Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

IBM Chinese-to-English PatentMT System for NTCIR-9

Young-Suk Lee, Bing Xiang, Bing Zhao, Martin Franz, Salim Roukos, Yaser Al-Onaizan
IBM T. J. Watson Research Center
1101 Kitchawan Road
Yorktown Heights, NY 10598
U.S.A
{ysuklee, bxiang, zhaob, franzm, roukos, onaizan}@us.ibm.com

ABSTRACT

We describe IBM statistical machine translation systems for the
NTCIR-9 Chinese-to-English  PatentMT evaluation. IBM's
primary system combines the translation output of three distinct
statistical machine translation systems — phrase, direct and syntax-
based translation systems — using language model re-scoring on
confusion networks. Each translation system differs in terms of
translation models and decoding techniques, sharing the same pre-
processing, word alignments, post-processing and language
models. IBM's Chinese-to-English primary system achieved the
second highest BLEU score 36.11 out of all primary systems
scored.
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1. INTRODUCTION

IBM primary system for the NTCIR-9 Chinese-to-English patent
translation evaluation is the combination of three types of
statistical machine translation systems: phrase translation [13],
direct translation [5], and syntax-based translation [20]. In this
paper, we present the core techniques of each translation system
and the NTCIR-9 PatentMT evaluation results.

An overview of the end-to-end translation process of the IBM
primary system is shown in Figure 1. For translation model
training, we obtain hidden markov model (HMM) and maximum
entropy (ME) word alignments from the pre-processed parallel
corpus. Translation models are derived from the two types of

word alignments. For decoding, the Chinese input texts are pre-
processed in the same way as the translation model training, and
translated by the respective decoder of the three translation
systems. The translation outputs of the three translation systems
are combined, case-restored and de-tokenized to produce the final
translation output. A block denotes a phrase translation pair
consisting of a source and a target phrase.

This paper is organized as follows: Section 2 describes pre-
processing. Section 3 discusses word alignments. Section 4
presents the translation models and decoding techniques of the
three statistical machine translation systems. Post-processing,
which includes system combination, is discussed in Section 5.
Section 6 describes the NTCIR-9 Chinese-to-English PatentMT
evaluation and other experimental results. Section 7 concludes the

paper.

2. PRE-PROCESSING

Pre-processing consists of word segmentation, entity classing, and
parsing.

2.1  Word Segmentation

Word segmentation is carried out in 2 stages: In the first stage, we
apply a finite state machine (FSM) segmenter, incorporating 7-
gram character-based language model [6] for state transition
probabilities. For each FSM-segmented Chinese word, its out-of-
vocabulary (OOV) status is checked against the translation
vocabulary. If the word is an OOV, another segmenter is applied
to further segment the word in the second stage.

The probabilistic FSM segmenter tends to under-segment by
joining character sequences not seen in the training data,
generating many OOV words for the translation lexicon. The
other segmenter refers to a bigram look-up table constructed from
the training data. If a two character sequence is not in the bigram
table, it splits the two characters. This tends to over-segment due
to the numerous missing bigrams in the training data.

Both segmenters are trained on about 1.4 million word corpus,
shown in Table 1. The 710k word in-house annotation corpus is
derived from patent abstracts, claims and titles.

Table 1. Chinese Word Segmentation Corpus Statistics

Source Training Set Development Set
LDC2007T36 (CTB6) ~720k words 37489 words
Patent (in-house) ~710k words 13800 words

The FSM segmenter performance on the CTB6 development set is
about 96% and the patent development test set is about 93% in F-
measure.
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Figure 1. An Overview of the IBM Chinese-to-English Primary System

2.2 Rule-Based Entity Classing

Entity classing is applied to numerical expressions such as DATE,
TIME, CARDINALS and ORDINALS and some non-numerical
expressions such as URL, EMAIL, based on regular expression
pattern matching.

The entity classing has proven useful for patent texts that include
measure words such as mg, dl, gb, etc. preceded by Arabic
numerals. We treat the combination of Arabic numerals and
measure words as a single entity, as shown in Table 2. By treating
the Arabic numerals and measure words as a single entity, we
reduce the input size in addition to producing accurate
translations for the entity classed expression.

Table 2. Entity Classing Examples

RIE Z |E, WERE H RY K AR Mg K (E5hk Mz
M B BERE RE ) & /MF $num_(126mg/dl) , $Snum_(75g)
AR B2 M2 X1 89 $num_(2) /B & ( ERfk 2% A
B EEE SRE ) & /N F Snum_(200mg/dl) B9 FFIE -

2.3 Parsing and Tree Transformation

Source language parsing is used for pre-ordering by the phrase
translation model, tree-to-string grammar acquisition by the
syntax model and feature acquisition by the direct translation
model.

We use a maximum entropy Chinese parser [12] trained on CTB6
and an in-house annotated part-of-speech corpus, shown in Table
3.

Table 3. Chinese Language Resources for Parsing

Source Training Set Annotation Type
LDC2007T36 (CTB6) ~720k words Tree bank
Patent (in-house) ~240 k words Part-of-speech

Part-of-speech annotated corpus was parsed using constraint
based decoding, and added to the tree bank training data.'

! We later learned that 1,688 sentences (22%) and 5,172 tokens
(2.7%) of the part-of-speech annotated data had the issue of

The primary purpose of using the parser was to better model the
reordering phenomena between Chinese and English with context
free grammar (CFG) rules. However, as shown in Figure 2, there
are quite a few Chinese constructs whose reordering pattern
cannot be easily captured with CTB6-style CFG representations.?

Figure 2 illustrates a CFG rule 'NP — DNP NP'. The order of the
two children DNP and NP may or may not be swapped to produce
the same word order as English translations.

2 NP
P e 2
. o
N|F' DEG NN AI:l')JP DEG NN
T | o
2@ > & T # ESA
voice of America new leader
(a) (b)

Figure 2. Chinese DNP phrases with reordering ambiguities

Whether or not to swap the order between DNP and NP depends
on the part-of-speech of the DNP 's children. If the part-of-speech
of a child is an NN or NR, Figure 2-a, NP DNP order is more
likely, whereas if the part-of-speech of a child is a JJ, Figure 2-b,
the DNP NP order is very likely to remain unchanged.

In order to capture the reordering contexts, we remove the parent
node (DNP) that dominates the disambiguation contexts, Figure 2.
After DNP node removal, disambiguation contexts are all
captured as the children of the same NP parent, Figure 3.

merging more than one part-of-speech tagged word into a single
token, asin & JJ##l NN, £ CDE M ,[E DT— CD.

2 Refer to [8] for the limitations of CFG representations in
English-to-Japanese translations.
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Figure 3. DNP-node removal to capture reordering contexts

We learn the constituents undergoing transformation with
probabilistic tree-to-string grammars [20], informally described
below:

* Word align a parallel corpus and parse the source language
corpus

* Train a probabilistic tree-to-string grammar

* Identify the constituents whose children sequence is highly
ambiguous between monotone and non-monotone word order

* For the constituent identified in the previous step, remove the
node that dominates the disambiguation contexts for reordering

For the DNP NP sequence in Figure 2, tree-to-string grammar
rules assign probability 0.51 to the non-monotone order, Figure 2-
a, and 0.49 to the monotone word order, Figure 2-b, indicating
that it is highly ambiguous between monotone and non-monotone
word order. However, after DNP node removal, tree-to-string
grammar rules assign the re-ordering probability 0.77 to the NP,
DEG NP, sequence in Figure 3-a, and the monotone order
probability 0.74 to the ADJ DEG NP sequence in Figure 3-b.

We train the parser after applying the tree transformation (i.e.
constituent node removal) to the original tree bank. We use the
parser trained on the transformed tree bank.

3. WORD ALIGNMENT

All systems combine blocks derived from an unsupervised HMM
[15] and a supervised ME [4] word alignments to train translation
models. Throughout this paper, we use the term block (b) to
denote a phrase translation pair consisting of a source ( /) and a
target phrase (€ ).

3.1  Viterbi HMM Alignments

HMM alignment utilizes two conditional probability models:
State transition and word-to-word translation probability models.

Assuming the source word sequence (f;, f5, ... fj) to be the
observation and the target words (e;, e, ..., e/) to be states, state
transition probabilities are obtained according to (1):

cnt |i —1'|

() pGl', fiD) = S cnt|1—i'|

I denotes the target sentence length. f. is the source word
generated from the previous state i'. i is the the state generating
the current source word f;. State transition probability is the count
of the jump width between i and i’ divided by the total count of
the jump width between i’ and any current state from 1 to /.

Word-to-word translation probability is obtained according to (2):
f'1s the source word given target word e.

cnt(f, e)
Zf,cnt (f',e)

The optimal path is found by dynamic programming with a
recursive formula (3), where Q(, j) is a partial probability
function that generates the observation sequence ranging from the
first source word to the current source word f; in state i that
corresponds to the target word e;.

(3) Q(laj) =p(f,' |€[) lg}ax [p(l ‘ i’af/—l,l)'Q(ilaj_l)]

,,,,, 1

() pU )=

For training, we initialize the word to word translation model with
an IBM model 1. State transition probabilities are initialized with
a prior model that assigns higher probabilities to smaller jumps
where any jump width from 0 to 19 are assigned positive
probabilities and any jump width greater than 19 are assigned zero
probability. Once the optimal path for a sentence pair is found, we
update the alignment and obtain the translation and jump counts
from the updated alignment in the E-step and re-normalize the
translation and state transition probabilities in the M-step.

3.2 Maximum Entropy Alignments

We use the maximum entropy word aligner described in [4]. We
use the resources in Table 4 to train the aligner. 48 patent
sentence pairs are selected from the 1 million parallel training
corpus [22] for in-house annotations.

Table 4. Linguistic Resources for ME Aligner Training

Source Quantity
LDC2006E93 14938 sentence pairs
LDC2009E89 14931 sentence pairs

Patent descriptions 48 sentence pairs

Total 29917 sentence pairs

Similar to HMM aligner, the ME aligner consists of two models:
observation and transition models. Word alignment is carried out
on the basis of the scoring function (4) for each word pair:

(4) AlignmentScore = [ log(transitionScore) x L ] + [ (1-1) x log(
(meScore x o+ (1-0) x m1Score) ) ]

In (4), A is the transition model weight and 1\ is the observation
model weight. a is the ME score weight and (1-a) is the IBM
Model 1 score weight.

For observation model training, we use the same features as in
[4]: source and target word lexical features, WordNet and spelling
features In addition, we use source character and target word
features, drawing on the fact that each Chinese character has its
own meaning and often corresponds to an English word.

From the human annotated data, we obtain about 15.5k source
and 14.8k target vocabulary, which is highly limited compared
with about 171k source and 204k target vocabulary acquired from
the parallel training data. Therefore, we smooth the observation
model score with an IBM Model 1 estimate, as shown in the (4)
as (1-a) x m1Score.

4. STATISTICAL MACHINE
TRANSLATION SYSTEMS

We present the translation model acquisition and decoding
techniques of phrase, direct and syntax-based translation systems.
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All translation models are trained on the 1 million parallel
training corpus. A large 7-gram language model (LM) is trained
on about 14 billion word English patent data published between
1993 and 2005. A smaller 5-gram language model is trained on
the English side of the 1 million sentence pair parallel training
corpus containing 45 million words, [22].

4.1 Phrase Translation System
IBM phrase translation system is an extension of the phrase
translation system detailed in [13].

4.1.1 Three Types of Translation Model

Phrase translation model probabilities are learned from the
combination of blocks derived from an HMM word alignment and
blocks extracted from an ME word alignment.

For block acquisition from an HMM alignment, we word-align a
parallel corpus bi-directionally: one from a source word position
to a target word position, (4,: f — e) and the other from a target
word position to a source word position (4,: e — f). Given two
types of alignment Ap = A; N A4, and A = 4, U A,, blocks are
derived according to the projection and extension algorithms [7,
13], and we filter out blocks containing non-consecutive source
word sequences.

For block acquisition from an ME alignment, we use the high
recall alignment Ay extracting blocks consisting of consecutive
source and target word sequences with the constraint that source
and target sequences be aligned only to the words within the
block.

Three types of phrase translation model probabilities are derived
from the combined blocks, as in (5)~(7), where € is the source

phrase, f the target phrase and b=( e , f ).
(5) Direct Model

G 7y coumt@. ) _
p(e ‘f)_z?count(é',f)

(6) Source-channel Model

5 _count(f,&)
p(fle)= > count (f', )

(7) Unigram Model
count (b)

pb)= Zb,count(b')

4.1.2 Decoding
The phrase decoder uses a beam search strategy and a scoring
function that incorporates 6 types of manually weighted features
listed below:
* phrase translation models
» modified IBM model scores derived from blocks consisting of
one source and one target word
 word count penalty
* block count penalty
* lexicalized inbound and outbound distortion models [1]
* a mixture language model with a large 7-gram and a small 5-
gram LM's

We expand the search space, by increasing the beam size, i.e.
cardinality pruning threshold, up to 5000, and the coverage
pruning threshold up to 75.* To capture the relatively high degree
of distortion between Chinese and English, we set the skip size 5°
[14].

4.1.3  Parsing-based Pre-ordering

The baseline phrase translation system incorporating lexicalized
distortion models is inadequate for capturing the non-local
distortion between Chinese and English [3, 16]. To improve word
order accuracy, we apply parsing-based pre-ordering for
translation model training and decoding [8].

We use the Chinese maximum entropy parser trained on the tree
bank with the tree transformation described in Section 2.3. 1-best
reordering rules are learned from the tree-to-string grammar rules.
Top 5 most frequently occurring reordering rules are given in
Table 5, where the reordering pattern 2 1 0 indicates that the
source phrase order is reversed.

Table 5. Most frequent Reordering Rules

Frequency | Source Constituent Reordering Pattern

25797 |NP — NP, DEG, NP, 210
15749 | NP-OBJ — NP, DEG, NP, 210
11849 | NP-SBJ — NP, DEG, NP, 210

7281 | PP-LOC — P, NP, LC, 201

3704 | NP—-NP, DEG, ADJP, NP; 2310

We used 144 such rules, which occur more than 10 times in the 1
million sentence pair training corpus.

4.2 Direct Translation Model

The Direct Translation Model (DTM) is a special maximum-en-
tropy (ME) model [5]. The model has the following form:

®) p@.jlf) =m%j|f)exr>zli¢i(é,j,f)

[ is a source phrase, and € is a target phrase. j is the jump

distance from the previously translated source word to the current
source word. During training j can vary widely due to automatic
word alignment in the parallel corpus. To limit the sparseness
created by long jumps, j is capped to a window of source words (-
5 to 5 words) around the last translated source word. Jumps
outside the window are treated as the maximum jump allowed.

Po(@,j| f) is a prior distribution, Z is a normalizing term, and
#.(2, j, f)are the features of the model, each being a binary
question asking about the source and target streams. The feature

weights A; are estimated with the Improved Iterative Scaling (IIS)
algorithm.

4.2.1 Block Extraction

Blocks are extracted from the HMM word alignment (f — e
direction only) and the ME word alignment. The “Projection
Constraint”, which requires that the source and target sequences
be aligned only to the words within the block, is then checked to

* Typically set to 250.
* Typically set to 25.

> Typically set to 1 or 2 for optimal performances.
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ensure that the phrase pair is consistent. A slight relaxation is
made to the traditional phrase blocks in that a variable is allowed
at the source or target side to accommodate the fork-style
alignments [5].

4.2.2 Features
Large number of features utilized in the ME model [18] fall into
the following categories:
* Lexical features that examine source word, target word and
Jump;
* Lexical context features that examine the previous and next
source words, and also the previous two target words;
» Segmentation features based on morphological analysis. In
this work, they are features based on Chinese characters;
» Part-of-speech (POS) features that collect the syntactic
information from the source and target words;
» Source parse tree features that examine the source parse
labels, sibling labels and coverage;
» Coverage features that examine the coverage status of the
source words to the left and to the right. They fire only if the
left source is open (un-translated) or the right source is closed.
The total number of features used in the system is around 15M.

4.2.3 Decoding

A beam search decoder similar to the phrase-based systems is
used to translate the Chinese sentences into English. These
decoders have two parameters that control their search strategy:
(a) the skip length (how many positions are allowed to be un-
translated) and (b) the window width, which controls how many
words are allowed to be considered for translation.

The primary difference between a DTM decoder and standard
phrase-based decoders is that the maximum entropy model
provides a cost estimate of producing this translation using the
features described above. Another difference is that the DTM
decoder handles blocks with variables. When such a block is
proposed, the initial target sequence is first output, and the source
word position is marked as being partially visited. Then an index
into which segment was generated is kept for completing the visit
at a later time. Subsequent extensions of this path can either
complete this visit or visit other source words. On a search path,
we make a further assumption that only one source position can
be in a partially visited state at any point. This greatly reduces the
search task and suffices to handle the type of blocks encountered
in Chinese to English translation.

Decoder parameters are optimized with the simplex algorithm in
[23].

4.3 Syntax Model

Our syntax-based translation system is a chart-based decoder as
described in [20].

For this patent evaluation, we applied a variation of the source
tree to target string grammar (tree-to-string). We applied a few
tree transformation operations to handle fragment of tree (or tree-
sequence) [19], Dbinarizations, lexicalizations, and flattening
multi-level trees to extract PSCFG style reordering rules.
Practically, we extract at least one tree-to-string rule for each
aligned phrase-pair (block). By applying such approach, we
significantly improved the grammar coverage, and also enable
our decoding process to be less sensitive to the parse tree errors.

4.3.1 Grammar Acquisitions

Grammar set extraction is divided into two stages. Given the
source parsed, word-aligned parallel data, we first extract the
same set of blocks from the training data using the standard
approach, as shared by phrase-decoder system. In this stage, we
allow blocks with source side of length up to 12 tokens, and max
target side of length 15 tokens.

After blocks are extracted, we walk through every aligned pair of
phrases. For each source phrase, we get the immediate common
parent for the source span, and then we retrieve the tree fragment
which cover the span. From this tree-fragment, we identify the
frontier nodes, which can be generalized into non-terminals, and
necessary lexicalizations which can model the fork-style
alignment.

Then we consider tree-transformations, to restructure the trees via
synchronous binarizations, flatten the trees by removing the
interior nodes, and add additional markups to indicate the
transformed trees. One important additional markups are
sentence-begin and sentence-end, as at which positions, we
generally do not expect the dramatic re-orderings to happen. More
details can be found in [21].

After all grammar rules are extracted, we prune the tree-to-string
rules with a hard threshold of frequency. Any rules that occurred
less than 3 times are dropped.

Note that the tree transformation applied to the tree bank for the
parser training, cf. Section 2.3, is analogous to the flattening
operator in [21]. However, the tree transformation applied to the
tree bank is primarily to capture the disambiguation contexts for
re-ordering within the CFG framework, i.e., all CFG rules are
encoded in a tree of depth 2, whereas the tree transformations by
the syntax model are largely motivated to increase the grammar
coverage. Constituent node removal applied to the tree bank is
targeted on the nodes that dominate disambiguation contexts,
and the transformation enables the CFG to capture the
disambiguation contexts by flattening a tree of depth 3 or more to
a tree of depth 2. On the other hand, the tree transformations by
the syntax model is largely determined by the alignment decisions.
Empirically, the tree transformations applied to the tree bank and
those performed by the syntax model may or may not overlap.

4.3.2 Decoding
During decoding, we first populate a chart (a vector of cells) with
the relevant reordering rules.

We walk through the given parse tree for the test sentence, and at
every cell, we retrieve the immediate common parent for that
source span, and correspondingly the tree fragment for that span.
Then we apply every predefined operator to transform the tree,
and see if the transformed tree matches some grammar rules in our
library. If there is no tree-to-string rule matching the span, we
back off to Hiero-style [3] unlabeled rules, and if there is no Hiero
rule, we further back off to monotone ITG-style [17] glue rule for
each span. We collect all the matched rules for each cell, and
expand them one by one from bottom up to fill up the chart until
we reach the final translation.

Different from the DTM decoder, which can use millions of
features during decoding, we used 19 feature functions, including
relative frequencies in both directions, IBM model-1 score in both
directions, rule count for blocks, glue rule, Hiero-style rule, and
tree-to-string rule, brevity penalty, interpolated IBM model-1
score, ngram LM scores, and several feature functions to handle
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function/content word mismatches in both directions. The feature
weights are optimized with the simplex algorithm in [23].

Pruning needs to be done to improve the speed and memory
requirement. We kept at most 200 partial hypotheses per rule, and
at most 400 final expanded hypotheses per cell. During the
populating step, we kept at most 20 rules per cell, ranked by their
frequencies. Glue rule is not encouraged for short source spans
with less than 10 tokens, if we see tree-to-string or Hiero-style
rule for that span. We merge the hypotheses which share the same
state but different cost. We also trigger early stopping when the
search space is over the maximum amount of memory predefined,
and the decoding process will reach final translation quicker using
a restricted the search space at that time.

S. POST-PROCESSING

We combine the translation outputs from the three statistical
machine translation systems, restore case and perform de-
tokenization® to produce the final translation output.

5.1 System Combination

The system combination component is based on an incremental
alignment approach, using inversion transduction grammars
(ITGs) for aligning system outputs [9, 10].

More specifically, 1-best output of the Syntax Model is used as
the “skeleton”, to which the 1-best outputs of the other translation
models are aligned, one by one, using ITGs. The resulting
confusion network is re-scored using a combination of two
language models (LMs): 7-gram LM trained on 14 billion word
corpus, and 5-gram LM trained on the English side of the parallel
corpus. Values of the free parameters (relative weight of the LM,
skeleton system choice, and the word insertion/deletion penalty)
are selected using development and tuning sets, containing 500
and 1500 and sentences.

As shown in Table 6, the system combination yields increase of
0.76 cased and 0.91 lower-cased BLEU over the best performing
translation system.

5.2 Case Restoration
We treat case restoration as a translation task that translates lower-
cased English words to true-cased counterparts.

We use the translation model to identify all possible case
variations of a lower-cased word, and use a 5-gram language
model score to select the best alternative. The 5-gram language
model is trained on the English side of the 1 million sentence pair
training corpus.’

Table 6. Cased vs. Lower-cased BLEU scores

Systems Cased BLEU Lower-cased BLEU
System Combination 36.12 37.58
Phrase Model 32.56 33.87
Direct Model 33.60 34.87
Syntax Model 35.36 36.67

® Merge punctuations, symbols and/or contracted forms to the
preceding or the following tokens

" The scores are computed with the original in-house BLEU
script, different from mteval-vl3a.pl, using the reference
translation provided by the PatentMT evaluation organizers.

The gap between lower-cased and cased BLEU scores are shown
in Table 6 for the systems submitted to NTCIR-9 PatentMT
evaluations. Cased BLEU scores are lower than lower-cased
BLEU scores by 1.27 to 1.46 BLEU points.

5.3 De-tokenization
For de-tokenization, we use look-up tables that lists tokens to be
merged to the preceding and following tokens, shown in Table 7.

Table 7 De-tokenization Look-up Table

No space before tokens |-;,:!1?).%~]/" |1 's't'm'll
-~(S[/11

No space after tokens

Tokens that require no space before tokens are merged to the
preceding tokens, and includes contractual forms such as s, 'z, 'm,
Il as well as punctuations and symbols. Tokens that require no
space after tokens are merged to the following tokens, and mostly
includes symbols.

6. EXPERIMENTS & EVALUATIONS

We present the impact of various techniques on phrase translation
system, NTCIR-9 Chinese-to-English translation evaluation
results and discuss the impact of contextual data on our
submission systems.

6.1 Impact of Techniques

In Table 8, we show the impact of various modules and
techniques on the phrase translation system, using the NTCIR-9
development test data set. System performances are shown in
lower-cased BLEU with up to 4-grams for modified precision
computation [11].

Table 8. Impact of various techniques on phrase translation
system performances

Systems BLEUr1n4
Baseline with HMM blocks 28.96
Pre-processing + ME blocks 32.20
7-gram LM w/ 14 billion words 33.84
Expanded search space 34.97
Parsing-based pre-ordering 36.00

The key properties of the baseline system that differs from the
final submission system are listed below:

» Use only the smaller 5-gram language model trained on 45
million words.

* For pre-processing, use only the FSM word segmenter and an
entity spans over exactly one token.

* Use blocks derived from HMM word alignment only.

* Use a restricted search space with the beam size 250, skip size
1 and the maximum translations per source phrase 20.

Enhanced pre-processing and addition of blocks derived from ME
word alignment improves the performance by 3.24 BLEU points.
Pre-processing improvement includes 2-stage word segmentation,
improved non-Chinese word tokenization, entity classing bug fix,*

Previously if the entity content is of the format 36), it used to
strip off the right parenthesis, e.g., as 36. This bug was fixed by

— 611 —



Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

and the entity classing extension that can span over more than one
word token.

Using a mixture language model that includes the 7-gram
language model trained on the 14 billion word corpus — in
addition to the smaller S5-gram LM — leads to statistically
significant 1.64 BLEU gain.

Expansion of the search space — beam size increase from 250 to
5000, coverage vector pruning threshold increase from 25 to 75,
skip size increase from 1 to 5 and the maximum translations per
source phrase from 20 to 50 — improves the performance by 1.13
BLEU points.

Parsing-based pre-ordering for both translation model training and
decoding improves the performance by 1.03 BLEU point.

The overall performance improvement of the final system over
the baseline is 7.04 BLEU points.

6.2 NTCIR-9 Evaluation Results

IBM primary system performance in the NTCIR-9 Chinese-to-
English PatentMT evaluation is shown in Table 9.

Table 9. IBM Primary System Performance in NTCIR-9

Metrics Segments Scored Scores
BLEUrlIn4c 2000 36.11
NIST 2000 8.51
RIBES 2000 0.80
Adequacy Score 300 3.39

BLEU score 36.11 and RIBES score 0.8 are the second highest,
and the NIST score 8.51 is the third highest among all the primary
systems scored.

The Pearson correlation coefficients between the BLEU scores
and the human evaluation adequacy scores of the 23 systems
scored is 0.915 with R2 = 0.837, indicating that the correlation
between BLEU and human evaluations is fairly high. MT scores
of the 23 systems are shown in Table 10.

Table 10. MT Evaluation Scores of 23 Systems Scored

Systems | BLEU HE Systems | BLEU HE

Gl 39.44 4.03 G3 26.49 3.30
G6 36.11 3.39 G15 26.38 3.13
G17 35.69 3.42 G4 25.97 3.05
G12 34.76 3.40 G13 25.84 2.85
G10 32.76 3.34 G9 25.36 3.04
Gl14 32.29 3.51 G11 17.80 241
G7 31.97 3.30 BS1 30.72 3.29
G5 31.46 3.34 BS2 29.32 2.89

G18 30.74 3.29
Gl16 30.26 3.23
G8 29.27 3.19
G2 27.79 3.11

ONLINE | 25.69 2.97
RBMTI1 10.75 2.27
RBMT2 | 12.80 2.66

correctly generating the entity content as 36).

In Table 10, BS1 denotes BASELINE1, BS2 BASELINE2 and
ONLINE denotes ONLINE1. HE stands for human evaluation
adequacy scores.

6.3  Impact of Contextual Data

During the evaluation period, we derived 23,005 sentence pairs of
additional parallel corpus from the 103 document pairs of the
development test set contextual data (about 670k word tokens in
Chinese and 709k word tokens in English). We automatically
sentence aligned them with an in-house sentence aligner.

We added this parallel corpus for translation model training of the
submission systems. Table 11 illustrates the impact of the
contextual data on system performances.

Table 11. Impact of contextual data on system performance

Systems w/ context data w/o context data
System Combination 36.11 35.00
Phrase Model 32.56 32.42
Direct Model 33.60 33.48
Syntax Model 35.55 34.42

While the contextual data was helpful for all of the systems, it was
particularly effective for the syntax model, improving the BLEU
score by 1.13 points. We see the similar gap of 1.11 BLEU point
for system combination, namely 36.11 with contextual data and
35.0 without contextual data.

7. Conclusions

In this paper, we described IBM primary system for the NTCIR-9
Chinese-to-English patent translation evaluation. IBM primary
system is a combination of three types of statistical machine
translation systems: phrase translation, direct translation, and
syntax-based translation.

All translation models are trained on the 1 million parallel
training corpus. All systems use a mixture language model
consisting of a large 7-gram language model is trained on about
14 billion word English patent data published between 1993 and
2005 and a smaller 5-gram language model is trained on the
English side of the 1 million sentence pair parallel training corpus
containing 45 million words [22]. All systems share the same
word segmentation, entity classing, Chinese parsing, case
restoration and de-tokenization.

IBM Chinese-to-English patent translation system demonstrated a
highly competitive performance in the NTCIR-9 PatentMT
evaluation by achieving the second highest BLEU score 36.11
among all primary systems scored.
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