Information Extraction based Approach for the NTCIR-9 1CLICK Task

<u>Meng Zhao</u>, Kosetsu Tsukuda, Yoshiyuki Shoji, Makoto P. Kato, Takehiro Yamamoto, Hiroaki Ohshima, Katsumi Tanaka *Graduate School of Informatics, Kyoto University*

NTCIR-9 Workshop Meeting, 2011/12/9, NII Tokyo, Japan

Our Framework

Query Classifier

Classify four types of query by multi class SVM 185 Features

Feature	# of features
Has Wikipedia article	1
Frequency of parts-of-speech	44
Query unigram	85
Sentence pattern	2
 Number of documents containing expanded query 	15
Has travel services	1
Number of search results	1
- Terms in search results	39
Total	185

[、]Search with 15 expanded query such as "query-san(さん)" and "query-senshu(選手)" to distinguish name of CELEBRITY.

 Count selected 39 terms such as "profile," "born at" and "Chome (丁目)" in snippets of Yahoo Japan search result

Information Summarizer

• Eliminates overlap from the extracted sentences.

IE for CELEBLITY (Attribute-based)

Extract pairs of an attribute name and its value from *Infobox* in Wikipedia

"Country is USA, residence is Las Vegas, Nevada, U.S., height is, and highest ranking is No.1."

IE for CELEBLITY (Sentence-based)

- Extract important sentences from Wikipedia
- 12 features employed

http://en.wikipedia.org/wiki/Hayao_Miyazaki

 Train a regressor to predict the importance score of each sentence (using pre-distributed queries)

IE for LOCATION

IE for DEFINITION

- Query : *x*
- Search with a new query "x towa(とは)"
- Extract a sentence including the phrase of "x towa" from each retrieved Web page
- Apply the LexRank[1] algorithm to the set of sentences for estimating the sentence importance

$$\mathbf{p} = \left[d\mathbf{U} + (1-d)\mathbf{B} \right]^{\mathrm{T}} \mathbf{p}$$

- **p** : a vector representing the importance degree of each sentence
- $\mathbf{U}: n \times n$ square matrix whose elements are 1/n
- **B** : adjacency matrix of the cosine similarity between two sentences *d* : damping factor
- [1]G. Erkan and R.D. Radev. LexRank: Graph-based lexical centrality as salience in text summarization. *Journal of Artificial Intelligence Research*, 22(1), pages 457-479, 2004.

IE for QA

• Query: Which is taller, Tsutenkaku or Ustunomiya tower?

- Extract answers for most similar questions to the given query from <u>Yahoo! Chiebukuro</u>
- Return the best answer
 - if no best answer is given, return the most similar answer to the query

Results

- The accuracy of our query classifier: **0.93**
- Highest S-measures for CELEBLITY and QA queries among participants

- though the difference is not significant

Result for Each Query

- For the 1CLICK task, the object identification problem should be tackled (see Kanazawa Univ.)
- QA queries obtained high S-measures when exactly the same questions are available (see the two questions)

Conclusions

- Information extraction framework for 1CLICK
 - Query classifier (multiclass SVM)
 - Four types of information extractor
 - CELEBRITY (attribute and sentence extraction from Wikipedia)
 - LOCATION (postal and access information extraction)
 - DEFINITION (summarization of Web search results)
 - QA (QA pair extraction from Yahoo! Chiebukuro)
 - Information summarizer (MMR)

Thanks! ntcir-9@dl.kuis.kyoto-u.ac.jp