology evolves using
citation network analysis. They are particularly interested
in technology fusions. They propose a method to visualize
the relationship between patents and their backward and
forward patent citations, at the patent class level, with their
direction on a citation map. Zhua et al. [36] use keywords
but also authorship and noun phrases to create the patent
map. Their system is based on Latent Semantic Indexing
(LST) to extract the main relationships implicit in a data set.
Kim et al. [10] collet keywords from patent documents of a
target technology field and cluster patent documents by the
k-Means algorithm. With the results, a semantic network
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of keywords is formed. Then, the patent map is constructed
by rearranging each keyword node of the semantic network
according to its earliest filing date and frequency in patent
documents.

These ways of creating patent maps show the general tech-
nology shift but do not necessarily highlight a specific tech-
nology snapshot. As far as we are concerned, there are no
previous reports on creating maps at the technology level as
proposed by the NTCIR-8 challenge, identifying technology
and its effects terms in documents. An introductory work
is presented by Tsend et al. [29], however their work needs
to be further investigated. They propose that by clustering
the problems and solutions individually a technology-effect
map can be created. Tagging at the sentence level can be
found in the works of Mizuta and Ruch [17, 22]. Especially
in the bioinformatics literature, tagging at the term level,
also called Named Entity Recognition (NER) or Sequence
Tagging, is reported by several authors [25, 12]. Finally, we
can cite a patent document which describes a part of speech
tagging system for content-word pairs [35].

3. METHODS AND DATA

3.1 Training data

In our experiments for the RPC subtask, we use the Patent
Abstracts of Japan (PAJ) (2382595 documents) and USPTO
(889116 documents) collections® to train our classifiers. The
number of documents versus code distribution for the train-
ing corpora are displayed in Table 1. We use only the TI-
TLE and ABSTRACT tags for indexing the PAJ collection.
The USPTO corpus contains other interesting fields such as
CLAIM, SPECIFICATION and CITATION, additionally to
the TITLE and ABSTRACT tags presented in the PAJ col-
lection. USPTO also differs from PAJ in the number of codes
assigned to documents: PAJ contains main and secondary
codes while USPTO contains only the main IPC code. For
this collection, we create two different indexes: USPTO and
USPTO_CLAIM. The latter contains TITLE, ABSTRACT
and CLAIM tags while the former contains, as the PAJ col-
lection, only TITLE and ABSTRACT.

The organisers also provide two sets of 976 paper ab-
stracts each, which have IPC codes manually assigned by
experts. Omne set contains English paper abstracts while
the other, Japanese abstracts. From the way the task is
designed, it characterises a cross-genre and cross-database
(and cross-language for J2E subtask) classification, where
the domain of queries (paper abstracts) differs from that
of the retrieval target (patent) and the application (a re-
search paper abstract without any office) differs from the
office patent database(USPTO and JPO).

For the TTMC subtask, the organisers provide two sets
of 300 abstracts each, which have technology and effect pas-
sages tagged. The effect tag contains further attribute and
value elements annotated. One set is composed by paper ab-
stracts while the other by patent abstracts. Fig. 1 shows an
example of a tagged abstract. A more detailed description
of the training and test collection can be found in [19].

#We do not use all the documents from the PAJ and USPTO
collections, which is approximately 3/2 bigger than the sam-
ple we use for training. Instead, we use only documents
which had the IPC codes already provided in a separate
mapping file.

Figure 1: A sample of a tagged abstract.
<ABSTRACT>In this paper, a double layered self-
diplexing antenna (SDA) using <TECHNOLOGY> circular
microstrip  antenna</TECHNOLOGY> for transmit-
ting and ring patch antenna for receiving has been
analysed by a cavity model to clarify the mecha-
nism of the mutual coupling between the transmitting
and the receiving antennas. Key factors to <EF-
FECT><VALUE>reduce</VALUE> <ATTRIBUTE>the
mutual  coupling</ATTRIBUTE> </EFFECT> are
the arrangement of the feed pin location for 2-feed SDA
and <EFFECT><VALUE>minimizing</VALUE>
<ATTRIBUTE>the amplitude error</ATTRIBUTE>
</EFFECT> of hybrid circuits for 4-feed SDA.We also
verified analysis results by experiments.</ABSTRACT>

3.2 Classifier design

We use Terrier® as our information retrieval (IR) engine.

Terrier implements several methods to calculate the similar-
ity between documents: BM25, BB2 (Bose-Einstein model
for randomness), InL2 (inverse document frequency model
for randomness), among others and it is optimised to work
with large collections. It is based on JAVA and freely avail-
able online.

For our classification experiments, we choose a classifier
based on the k-NN algorithm. It is an empirical decision
derived from other studies that show that k-NN, together
with SVM, outperforms other approaches such as neural net-
works, Rocchio and Naive Bayes [23]. Compared to SVM, k-
NN scales much better to larger systems that contain many
features and classes, which is the case in the proposed task.

Weighted k-NN classifiers have been consistently strong
performers in text categorization evaluations [33, 34]. The
tf-idf weight (term frequency - inverse document frequency)
model is a statistical technique used to evaluate how impor-
tant a given word is to a document. In this model, the im-
portance of a term t is directly proportional to the number
of times ¢ appears in a document d, and is inversely pro-
portional to the frequency of the documents, in which ¢ is
contained, in the corpus ¢. Thus, a high weight in ¢f-idf oc-
curs when t has a high frequency in one document and a low
document frequency in the whole collection of documents.
This causes common terms in the collection to receive low
weights. Terrier uses the Okapi BM25 tf - idf formula to
perform the document ranking, where the idf factor w
(see [21]) is normalised as follows:

ok +D)tf (ks +1)gtf
K+tf ks+qtf ’

w(t,d) =w (1)
where w(t,d) is the weight of document d for query term ¢.
The sum of w(t,d) of the query terms gives the final weight
of document d. K is given by

[
K:k1((1—b)+bl >, (2)
avg
where [ is the document length and {,.4 is the average docu-
ment length of the collection. The query term frequency q¢t f
is the number of occurrences of a given term in the query
and tf is the within document term frequency of the given

*http://ir.des.gla.ac.uk/terrier
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Table 2: k’s for the different classifiers.
corpus subclass | main group | subgroup
PAJ 16 17 11
USPTO 158 122 130

term. The constant b is the free parameter of the BM25’s
term frequency normalisation method, which can be seen as:

tf
T oy Y

lavg

tfn =

where tfn is the normalised term frequency. The parame-
ters k1, ks and b are tuning constants. ki and k3 changes
the influence of term frequency on the document and query
respectively. Higher values of k; or k3 increases the influence
of tf or qtf respectively, whereas k1 = 0 or k3 = 0 vanishes
with them. The constant b modifies the effect of document
length: b =1 is for cases where long documents are repeti-
tive; b = 0 for cases where long documents are multi-topic,
removing the length effect.

Our k-NN algorithm has four free parameters, k1, ks, b
and k (neighbourhood size). We tune only the number of
neighbours k£ so that it maximises the precision at the top
rank document. It is performed via a 10-fold cross-validation
process using the set of 976 English paper abstracts. Table
2 shows the k values found for the different classifiers. The
Japanese abstracts are not used to determine different &’s
for the J2E subtask given that before being submitted to the
IR engine, abstracts are first translated into English. The
parameter b is suggested by the Terrier experiments with the
.GOV collection and set to 0.2681. We do not tune k; and
ks parameters from Eq. (1). The default values of Terrier
are used in this case: k1 = 1.2 and k3 = 8.0.

The classification workflow is depicted in Fig. 2; a query is
provided to the IR engine, which ranks the first k¥ documents
d; according to Eq. (1). The documents are substituted by
their respective codes ¢; and the codes are further re-ranked
using to the methods described in the next subsection. A
ranked list of n codes is then created. For the case of the J2E
sub-subtask, the abstracts are first translated using Google
Language Tools* before being used as input to the IR engine.

3.3 Re-ranking methods

In our attempt to improve the precision of the top n
ranked codes, we have assessed several re-ranking algorithms
analogously to the work of Xiao et al. [32] in the previous
NTCIR challenge. They can be divided in simple and com-
bined methods. And concerning the collections, they can be
classified into simple and multi-collection. They are imple-
mented as follows.

3.3.1 Simple methods

e Code frequency (codefreq) - In this ranking mode, the
codes ¢; are ranked according to their occurrence in
the k patent neighbours d;. Eq. (4) defines how the
code’s score are computed:

X
codefreq., = Z fleidy), (4)

Jj=1

“http:/ /translate.google.com/

where f is defined by

1, ife; €dy;
0, otherwise.

fleisdy) = { (5)

e Document similarity (docsim) - Here, the similarity of
the k& documents d; are assigned to their respective
codes ¢;, as described in (6):

k
docsim.; = Z fles, dy), (6)

j=1
where f is defined by

sim(dj), if ¢; € dy;
0, otherwise

fleid;) = { (7
and the similarity sim(d;) of the document to the
query is given by Eq. (1). In this method, the simi-
larity of a document to the query can be directly as-
signed to a code (docsim) but also the average simi-
larity (docsimayg), which is given by dividing the doc-
ument similarity by the number of codes it contains.

e Citation (citation) - It has been shown in previous ex-
periments that citation is an important source of infor-
mation for patent classification [1, 2]. How the codes
¢; are scored according to this method is presented in

Eq. (8):

k
citation, = Z flei,g(dey,dy)), (8)
i=1

where f is defined by:

sim(dy), ifc; € de;
and d.; € d;; (9)
0, otherwise.

f(cirg(dej,dy)) =

and d.,; is a document cited by d;. Analogously to the
docsim method, the citation can have simple (citation)
and average (citationgvg) methods, which is given by
dividing the similarity of the neighbour document by
the number of documents it cites. Unfortunately, from
our collections only the USPTO documents provide
bibliography information.

3.3.2  Combined methods

e Normalised (norm) - Since the k-NN algorithm tends
to give higher ranks to the most common codes in the
collection, we try to reduce the impact of this effect
by adding the code’s frequency in the whole collection
into the k-NN algorithm, as shown in Eq. (10):

code freqe; docsime,

norme, = o log{ffactore By (10)

where « is a tuning parameter , k is the number of
nearest neighbours and f factor,, is a function of the
code’s occurrence in the collection as defined in the
following equation:
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k-documents

Query | IREnglne
4 (Terrier)
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! Translator :

Re-ranking

Ranked
code list

Figure 2: Classification workflow with the system 3 main components: query translator, IR engine and the

k-NN classifier.

ffactore, = f(es,dy). (11)

where f has the same definition of Eq. (7). Eq. (11)
differs from Eq. (6) only in the sense that it iterates
through the whole collection (d; € ¢) rather than only
through the top k ranked documents (d; € c).

We use o = 1 4 10719 in the classifiers. The value is
chosen empirically so that it cushions very high and
very low values in the exponent.

e Combined (combined): Here, we do a linear combina-
tion of the methods proposed in Eq. (4), (6), (8) and
(10). Since, they are linearly independent - or have
independent errors - their combination tends to out-
perform an individual classifier [23]:

combined., = docsim., + acodefreq., (12)

+ fBnorme; + ycitation.,.

Again, values of the coefficients «, 3 and v were not
trained but rather chosen empirically to be a« = § =
v = 0.01.

e Multi-collection (multicoll) - We also tested combining
the results of the classifiers proposed in Eq. (4), (6),
(8) and (10) using the different indexed collections:

multicoll., = QSCOT€paj,., + 55COT€uspto(;i (13)
+ Y8COT €uspto_claime, »

where scorecoliection is one of the methods code freq,
docsim, citation or norm.

3.4 Named Entity Recogniser design

We choose the Conditional Random Field (CRF) frame-
work [14] to provide the Named Entity Recogniser (NER)
system. Mallet® and the OpenNLP® packages are used in
the system’s design. The OpenNLP is used for segmenting,
tokenisation and part of speech tagging. Three different
models are created and trained using the Sequence Tagging
package of Mallet for each one of the different tags: tech-
nology, attribute and value. The effect tag is annotated via

Shttp://mallet.cs.umass.edu/
Shttp://opennlp.sf.net/

Table 3: Technical trend map models.
features \ model token | token | all
and ps

token X
has_previous_token X X
has_next_token X X
part_of_speech - X
X
X

has_previous_ps -
has_next_ps -
paragraph_size - -
paragraph_position - -
sentence_features - -
sentence_length - -
sentence_parenthesis - -
sentence_punctuation - -
_marks
sentence_position - -
is_capital - -
is_alphanumeric - -
is_in_counter_part - -

SR R R R el Rl R el Rl

M A

regular expression, matching any sequence of <VALUE> ...
</ATTRIBUTE> or <ATTRIBUTE> ... </VALUE> in
the text. We also segment the abstract documents into title
and abstract fragments and train different models for them.
The motivation behind this is the presence of only technol-
ogy phrases in the title segment while in the abstract, the
four tags can be found. Additionally, they have different
syntactic structure.

The first model, token, takes into account only three fea-
tures: token, previous token and next token. The second,
token_and_ps extends the first by adding the part of speech
elements part of speech, previous part of speech and next part
of speech. The last model, all, contains 16 features. Addi-
tionally to features found in the token_and_ps model, it con-
tains the sentence’s paragraph size, sentence’s paragraph po-
sition, number of sentence’s features, sentence length, num-
ber of sentence’s parenthesis, number of sentence’s punctu-
ation marks, token’s sentence position, is token capital, is
token alphanumeric and is token in counter part (if an ab-
stract’s token is found in the title and vice-versa). Table 3
contains a resume of the features used to create the models.

The trained models are complemented by a set of rules
which tries to improve the precision of the NE recogniser:
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Figure 3: Technical trend map workflow.

e isLinkWord: if the phrase contains one of the link
words “and”, “or”, “by”, “for” or “with”, the link word
is removed. The phrase is split if the token is not at
the begin or end of the sentence;

e hasRelevantWord: if the tagged phrase does not have
any relevant word, i.e. all words are stop-words, the
phrase is not tagged;

e isOpenParenthesis: if the first word of a tagged phrase
is preceded by a parenthesis, the parenthesis is added
to the phrase;

e isCloseParenthesis: if the last word of a tagged phrase
is followed by a parenthesis, the parenthesis is added
to the phrase;

e iskndTag: if the next token of a sequence to be tagged
is a punctuation mark, the tag is closed and a new one
may open after the punctuation mark;

e isFalseTech: for the technology tagger, if the tagged
phrase is composed by only one word such as “re-
cently”, “can”, “methods”, “dynamic”, “models” or “im-

ages”, the phrase is discarded.

Finally, the technology/effect dictionary provided in the
training set is used during the tagging process. The dictio-
nary contains 1778 technology, 493 attribute and 287 value
phrases. Ideally, we need to assess the terms individually
and remove the noise from the dictionary. However, in
this case the dictionary is composed of every tagged ele-
ment found in the training sets. For the walue phrases, we
substitute numbers for regular expression and remove pure
numbers from the dictionary.

Fig. 3 shows the workflow of the technology/effect anno-
tation system. First, an “abstract” document (which in fact
contains title and abstract sections) is split into title and
abstract. Then, a sentence segmentation process is applied
to them. The sentences are broken down into tokens and
every token is associated to a part of speech tag. This in-
formation is submitted to the NE recogniser which will tag
every token according to one of the three trained models.
The tagged tokens are reconstructed using the previously
described handcrafted rules. Finally, the title and abstract
segments are merged to create the original paper/patent ab-
stract document.

In the next section we report on the results we obtain in
the RPC and TTMC subtasks.

4. RESULTS

In the challenge’s formal run, the RPC system is tested
with 633 English paper abstracts in the English sub-subtask
and with 639 Japanese papers abstracts in the J2E. In the
TTMC, 200 paper and 200 patent abstracts are used to as-
sess the system’s performance. The results of the RPC sub-
task are evaluated using the Mean Average Precision. On
the other hand, for the TTMC the results are reported using
the F-score measure. The evaluation tool for this subtask
considers correct only exact matches in a tagged passage,
i.e. it is a binary assessment mode. The workshop organis-
ers provide both evaluation tools.

In our experiments in the RPC subtask, we work with the
classification of English and Japanese paper abstracts us-
ing the PAJ and USPTO collections. For each sub-subtask,
we submitted three official runs for each one of the three
levels of the IPC which are being tested in the challenge:
SC_BiTeM_sim, SC_BiTeM_weak and SC_BiTeM_combined
for subclass classification; MG_BiTeM_sim, MG_BiTeM_weak
and MG_BiTeM_combined for main group; and SG_BiTeM_-
stm, SG_BiTeM_weak and SG_BiTeM_combined for subgroup.
The sim, weak and combined results are obtained using
Eq. (6), (10) and (12) respectively. For weak and com-
bined methods only the PAJ collection is used while for sim,
the codes are re-ranked using multi patent collections with
a =1, = 0.1 and v = 0.01 in subclass and subgroup
classifiers and o = 1, 8 = 0.1 and v = 0 in the main group.”

For the English sub-subtask, our best submitted runs ob-
tain 0.6833, 0.4971 and 0.2991 of performance (MAP) when
classifying paper abstracts according to subclass, main group
and subgroup respectively. While for the J2E sub-subtask,
these values are 0.7051, 0.5001 and 0.3028 for the corre-
sponding IPC levels. The best official scores are all obtained
using the docsim (sim) approach through a combination of
collections.

The results of the methods proposed in Subsection 3.3 are
resumed in Table 4 for the English sub-subtask. The column
“multi-coll parameters” contains the values of o, 5 and ~ of
Eq. (13). For example, 1;0;0 in the first row means a = 1,
S = 0 and v = 0, which is the case where only the PAJ
collection is used.

From the table, we can notice that for the methods code-
freq, docsim, norm and combined there is small statisti-
cally significant difference between them, with a modestly
enhanced performance for the combined method. However
when it goes from one collection to another, there is a big
difference in the results. As we can see, the USPTO col-
lection tends to degrade the results, as previously reported

"The main group official run is not displayed in Table 4.
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tOfficial results submitted.

iSince the PAJ

collection does not contain citation information, these results come from the USPTO and USPTO_CLAIM

indexed collections.

| Classifier | code freq | docsim | norm | citation | citationagyg | combined | multi-coll parameters |
subclass 0.6651 | 0.6653 | 0.66127 - - 0.6660" 1:0;0
main group | 0.4785 | 0.4799 | 0.46897 - - 0.47997 1;0;0
subgroup 0.2853 | 0.2854 | 0.28197 - - 0.28577 1:0;0
subclass 0.6001 | 0.6015 | 0.5995 | 0.5943 0.5871 0.6045 0;1;0
main group | 0.3919 | 0.3905 | 0.3890 | 0.3563 0.3442 0.3951 0;1;0
subgroup 0.1656 | 0.1694 | 0.1683 | 0.1613 0.1534 0.1729 0;1;0
subclass 0.5914 | 0.5928 | 0.5968 | 0.5938 0.5825 0.5965 0;0;1
main group | 0.3871 | 0.3878 | 0.3877 | 0.3470 0.3449 0.3917 0;0;1
subgroup 0.1577 | 0.1625 | 0.1623 | 0.1606 0.1523 0.1660 0;0;1
subclass 0.6932 | 0.6833" | 0.6845 | 0.5951* - - 1;0.1;0.01
main group | 0.5008 | 0.4978 | 0.4777 | 0.3572% - - 1;0.1;0.01
subgroup 0.3107 | 0.20917 | 0.2870 | 0.1623% - - 1;0.1;0.01

[32]. Moreover, we can notice that the combination of collec-
tions (multi-coll method) for one of the methods code fregq,
docsim or norm always outperforms a single collection by
at least 1.8% up to 4.2% in relative values. Another obser-
vation is the performance reached by the citation method.
For the cases where it is possible to compare (USPTO and
USPTO_CLAIM indexes), this method is very competitive
with the others proposed (apart from the maingroup classi-
fier). Finally, our best run (multi-coll codefreq) is not part
of the official submission. The comparison of the J2E results
shows a similar picture to the one depicted in Table 4 and
corroborates with the aforementioned remarks.

For the T'T'MC subtask, we submitted four official runs for
each one of the English sub-subtasks. The first three runs,
officially labelled paper_patent_BiTeM_1, paper_patent_BiT-
eM_2 and paper_patent_BiTeM_3, are based on the three
models previously described in Subsection 3.4, all, token
and token_and_ps respectively. All these runs use the built
in dictionary in addition to the NER engine. The run pa-
per_patent_BiTeM_j is also based on the all model but unlike
paper_patent_BiTeM_1 it does not use the complementary
dictionary.

In our best runs, we obtain an F-score of 0.138 and 0.141
in the patent and paper sub-subtasks respectively both using
the token_and_ps model aided by the dictionary. Our paper
results prove to be very competitive when compared to the
other groups especially when recognising technology phrases
in title and wvalue in abstracts. Our results of the patent
TTMC, which are statistically the same as the ones achieved
in the paper sub-subtask, are relatively lower than what is
reported by other groups. The average® F-score results from
all participants in the TTMC subtask are shown in Table 5.

Comparing paper_patent_BiTeM_j and paper_patent_Bi-
TeM_1 in Table 5, we see that the use of the dictionary
does improve the system’s performance by about 85%. We
believe that the use of an ad-hoc dictionary, created from
the training set, can improve results even further once noisy
terms are removed from it. In the official run, we have not
tested how much the rules created improve the system per-
formance. However, during the training phase we observed

8The average F-score measure does not take into account
the effect tag.

a small performance gain.

In the previous results, the models are created using only
data of the specific subtask, i.e. 300 abstracts per model. We
have created another three models similar to them (token,
token_and_ps and all) but this time using the whole training
set. When the system is evaluated using these models, the
best results of the official run are slightly improved, reaching
an F-score of 0.148 for the patent sub-subtask and 0.146 for
the paper task. Both of them use the {oken_and_ps model.

Fig. 4 shows the results of our best official runs in the pa-
per and patent sub-subtasks. As mentioned before, tagging
technology in title segments and value in abstracts are more
effective than tagging technology and attribute in abstracts.
We believe that the better performance on the technology in
title is due to the simpler syntactic structure of this section
when compared to the abstract. On the other hand, the im-
provement of the value tagging precision comes from the use
of the dictionary. When comparing paper_patent_BiTeM_4
with paper_patent_BiTeM_1, the performance of all other el-
ements but value are relatively similar. The latter is up
to 200% better than what is obtained when using the dic-
tionary (F-score of 0.063 and 0.212 respectively for patent
abstracts).

5. CONCLUSIONS

From the results presented in the previous section, we
notice that the quality of the training set is fundamental in
the classification task. In the USPTO collection, besides the
wider coverage of the IPC taxonomy than the PAJ collec-
tion, as we can see from Table 1, more than half of the sub-
group codes are found in fewer than 10 documents. This can
explain the difference in performance of the classifiers that
use the PAJ collection and the ones that use the USPTO.
Moreover, the training set provided in the TTMC subtask
contains tags like the following:

.. .<TECHNOLOGY>bead supports (S)</TECHNOLOGY>...
.. .<TECHNOLOGY>input terminals (4a, 4b)
</TECHNOLOGY>. . ..

where non-technology terms (S) and (4a, 4b) are tagged as
technology, while they are probably references to figures in
the paper or patent document. We have not assessed how
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Table 5: Average F-score results from all partici-
pants in the TTMC subtask.

Paper Patent

System Avg F-score | Avg F-score
paper_patent_NUSME-3 0.164 0.332
paper_patent_BiTeM_3 0.141 0.138
paper_patent_BiTeM_2 0.139 0.135
paper_patent_NUSME-2 0.132 0.296
paper_patent_BiTeM_1 0.130 0.135
paper_patent_ISTIC-1 0.110 0.295
paper_patent_ISTIC-3 0.102 0.165
paper_patent_ISTIC-2 0.076 0.295
paper_patent_BiTeM_4 0.070 0.107
paper_patent_NUSME-1 0.051 0.204
paper_patent_KAIST- 0.031 0.018
IRNLP
patent_ISTIC-1-1 - 0.309
patent_ISTIC-2-1 - 0.292

035

0.30

0.25 1

0.20 1

0.15 A

0.10

0.05 1 1 1 T
0.00 - .

Title technology Abstract Abstract attribute Abstract value  Abstract effect
technology

M paper ™ Patent

Figure 4: Individual results for the best runs of the
TTMC subtask.

much it can interfere in the NER process.

In the RPC subtask we use a smaller sample of the patent
collections to perform the IR task. Instead of the approx-
imately 4.5 million documents provided in the PAJ and
USPTO collections, the collections indexed have about 3
million documents in total. It is possible that this may have
degraded our results in the classification subtask.

Several parameters of our system are not optimally tuned
in the RPC (norm, combined and multi-coll constants) and
TTMC (dictionary) subtasks. This could affect the per-
formance of the classifiers and the NER. For instance, we
expect the combined method in the classification subtask to
significantly outperform the other methods however is not
the case.

Finally, the lack of time stamps in the abstracts in the
TTMC generation does not allow actual trends to be gen-
erated. Additionally, since the task is not focused in one
specific technology field and the low recall of our system, it
is difficult to correlate effects to a given technology using
the test collection. From our results, only two technologies
appear in more than one abstract and only one of them has
effect tagged in two different articles. So, even if dates were
provided we would not be able track any trend.

In this paper we report our experiments in the Patent
Mining task of the NTCIR-8 challenge. Our group partic-

ipates in the Research Papers Classification (English and
J2E) and Technical Trend Map Creation (paper and patent)
subtasks. In the RPC subtask, the subclass, main group and
subgroup classifiers achieve a MAP of 0.6833, 0.4971 and
0.2991 respectively in the English sub-subtask. These val-
ues go to 0.7051, 0.5001 and 0.3028 for the J2E sub-subtask.
For the TTMC subtask, the system achieves an F-score of
0.141 when tagging technology/effect elements in paper ab-
stracts and 0.138 in patent abstracts. The use of the multi-
patent collections improved significantly the performance of
the classification system. The same is observed for the use
of the dictionary to detect technology/effect phrases in the
abstracts.

We plan to use all the documents from the USPTO and
PAJ collections to see if we can further improve our classi-
fication results. Moreover, we want to exercise the classifi-
cation system using bigrams. For the NER, we want to im-
prove the existing rules and create new ones. Furthermore,
the noisy terms in the dictionary needs to be removed. Fi-
nally, we hope such experiments can be beneficial for ad hoc
retrieval in patent collections [6], in particular for chemical
information searching [5].
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