# **Automated Cross-lingual Link Discovery in Wikipedia**

Ling-Xiang Tang<sup>1</sup>, Daniel Cavanagh<sup>1</sup>, Andrew Trotman<sup>2</sup>, Shlomo Geva<sup>1</sup>, Yue Xu<sup>1</sup> and Laurianne Sitbon<sup>1</sup> <sup>1</sup>Faculty of Science and Technology, Queensland University of Technology <sup>2</sup>Department of Computer Science, University of Otago

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55 0.50

0.45

0.40

#### ABSTRACT

QUT

At NTCIR-9, we participated in the cross-lingual link discovery (Crosslink) task. In this paper we describe our approaches to discovering Chinese, Japanese, and Korean (CJK) cross-lingual links for English documents in Wikipedia. Our experimental results show that a link mining approach that mines the existing link structure for anchor probabilities and relies on the "translation" using cross-lingual document name triangulation performs very well. The evaluation shows encouraging results for our system.

# **1. CROSS-LINGUAL LINKING IN WIKIPEDIA**



Among all language sub-sets of Wikipedia, English Wikipedia contains the largest number of articles. However, the links in the current English Wikipedia are mainly pointed at articles of the same language. Without direct links to articles in other languages, it may cause difficulties when viewing cross-lingual materials for people who are bi-lingual readers or knowledge contributors, or second language acquisition students (e.g. English learners of Chinese).

## CONCLUSION

Several automatic linking methods were tested. The methods employed include: link mining, page name matching, cross-lingual information retrieval and transliteration with online Wikipedia search service.

Link mining method with Wikipedia cross-lingual document name triangulation (run: QUT\_LinkProb\_ZH) performed the best among all implementations, and also achieved encouraging results in the overall evaluations of Crosslink task. This method requires pre-mining on the existing link structure of Wikipedia. In order to compute a list of English anchor / target probabilities, additional English Wikipedia corpus from INEX[5] was employed for this English link mining.

## 7. RESULTS AND DISCUSSIONS

| Run ID                                                              | MAP | <b>R-Prec</b> | P@5 | P@10 | P@20 | P@30 | P@50 | P@250 |
|---------------------------------------------------------------------|-----|---------------|-----|------|------|------|------|-------|
| metric scores computed with <i>arel</i> from Wikinedia ground-truth |     |               |     |      |      |      |      |       |

## 2. CLLD METHODS

To locate CJK cross-lingual links for English Wikipedia articles, we separate the link discovery into two phases:

- 1) detecting prospective anchors in the source document;
- 2) and for each anchor, identifying relevant documents in the target language corpus. Once the anchor is identified, a link,  $a \rightarrow d$ , is created (where a is the anchor, d is the target document).

코코넛

여인의 향기

마이클 조던

What to linK?

- Cross-lingual Link Probability (English-to-Chinese)
- Cross-lingual Page Name Matching (English-to-Chinese, English-to-Japanese, English-to-Korean)
- Cross-lingual Information Retrieval (English-to-Chinese)
- Named Entity Recognition with Transliteration (English-to-Japanese)



|               |                    | 1.    |               | mp acea with g |                      | Joana Broana na |       |       |       |
|---------------|--------------------|-------|---------------|----------------|----------------------|-----------------|-------|-------|-------|
|               | LinkProb_ZH        | 0.179 | 0.244         | 0.776          | 0.588                | 0.480           | 0.404 | 0.319 | 0.132 |
| _             | PNM_KO             | 0.122 | 0.208         | 0.552          | 0.460                | 0.384           | 0.321 | 0.244 | 0.062 |
|               | PNM_ZH             | 0.088 | 0.166         | 0.592          | 0.472                | 0.362           | 0.307 | 0.242 | 0.064 |
| f<br>2        | PNM_JA             | 0.076 | 0.143         | 0.624          | 0.504                | 0.394           | 0.333 | 0.262 | 0.079 |
| $\frac{2}{f}$ | LinkProbZh2_ZH     | 0.069 | 0.154         | 0.360          | 0.284                | 0.248           | 0.221 | 0.187 | 0.082 |
|               | LinkProbZh_ZH      | 0.059 | 0.148         | 0.304          | 0.208                | 0.168           | 0.161 | 0.156 | 0.082 |
|               | TRANSLITERATION_JA | 0.047 | 0.145         | 0.160          | 0.136                | 0.126           | 0.139 | 0.152 | 0.099 |
|               | LinkProbIR_ZH      | 0.023 | 0.067         | 0.184          | 0.160                | 0.118           | 0.109 | 0.084 | 0.044 |
|               |                    |       | metric scores | computed with  | <i>qrel</i> from man | nual assessment |       |       |       |
|               | LinkProb_ZH        | 0.115 | 0.133         | 0.336          | 0.308                | 0.294           | 0.288 | 0.277 | 0.172 |
|               | LinkProbZh_ZH      | 0.094 | 0.119         | 0.320          | 0.244                | 0.260           | 0.273 | 0.269 | 0.158 |
|               | LinkProbZh2_ZH     | 0.090 | 0.117         | 0.312          | 0.312                | 0.304           | 0.299 | 0.271 | 0.155 |
| a<br>2        | PNM_JA             | 0.087 | 0.016         | 0.128          | 0.124                | 0.108           | 0.096 | 0.077 | 0.020 |
| $\frac{2}{f}$ | PNM_KO             | 0.043 | 0.043         | 0.136          | 0.200                | 0.220           | 0.217 | 0.193 | 0.047 |
|               | PNM ZH             | 0.030 | 0.033         | 0.208          | 0.204                | 0.214           | 0.220 | 0.187 | 0.045 |
|               | LinkProbIR_ZH      | 0.008 | 0.026         | 0.104          | 0.104                | 0.072           | 0.073 | 0.070 | 0.033 |
|               | TRANSLITERATION JA | 0.000 | 0.000         | 0.000          | 0.000                | 0.000           | 0.000 | 0.000 | 0.000 |

InteP-R Curve: Outgoing

Overall, our runs, especially those submitted for the English-to-Japanese and English-to-Korean tasks, have medium performance when compared to the other good runs submitted to the task. But we contribute the largest number of unique relevant links that users might think they deserve further reading.

InteP-R Curve: Outgoing

| London,                               | English          | Chinese       | Japanese          |
|---------------------------------------|------------------|---------------|-------------------|
|                                       | Citibank         | 花旗银行          | シティバンク、エヌ<br>・エイ  |
| An exempto of executingual            | Coconut          | 椰子            | ココナッツ             |
| An example of cross-lingual           | Scent of a Woman | 女人杳 (1992年電影) | セント・オブ・ウー マン/善の香り |
| triangulation. It can be used in page |                  |               | マイケル・ジョーダ         |
| name matching and link probability    | Michael Jordan   | 米高佐敦          | ~                 |



are sorted on the g score. Last, an arbitrary number (based on a threshold, or alternatively a density) of highly ranked links are then chosen. In the case of overlapping anchors, the longest anchor is chosen.

 $\frac{number \ of \ pages \ t \ hat \ have \ link(a \rightarrow d)}{number \ of \ pages \ t \ hat \ have \ text \ of \ anc \ hor(a)}$ 

| Method          | Pros                                         | Cons                                         |
|-----------------|----------------------------------------------|----------------------------------------------|
| ML              | More accurate, less noisy                    | Only finds links already in the corpus       |
| PNM             | Simple, effective                            | Only finds links matched with the page title |
| CLIR            | Finds links not seen elsewhere in the corpus | May be noisy                                 |
| TRANSLITERATION | Simple                                       | May not be very accurate                     |

## **3. IMPLEMENTATIONS OF CROSS-LINGUAL LINK DISCOVERY**



#### 6. EXPERIMENTAL RUNS

| Run ID                 | Description                                                                          |  |  |
|------------------------|--------------------------------------------------------------------------------------|--|--|
| QUT_PNM_ZH             | Use the PNM algorithm, Chinese Wikipedia Corpus for title-to-target table            |  |  |
| QUT_LinkProbIR_ZH      | Use the anchors recommended by link probability, and retrieve relevant links using a |  |  |
|                        | search engine with anchors as query terms                                            |  |  |
| QUT_LinkProbZh2_ZH     | Same as QUT_LinkProbZh_ZH, except for that anchors are sorted based on Chinese       |  |  |
|                        | link probability table.                                                              |  |  |
| QUT_LinkProbZh_ZH      | Use two set of link probability tables (one Chinese; one English mining from English |  |  |
|                        | Wikipedia corpus from INEX), and tables are connected by translation. Anchors are    |  |  |
|                        | sorted based on English link probability table.                                      |  |  |
| QUT_LinkProb_ZH        | Use link probability for anchor sorting and link recommendation                      |  |  |
| QUT_PNM_JA             | Use the PNM algorithm, Japanese Wikipedia Corpus for title-to-target table           |  |  |
| QUT_TRANSLITERATION_JA | The Stanford Named Entity Recogniser is used With Google Translate, and connect to   |  |  |
|                        | Wikipedia's Japanese search engine to identify suitable pages to link to.            |  |  |
| QUT_PNM_KO             | Use the PNM algorithm, Korean Wikipedia Corpus for title-to-target table             |  |  |



# 5. INFORMATION RETRIEVAL: CHINESE DOCUMENTS INDEXING

as:

Unigrams, bigrams and words are all common tokens used when indexing Chinese text.

## 4. INFORMATION RETRIEVAL: WEIGHTING MODEL – BM25

A slightly modified BM25 ranking function was used for document ordering.

 $IDF(q_i) = \log \frac{N}{n}$ 

Where N is the number of documents in the corpus, and n is the document frequency of query term. The retrieval status value of a document d with respect to query is calculated

$$rsv(q,d) = \sum_{i=0}^{m} \frac{tf(q_i,d) * (k_1 + 1)}{tf(q_i,d) + k_1 * (1 - b + b * \frac{len(d)}{avgdl})} * IDF(q_i)$$

Parameters  $k_1$  and b were 0.7 and 0.3 respectively (values previously shown to be effective).