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ABSTRACT
This paper describes the IBM team's approach for the tex-
tual entailment recognition task (RITE) in NTCIR-9 [10]
with experimental results for four Japanese subtasks: BC,
MC, EXAM, and RITE4QA. To tackle the data set with
complicated syntactic and semantic phenomena, the authors
used a classi�cation method to predict entailment relations
between two di�erent texts. These features were used for
classi�cation: (1) Tree edit distance and operations, (2)
Word overlap ratios and word pairs, (3) Sentiment polarity
matching, (4) Character overlap ratios, (5) Head compar-
isons, (6) Predicate-argument structure matching, and (7)
Temporal expression matching. Feature (1) re�ects the op-
erations in the edit distance computation between the text
and the hypothesis, which can capture the syntactic di�er-
ences between two sentences. In the RITE task, Feature (1)
is e�ective for the MC subtask and Feature (7) is e�ective
for the EXAM subtask.

Keywords
NTCIR, RITE, entailment, machine learning, syntax, tree
edit distance

Team Name: IBM

Subtasks: Japanese BC, MC, EXAM, and RITE4QA

External Resources: Bunrui-goi-hyo and Shibaki's ontol-
ogy

1. INTRODUCTION
Textual entailment is a very complex natural language

phenomenon. Although supervised classi�ers have been used
for this task, textual entailment recognition requires detect-
ing complex syntactic and semantic relations between two
di�erent texts. To exploit these relations, we train classi-
�ers in the pair feature space [11], in which a text pair are
represented. In Section 2, we will explain our supervised
machine learning approach. Since the number of the exam-
ple is usually limited in the task, we propose the conversion
of the labeled data between di�erent entailment tasks.
In Section 3, we propose to use the operations in the tree

edit distance computation between two dependency parse

trees as the pair features to exploit syntactic di�erences of
a sentence pair. We also employed several kinds of the pair
features from a lexical similarity to the matching of temporal
expressions. We will explain these pair features in Section 4.
We experiment with our approach on the NTCIR-9 RITE

task in Section 5, and we will discuss the experimental re-
sults in Section 6. We show that the use of operations
based on edit distance was e�ective for the MC subtask and
that the temporal expression matching worked well for the
EXAM subtask.
In Section 7, we will conclude our work and discuss future

directions.

2. SUPERVISED MACHINE LEARNING
Since the BC, EXAM, and RITE4QA subtasks are binary

classi�cation problems (true or false entailment) and the MC
subtask is a multi-class classi�cation problem, a supervised
machine learning approach is employed in these tasks. The
pair of two di�erent sentences (denoted as S and T 1) are
represented in a pair feature space [11] and a logistic regres-
sion (LR) model is trained using labeled examples.
Let x ∈ X be the feature representation of a pair of S

and T , y ∈ Y be an entailment label of a label set Y , and
ϕ(x, y) : |X| × |Y | be the cartesian product of x and a
label assignment vector. LR model represents a conditional
probability P(y|x) in a log-linear form:

Pθ(y|x) =
1

Z
exp(θ⊤ϕ(x, y)), (1)

where θ is the parameter vector of LR model and u⊤v de-
notes the inner product of the vectors, u and v. Note that
the denominator is the partition function:

Z =
∑
y∈Y

exp(θ⊤ϕ(x, y)).

Using a training data E ≡ {(x, y)}, the parameter θ
can be estimated by the maximization of regularized log-

1S and T correspond to T1 and T2 in the RITE data set,
respectively.



Table 1: Data conversion. The left columns denote
the original relations between S and T , and the right
columns denote the converted relations. The rela-
tion symbols Y and N denote true and false entail-
ment, F, R, and B denote forward, reverse, bidirec-
tional entailment, C and I denote contradiction and
independence, respectively.

MC relation BC relation

S
F→ T S

Y→ T , T
N→ S

S
R→ T S

N→ T , T
Y→ S

S
B→ T S

Y→ T , T
Y→ S

S
C→ T S

N→ T , T
N→ S

S
I→ T S

N→ T , T
N→ S

(a) From MC data to BC'
data

BC relation MC relation

S
Y→ T S

F,B−→ T

S
N→ T S

R,C,I−→ T

(b) From BC data to
MC' data

likelihood: ∑
(x,y)∈E

ln Pθ(y|x) +
||θ||2

2σ2
, (2)

where the �nal term is a Gaussian prior on θ with mean
0 and variance σ2. In the experiments, θ was optimized
by Newton-CG methods [5] and the hyper-parameter σ was
determined by grid search based on 5-fold cross-validation
(CV).
Since the number of the training data is limited in the

RITE task, we convert the training data for the MC sub-
task as the additional training data for BC subtask, and vice
versa. For this conversion, we assumed the interchangeabil-
ity of the labels between BC and MC subtasks. By the data
conversion from the MC subtask to the BC subtask, two ex-
amples for the BC subtask are generated from one labeled
examples on the MC subtask since MC labels convey richer
entailment information than BC labels (see Table 1(a)). We
denote the combined training data of BC data and the ex-
amples generated from MC data as BC+MC’ data. By the
data conversion from the BC subtask to the MC subtask,
one example with ambiguous labels for the MC subtask are
generated from one labeled examples on the BC subtask (Ta-
ble 1(b)). We denote the combined training data of MC data
and the examples generated from BC data asMC+BC’ data.
To deal with label ambiguities in BC' data, we extend the
LR objective function (2). Let L ⊆ Y be a label candidates.
Using the training data E′ ≡ {(x, L)} with ambiguous la-
bels, we maximize the regularized marginal log-likelihood:∑

(x,L)∈E′

ln
∑
y∈L

Pθ(y|x) +
||θ||2

2σ2
.

Although this is non-convex optimization problem, we can
still use Newton-CG method to �nd a local-optimum. Note
that, for MC+BC' data, we use a subset of MC data as the
validation set of CV.
In the sequel, we describe the feature representation of a

pair of S and T . We �rst explain notation here. Let f(S, T )
be a map function from a pair of S and T to a feature space
x ∈ X. Let s = (s1, · · · , s|s|) be a sequence of bunsetsu
phrases of length |s| in S and t be that of T , where s and

彼が
`He-NOM'

先生を
`teacher-ACC'

愛する
`love'

!!!
aaa

(S)

彼は
`He-TOPIC'

先生だ
`be teacher'

!!!

(T )

Figure 1: Edit distance minimization on trees

t consist of morpheme sequences s = (ms
1, · · · , ms

|s|) and

t = (mt
1, · · · , mt

|t|), respectively.

3. SYNTACTIC DIFFERENCE

3.1 Edit distance
In this work, syntactic di�erences between two sentences,

S and T , are represented by edit operations used in tree edit
distance calculation on the dependency trees.
The syntactic tree is constructed by the Japanese syntac-

tic parser [4] which uses both the hand-crafted grammar and
the statistical model created by a tagged corpus. The parser
produces dependency structures between bunsetsus as nodes
so that S and T are represented as trees consisting of s ∈ s
and t ∈ t, respectively.
The tree edit distance between two trees S and T is cal-

culated based on edit operations, each of which is one of
insertion, deletion, or substitution, in the similar way as
edit operations for strings. We de�ne a cost function for
an edit operation, γ(s, t) on substituting s to t. Costs for
deletion and insertion operations can be denoted as special
cases; γ(s, ϵ) for the cost of deletion of node s and γ(ϵ, t) for
the cost of insertion of a node t. An edit distance mapping
M ⊆ s × t represents a set of edit operations. Let D ⊆ s
and I ⊆ t be the sets of nodes not appearing in M due to
the existence in only one tree. Here the edit distance δ(s, t)
is de�ned as the minimum cost mapping [1]:

δ(s, t) = min
M

∑
(s,t)∈M

γ(s, t) +
∑
s∈D

γ(s, ϵ) +
∑
t∈I

γ(ϵ, t).

Zhang and Shasha's algorithm [12] can calculate the edit dis-
tance δ(s, t) between s and t in O(|s|2|t|2) time and space.
The edit distance computation between two syntactic trees

corresponds to the word alignment between two sentences
because the substitution from s to t can be regarded as
the alignment of two nodes between s and t. Such opera-
tions on syntactic trees are advantageous compared to the
word-to-word alignment between sentences as sequences of
bunsetsus. For example, suppose the sentences S and T are
�彼が 先生を 愛する� (`He loves a teacher') and �彼は 先生だ�
(`He is a teacher'), respectively. When the edit distance is
calculated on the sequence of bunsetsus, the edit operations
with the lowest cost should be (1) substitution of �彼は� to
�彼が�, (2) substitution of �先生を� (`teacher-ACC') to �先
生だ� (`be a teacher') and (3) deletion of �愛する� (`love')
with a rule that the replacement of functional words can be
done with a small cost, and then each pair of two common
content words �彼� (`he') and �先生� (`teacher') is connected
in the two sentences. However, the semantic roles of �先生�
(`teacher') are di�erent in these two sentences, so this align-
ment is not desirable to capture the di�erence between two
sentences.



In contrast, when the edit distance is calculated on the
dependency tree shown in Figure 1, the optimal operations
are (1) substitution of �彼が� (`he-NOM') to �彼は� (`he-
TOPIC'), (2) deletion of �先生を�, (3) deletion of �愛する�
and (4) insertion of �先生だ�, since the word �先生� appears
in di�erent positions in S and T , and thus the tree T can
not be generated with a substitution operation of the nodes
with �先生.� This calculation successfully avoids the connec-
tion between two nodes with the word �先生� which behaves
di�erently in two sentences.

3.2 Cost functions
Here we consider four types of cost functions: WO, BGH,

HDM and Ontology. These functions calculate the costs of
substitution operations di�erently, but the costs for deletion
and insertion are set to one, i.e. γ(s, ϵ) = 1 and γ(ϵ, t) = 1,
in the all cases. The feature representation based on the
optimal edit operations will be shown in Section 4.

Jaccard distance metrics using word overlap(WO).
One of the cost functions is de�ned as Jaccard distance

between the morpheme sets of two bunsetsus s and t:

γ(s, t) = 1 − |s ∩ t|
|s ∪ t| .

Semantic distance metrics using Bunrui-goi-hyou(BGH).

Another method to calculate the cost is based on semantic
similarity between a pair of bunsetsus. Here we use the the
Japanese thesaurus, extended version of Bunrui-goi-hyo [8],
which assigns semantic codes around 230,000 words.
We focus on the head content words, when we calculate

semantic similarity between a pair of bunsetsus. A head
content word is de�ned as the rightmost content word in a
bunsetsu, and a content word is either a noun, a verb, an
adjective, an adverb, an interjection or their variants.
Given two bunsetsus s and t, we compare each code of

head content words of them. Let cs and ct be the Bunrui-
goi-hyo codes and common(c1, c2) is a common depth in the
thesaurus tree. e.g. common(c1, c2) = 3 when cs = ‘3630′

and ct = ‘36352′.
We de�ne a cost function as follows, giving a smaller cost

for more similar bunsetsus:

γ(s, t) =
1

1 + common(cs, ct)

Heuristic distance metrics(HDM).
Another method to measure the tree edit distance is the

combination of BGH metrics and other conditions, by com-
paring head content words and parts-of-speech. We call this
method HDM (Heuristic Distance Metrics), which is calcu-
lated as follows:

γ(s, t) =


0 same word

0.7 − 0.05 · common(cs, ct) same POS

1.0 otherwise

where `same word' means that the canonical forms of the
head content words of s and t are the same, `same POS'
means that the parts-of-speech of the head content words
are the same, and common() is in the BGH part.

Semantic distance metrics using an ontology(Ontol-
ogy).
We also attempt to measure a semantic similarity using

another resource and combine it with HDM to de�ne an-
other cost function.
To measure a semantic similarity, we use an ontology auto-

matically generated fromWikipedia with Shibaki's Method[9].
It de�nes is-a relations among about 730,000 words. It has
up-to-date knowledge since it was constructed fromWikipedia
which is actively updated.
Given a pair of bunsetsus s and t, we focus on each head

content word, and calculate their semantic similarity with
the shortest path length in the ontology. Let spl(s, t) be a
function which returns the shortest path length in the ontol-
ogy between the head content words of two input bunsetsus,
then the following condition is newly inserted after the �rst
condition in the cost function of the HDM method de�ned
above. Note that it is valid only when the head content
words of the both bunsetsus are found in the ontology.

γ(s, t) =
{

0.7 − 0.5 · 1
spl(s,t)

a path found

4. PAIR FEATURES
In this section, we describe the representation of the edit

operations and other features used in the RITE task. The
names in parenthesis denote the IDs of feature sets which
are referred in the experimental results.

Edit distance and operations(EDO).
The edit distance and operations in Section 3 are repre-

sented as elements of a feature vector. We use the normal-
ized value of the edit distance δ(s, t)/ max(|s|, |t|) ranging
from 0 to 1. Although the value of the tree edit distance is
used as a feature in the previous work [6], we also use edit
operations as the pair features. For each bunsetsu in both
D and I, we use the base form and part-of-speech (POS)
tag of each morpheme and these of the last morpheme as a
representation of the bunsetsu. For each pair of bunsetsus
in M , we use 1) the sequence pair of the base forms, 2) the
sequence pair of POS tags, 3) the pair of the base forms of
the last morpheme, and 4) the pair of the POS tags of the
last morphemes. Note that the granularity of the POS tags
described above is coase, such as noun or verb. We also used
more �ne POS tags, which are denoted as �POS �ne� in the
experimental results.
The value of the edit operation features is either the num-

ber of the edit operations, denoted as �Count�, or binary
value, denoted as �Binary�. To make sure its value ranges
from 0 to 1, �Count� is divided by max(|s|, |t|).
Since the edit operation features varies depending on the

cost functions de�ned in Section 3, we also employed the
combination of multiple feature sets based on di�erent cost
functions to represent a pair of s and t.

Overlap ratios of words and word pairs(Word).
Let mS and mT be the set of content words in S and

T , respectively. The value of word overlap ratio feature is
de�ned as |mS ∩mT |/|mT |. The word pair feature is all
the combination (ms, mt)|ms ∈mS , mt ∈mT of the con-
tent words. We use only the word pair features appearing
more than once in the training data.



Table 2: Example of ‘Sentiment’ feature set.
sentence pairs features

S

ＰＥＴ（ポジトロン断層撮影）検査は、肺がん、

大腸がん、食道がんなど、ほとんどのがんの

診療に有効とされている。

`The PET (positron emission tomography)

is believed to be e�ective for the care of
most types of cancers such as ...'

fpol = (+, +)

fsame = 1

T ＰＥＴはがんの診断に役立っている。

`PET helps the care of cancers.'

S

山田洋次監督は男泣きの場面を作るのがうまい。

`Director Yoji Yamada is good as making

scenes of men's weeping.'
fpol = (+, 0)

fdiff = 1
T 山田洋次は映画監督です。

`Yoji Yamada is a �lm director.'

S

失われた１０年は立ち遅れた反省や経験が生か

され、無駄でなかった。

`The Lost Decade was not wasted because ...'
fpol = (+,−)

fdiff = 1

fopp = 1T 失われた１０年は無駄だった。

`We learned nothing from the Lost Decade.'

Polarity matching with sentiment detection(Sentiment).

We also introduced a feature to con�rm the semantic ori-
entation of the two sentences. Intuitively if the S has a
positive or negative polarity and S entails T , T is likely to
have the same polarity. We used an existing sentiment de-
tection engine [3], which detects positive or negative clauses
in a sentence with high precision. The engine handles not
only subjective utterance but also facts that suggests posi-
tive or negative attributes. In most of cases no polarity is
detected, and thus this feature is expected to mainly work
as a negative clue for the entailment when S and T have op-
posite polarities. This feature set consists of the following
features:

fpol: The combination of the polarities of S and T

fsame: Whether S and T has the same polarity (e.g. positive
vs. positive)

fdiff : Whether S and T has the di�erent polarities (e.g.
positive vs. neutral)

fopp: Whether S and T has the opposite polarities (e.g. pos-
itive vs. negative)

Table 2 shows examples of assignment of `Sentiment' fea-
tures for some sentence pairs.

Overlap ratios of characters(Char).
Let cS and cT be the set of characters in S and T , re-

spectively. The value of character overlap ratio feature is
de�ned as |cS ∩ cT |/|cT |.

Head comparisons(Head).
The head bunsetsu in a sentence, the rightmost bunsetsu

in the Japanese language, usually conveys the main concept
of the sentence, and therefore we use a feature to exam-
ine whether the head bunsetsu of the two sentences are the
same. When two bunsetsus are compared, both words are
converted to their canonical form and the di�erence in some
symbols such as commas is ignored.

Fulfillment tests with predicate-argument structures(PAS).

Table 3: Example of sentence pairs that activate the
feature fPAS.

S
スーザン・トレスさんは極めて悪性度の高いがんの一種

メラノーマが脳に広がり、脳死になった。

`Ms. Susan Torres became brain dead due to melanoma ...'

T スーザン・トレスさんは脳死になった。

`Ms. Susan Torres became brain dead.'

S

日本で臓器移植法が施行されて７年以上になる。

`The organ transplantation law have been e�ective for
7 years in Japan.'

T 日本で臓器移植法は施行された。

`The organ transplantation law became e�ective in Japan.'

The syntactic tree is converted to a set of predicate-argument
structures to examine whether T covers all information in S.
A predicate-argument structure used here is either of these
two types:

predicate type: a bunsetsu led by a verb or an adjective
as a predicate, and zero or more postpositional phrases
with a case marker as arguments

modification type: a modi�er bunsetsu and a modi�ee bun-
setsu, such as adverbial modi�cation

For example, the sentence (3) is converted to the following
set of the predicate-argument structures. (P1) is a predicate
type, and (P2) and (P3) are examples of the modi�cation
type.

彼は 大きな 駅へ ゆっくり 行った。 (3)

(`He went to a big station slowly.')

(P1) 行く (彼,駅) (`go (he, station)')

(P2) 大きな ⟨駅 ⟩ (`big ⟨station⟩')

(P3) ゆっくり ⟨行く ⟩ (`slowly ⟨go⟩')

We use a feature fPAS of the ful�llment test. The fPAS =
1 only if the all of the predicate-argument structures in T
are subsumed by one of those in S, and otherwise fPAS =
0. �p1 subsumes p2� mean that p1 and p2 has the same
predicate and all of the arguments of p2 appear also in p1.
For instance, a predicate-argument structure �行く (駅)� is
subsumed by (P1) in the above example. Table 3 exempli�es
sentence pairs in which fPAS = 1. This feature is expected
to be a strong clue for the entailment.
To improve the coverage of this subsumption, the intro-

duction of hyponym and hypernym relations using WordNet
were attempted, however, few pairs of nouns in S and T
matched the relations, so we gave up to use WordNet for
this future.

Matching of temporal expressions(Temporal).
As proven by the successful of the GeoTime task in the

previous NTCIR [2], temporal information has an important
role in information retrieval, and actually many temporal
expressions appear in the development set of the data, espe-
cially in the EXAM subtask, and thus we added a feature set
to compare the temporal expressions in the sentence pairs,
with two features:

fmatch: Temporal expressions appear in both S and T and
at least one pair has an overlap



funmatch: Two temporal features appear in both S and T
and none of the pairs have an overlap

where the overlap is determined based on the ranges of the
years, by using the following patterns:

Year: �N年� (`the year of N ') is converted to the year range
[N, N ]. The Japanese calendar scheme is also covered,
for example, �昭和 50年� is converted to [1975, 1975].

Decade: �N年代� (`the decade from N ') is converted to the
year range [N, N + 9]. The su�xes �前半� (`the �rst
half') and �後半� (`the latter half') are also considered,
for example, �1920 年代前半� is converted to the year
range [1920, 1924].

Century: �N世紀� (`Nth century') is converted to the year
range [100(N−1)+1, 100N ]. The su�xes �前半�, �後半�
and some other variations such as �初頭� (`beginning')
reduce the width of the year range.

For example, when two sentences S include a temporal
expression �1620年代� (`1620s') and T has �17世紀前半� (`the
�rst half of the 17th century'), their ranges are [1620, 1629]
and [1601, 1650], respectively, and thus the feature fmatch is
set to true since the year ranges overlap.

5. EXPERIMENTAL RESULTS
We employ the sevral combinations of the cost functions

for edit distance described in Section 3 and the pair feature
sets described in Section 4. We basically select feature sets
for the formal-run submissions by the average accuracies on
5-fold cross-validation (CV) using the training data.
Table 4 shows the average accuracies on CV and the formal-

run results, and Table 5 and 6 show the confusion matrices
of the systems using a feature set which show the best CV
accuracies is used. Although we evaluate 280 feature sets for
all the subtasks, because of the limitation of space, we only
report the results of the submitted systems for the formal-
run, all of the feature sets using the HDM cost function, and
the best feature sets at any performance measure in Table 4,
and report the confusion matrices of the feature set which
mark the best CV accuracy in each subtask. In Table 4, the
submitted system outputs are denoted by the super script
of accuracy values. Since we found and �xed bugs after the
formal-run for BC and MC subtasks, we report the revised
scores obtained after the bug-�x. The top column names
denote test data, the second column names denote training
data for LR models, and the third column names denote per-
formance measures where CV stands for the average accu-
racy (%) on 5-fold cross-validation, AC stands for accuracy
(%) on formal-run test data.

5.1 BC subtask
In terms of the formal-run accuracy, LR models trained on

the BC data using edit distance and operations (EDO) based
on BGH cost function and most of the other pair features
achieve relatively high accuracy and the best system achieve
56.0% using binary-valued edit operation features. The LR
models trained on the BC data perform better than the LR
models trained on the BC+MC' data. Comparing with the
best system on the formal-run data, the best feature sets of
CV on the training data show slightly worse performance
(52.4% for the BC data and 51.6% for the BC+MC' data).

Table 5: The confusion matrices in the BC, EXAM,
RITE4QA tasks.

Correct
Y N

S
y
st
em

Y 137 125
N 113 125

(a) BC

Correct
Y N

Y 103 45
N 78 216

(b) EXAM

Correct
Y N

Y 65 521
N 41 337

(c) RITE4QA

Table 6: The confusion matrix in the MC task.
Correct

F R B C I
F 87 6 21 30 40
R 7 89 20 9 16

S
y
st
em

B 7 12 30 16 6
C 4 0 1 5 4
I 5 3 3 5 14

5.2 MC subtask
The LR models using EDO features show much better

performance than the LR model using all the features ex-
cept EDO. Based on LR models trained on the the MC
data, the formal-run accuracy averaged over all of the fea-
ture sets includes EDO is 47.1% comparing with 35.9% of
the system without EDO. The best LR model achieve 51.6%
accuracy on the formal-run test data. Again, the LR mod-
els trained using the MC data perform better than the LR
models trained using the MC+BC' data.

5.3 EXAM subtask
Most of the LR models using the matching of temporal

expressions (Temporal) perform better than that not using
Temporal. The best LR models achieve 72.6% accuracy on
the formal-run test data.

5.4 RITE4QA subtask
The LR model trained on the BC+MC' data using all

the pair features except EDO shows the best performance,
Accuracy=72.6% , TOP1=18.1%, and MMR5=29.0% . We
observed a inverse correlation or week correlation between
the CV accuracy on the BC or BC+MC' training data and
the accuracy or QA performance measures on the RITE4QA
formal-run data.

6. DISCUSSION
The edit distance and operations (EDO) are signi�cantly

e�ective features in the MC subtask. To put it more pre-
cisely, the classi�cation of forward (F), reverse (R), and bidi-
rectional (B) entailment using those features is more accu-
rate than that without the edit distance and operations.
Table 7 shows confusion matrices in the MC subtask when
either of the edit distance and operations are used. As an
example, Table 7(a) shows the result of the edit distance
and operations derived by the HDM function. Comparing
with Table 7(b), the number of the correct predications, the
diagonal numbers of the matrices, of F, R, and B is larger
in Table 7(a).



Table 4: Accuracies and QA performance scores on subtasks. CV stands for the average accuracy on 5-fold
cross-validation using training data, and AC stands for the accuracy on formal-run data. The super script of
accuracy values indicates the result of submitted system output:
a) IBM-JA-BC-01 (51.6), b) IBM-JA-BC-02 (52.6), c) IBM-JA-BC-03 (50.0),
d) IBM-JA-MC-01 (45.5), e) IBM-JA-MC-02 (51.1), f) IBM-JA-MC-03 (44.8),
g) IBM-JA-EXAM-01, h) IBM-JA-EXAM-02, i) IBM-JA-EXAM-03,
j) IBM-JA-RITE4QA-01, k) IBM-JA-RITE4QA-02, and l) IBM-JA-RITE4QA-03.
Values in parenthesis are the submitted formal-run results of BC/MC subtasks before the bug-fix. Note that
the accuracy of IBM-JA-BC-02 with the bug is same as that without the bug.

Test Data BC MC EXAM RITE4QA

Training Data BC BC+MC' MC MC+BC' EXAM BC BC+MC'

Cost Function Performance Measure CV AC CV AC CV AC CV AC CV AC AC TOP1 MMR5 AC TOP1 MMR5

None

Word + Sentiment + Char +

Head + PAS + Temporal

52.8 52.0 57.5 48.2 33.6 35.9 35.5 31.4 67.9 69.5 34.5 5.5 19.8 63.5 18.1 29.0

HDM

EDO Count, POS �ne 49.0 47.8 64.1 47.2 49.1 48.2 49.6 47.5 62.5 59.5 38.5 13.9 24.6 26.8 12.7 24.0

+Word 50.2 51.8 62.4 48.8 49.1 51.1 50.2 49.5 62.1 67.4 29.5 10.0 22.0 34.4 12.8 24.6

+Sentiment 52.4 50.8 61.7 47.4 48.9 49.5 51.5 48.0 62.1 67.0 32.0 9.5 21.5 32.1 11.8 24.1

+Char 52.4 50.8 62.5 48.0 48.0 48.6 51.3 47.3 64.1 67.6 31.5 9.3 21.6 35.5 13.1 25.3

+Head 53.0 50.4 62.2 49.4 49.1 49.1 49.5 45.9 63.7 67.6 31.0 9.8 22.3 34.3 13.8 25.7

+PAS 54.2 52.6 62.2 49.2 49.1 48.9 49.2 46.1 63.7 67.6 30.8 8.8 21.8 34.0 13.3 25.5

+Temporal 54.2 51.6 62.3 49.4 49.1 48.6 49.5 45.9 69.1 72.2g 30.9 10.3 22.8 32.9 14.3 26.0

EDO Binary, POS �ne 50.0 50.0 63.8 46.6 48.6 44.1 47.9 40.9 60.1 60.0 54.5 11.9 23.5 36.4 11.6 23.4

+Word 50.6 49.6 64.5 47.4 48.6 46.1 48.8 44.1 61.1 61.3 46.9 14.7 24.7 40.5 12.9 24.2

+Sentiment 50.8 50.2 64.6 46.0 48.9 45.0 50.9 45.2 61.7 62.0 44.8 14.7 24.9 38.1 12.2 24.2

+Char 50.8 50.2 64.4 48.8 49.3 45.7 50.8 44.5 61.9 62.0 44.8 14.7 25.0 42.9 13.7 25.1

+Head 51.4 49.0 64.1 47.6 49.8 44.8 51.3 45.7 61.5 62.2 51.2 11.5 23.5 42.3 13.7 25.2

+PAS 50.8 49.6 64.0 47.4 49.8 44.8 51.3 44.5f 61.5 62.2 44.9 14.2 24.8 34.6 13.6 25.2

+Temporal 51.0 49.6 64.3 50.0 49.8 44.8 51.1 44.5 62.3 62.7 44.7 14.2 24.9 42.5 13.7 25.0

EDO Count 50.2 48.2 63.9 48.8 49.1 47.0 48.4 47.7 61.9 60.0 37.8 12.9 24.4 26.9 12.2 23.7

+Word 50.8 52.0 60.8 48.6 49.1 50.0 48.8 50.0 61.3 67.2 28.7 10.3 21.9 33.1 10.8 23.4

+Sentiment 52.6 51.8 60.9 47.6 47.5 48.9 50.2 46.4 61.3 67.2 30.1 9.0 21.3 40.9 12.0 24.2

+Char 52.6 51.6 61.9 47.0 48.2 48.9 50.2 47.7 62.5 67.6 30.3 9.3 21.7 38.1 14.6 26.0

+Head 53.8 51.6 61.8 47.4 48.0 48.6 48.8 46.4 62.5 67.4 30.2 9.6 22.2 37.7 14.6 26.0

+PAS 54.8 52.2a 62.0 46.4 48.2 48.6 49.2 46.1 62.5 67.4 31.6 9.1 21.8 37.1 14.6 25.9

+Temporal 54.6 51.8 62.0 46.8 48.2 48.6 49.2 46.4 68.3 72.6 28.2 9.1 21.9 35.3 14.6 26.1

EDO Binary 51.2 49.8 65.0 47.6 45.2 45.2 47.7 43.2 60.5 61.8 55.2 10.1 22.5 39.3 10.6 23.2

+Word 50.8 51.4 64.3 47.4 47.5 45.2 47.3 45.0 61.5 62.0 53.6 10.6 23.0 42.1 12.1 24.1

+Sentiment 52.0 52.0 63.8 48.6 47.0 44.3 49.1 44.3 61.1 61.5 52.3 10.6 23.0 43.4 12.9 24.4

+Char 52.4 52.4 64.0 49.0 45.9 45.5 49.3 45.7 61.5 62.7 53.0 11.5 23.5 44.7 14.2 25.6

+Head 52.6 51.8 63.9 47.8 49.3 45.7 49.1 45.0 61.9 62.4 52.6 12.5 24.2 41.8 14.7 26.0

+PAS 53.2 52.2 64.1 50.2 48.0 45.7 49.1 44.8 61.9 62.4 51.7 11.5 23.7 44.4 13.2 25.2

+Temporal 53.0 52.6 64.0 50.2 49.3 45.2 49.1 44.8 63.5 65.8 51.8 11.5 23.7 45.4 14.7 26.0

WO EDO Binary, POS �ne + Word +

Sentiment + Char + Head + PAS

+ Temporal

48.8 50.2 64.1 48.0 48.4 48.0 47.9 45.7 63.3 62.0 53.6 14.3 25.6 31.1 14.6 25.7

BGH
EDO Binary, POS �ne + Word +

Sentiment + Char + Head + PAS

49.4 55.0 63.7 54.8 46.8 45.9 48.3 43.9 60.9 59.0 45.5 12.0 24.2 38.6 10.8 24.5

EDO Binary + Word + Sentiment

+ Char + Head + PAS

51.8 56.0 64.2 53.6 46.1 46.6 45.2 42.0 60.7 60.0 45.6 10.0 23.9 37.3 13.3 26.1

Ontology

EDO Count, POS �ne + Word 51.6 51.8 62.2 49.2 49.3 50.7 49.9 50.2 62.3 67.4 29.6 11.0 22.2 33.5 12.8 24.7

+Sentiment + Char + Head +

PAS + Temporal

53.8 52.2 62.3 49.6 49.3 48.4 49.5 46.4 69.1 72.2 30.3 9.8 22.5 32.9 14.3 25.9

EDO Binary, POS �ne + Word 50.8 50.2 64.3 48.4 49.1 45.7 49.0 45.2 61.5 62.4 46.7 15.2 25.0 42.0 12.4 24.2

EDO Count + Word + Sentiment

+ Char + Head + PAS

55.0 52.4 61.4 48.2 48.2 48.4 49.2 46.1 62.5 67.4h 31.6k 9.1k 21.7k 35.3 12.8 25.3

+Temporal 54.8 52.4 61.7 47.2 48.2 48.4 49.2 46.4 68.3 72.6 30.3 9.1 22.1 36.4 14.6 26.1

HDM & WO
EDO Count, POS �ne + Word +

Sentiment + Char

52.8 50.6 62.8 48.4 50.0 46.8 52.4 47.0 64.1 67.6 30.1 9.8 22.0 32.0 11.8 24.8

EDO Count + Word + Senti-

ment + Char + Head + PAS +

Temporal

55.0 51.6 62.6 47.4 47.3 48.2 49.9 47.5 67.9 71.3 32.2 11.6 23.2 32.1 12.1 24.8

HDM & BGH

EDO Count + Word + Sentiment

+ Char + Head + PAS

54.0 52.6b 62.3 48.0 48.9 49.1 49.2 45.9 62.5 67.0 29.4 9.8 22.3 34.8 13.1 25.0

EDO Binary 52.8 51.6 65.5 49.4 46.1 44.3 46.6 44.1 60.7 60.0 54.5 11.9 23.8 40.1l 8.7l 22.2l

+Word + Sentiment + Char +

Head

52.6 52.8 65.2 51.6 46.4 43.6 46.8 43.6d 61.3 60.9 52.6 11.5 24.2 41.9 11.1 24.0

HDM & BGH

& WO

EDO Count, POS �ne 47.8 48.2 64.1 47.0c 49.3 48.0 49.0 47.7 61.1 61.1 31.5 11.1 22.7 29.5 13.0 24.1

+Word 51.0 52.6 63.6 47.4 50.2 50.2e 50.9 49.8 62.7 65.8 28.7 11.5 22.7 28.4 11.8 23.8

HDM &

Ontology &

WO

EDO Count, POS �ne + Word 51.4 52.0 63.6 47.6 51.1 51.6 51.1 50.2 62.1 67.0 31.4 11.5 22.7 28.5 12.3 23.8

+Sentiment + Char 52.0 51.2 63.7 48.4 52.3 47.3 52.4 47.3 64.7 66.7 30.7 10.3 22.5 30.6 11.3 24.4

+Head + PAS + Temporal 51.4 51.0 63.4 49.0 50.0 48.2 51.5 47.5 67.1 71.5 33.3j 11.3j 23.3j 30.9 14.3 26.0

EDO Binary 50.6 50.2 63.3 49.2 46.6 45.5 45.9 45.0 59.9 60.9 55.9 10.6 22.8 42.7 8.9 22.1

HDM & BGH

& Ontology &

WO

EDO Count, POS �ne + Word +

Sentiment + Char + Head + PAS

+ Temporal

51.8 51.6 63.8 48.6 51.4 48.6 50.8 47.3 66.7 72.6 39.8 10.5 23.5 28.6 12.6 24.8

EDO Binary, POS �ne + Word +

Sentiment + Char + Head + PAS

+ Temporal

51.4 47.4 64.4 48.4 47.5 45.7 48.8 41.8 61.5 58.4i 49.3 14.0 25.1 43.2 10.8 23.3



Table 7: The confusion matrix in the MC task when
either of the edit distance and operations are used.

Correct
F R B C I

F 81 5 26 29 40
R 3 88 18 11 18

S
y
st
em

B 9 13 28 14 5
C 11 0 2 5 5
I 6 4 1 6 12

(a) With edit distance and
operations

Correct
F R B C I
59 28 47 23 25
17 60 6 12 26
16 9 16 13 7
12 3 5 10 9
6 10 1 7 13

(b) Without edit
distance and opera-
tions

Table 8: The average difference number of bunsetsus
and the average edit distance of each cost function
on the test data of each subtask.

BC MC EXAM RITE4QA

|s| − |t| 4.68 0.44 6.17 9.11
HDM 7.54 6.43 11.64 12.47
BGH 8.52 7.47 12.59 13.58
WO 8.32 7.26 12.82 13.49

Ontology 7.53 6.42 11.64 12.47

However, as described in Section 5, the EDO features are
not e�ective in the other subtasks. One reason of the e�ec-
tiveness in the MC subtask could be the simplicity of the
syntactic di�erences observed in the MC data. As an index
of the simplicity of the syntactic di�erences, the di�erence
in the number of bunsetsus between S and T on test data,
denoted as |s| − |t| at the second row of Table 8. Note that
these numbers are similar to those at training data. The
value of |s| − |t| of MC data is nearly zero (0.44) and much
smaller than that of other data. Since our cost functions
for insertion and deletion are simply set to one and the cost
functions for substitution are less than or equal to one, our
design of cost function prefers substitutions and tends to
overlook possible important insertions and deletions. How-
ever, if the number of nodes and the tree structures of S and
T are similar, the edit distance computation with few inser-
tions and deletions could be a natural alignment to exploit
syntactic relations of two sentences. On the other hand, the
syntactic di�erences in the other data may be much compli-
cated than that in the MC data. This complexity of syntac-
tic di�erences is also a possible explanation why LR models
using the converted data, BC' and MC', do not perform well
on the di�erent subtasks.
One remark is that, although we design four di�erent cost

functions, WO, BGH, HDM, and Ontology, the di�erence of
the resulting edit distances are small as shown in Table 8.
And we could not observe superiority of any cost function
in the �nal entailment classi�cations.
We compared two resources used for measuring seman-

tic similarity based cost function, the ontology constructed
from Wikipedia and Bunrui-goi-hyo. Although the ontology
has a larger vocabulary than Bunrui-goi-hyo, there was lit-
tle di�erence in their contribution to the �nal results. One
of the reasons is mismatches between the words in the re-

Table 9: Examples of sentence pairs containing
phrases with similar meanings.

S

バジル、セージ、タイムなどフレッシュハーブの消費量は

ウナギのぼりである。

`The consumption of fresh herbs such as basil, a sage,
and thyme is rapidly increasing.'

T ハーブの消費が増えている。

`The herbs consumption is increasing.'

S

今回の事件では、男子学生が「ハロウィーンの夜に

やってやる」と知人に漏らすなど、決行日を選んだ上で、

事件を起こしていたことが明らかになっている。

`In this incident, it is clear that
the boy students chose the day to act in advance
and said to his acquaintance,
"I am going to act at the Halloween night".'

T 男子学生は決行日を１０月３１日に選んだ。

`The boy student decided to act on October 31. '

Table 10: The confusion matrices in the EXAM sub-
task when either of Temporal feature value is true.

Correct
Y N

S
y
st
em

Y 21 4
N 3 4

(a) fmatch = 1

Correct
Y N

S
y
st
em

Y 0 0
N 1 29

(b) funmatch = 1

sources and the result of the morphological analysis. For
example, the ontology contained �グスタフ・シュトレーゼ
マン� (`Gustav Stresemann') but our system splited it into
three morphologies, �グスタフ� (`Gustav') and �・�, �シュト
レーゼマン� (`Stresemann'). To increasing the coverage of
the detection of similarities, it is important to use the same
unit for resource construction and morphological analysis
or to adjust the result of the morphological analysis to the
resource unit.
Our system with the two resources did not recognize some

phrase relations with similar meanings. Table 9 exempli�es
two sentence pairs which have phrases with similar mean-
ings. In the former pair, the key to analyze their relation is
to recognize �ウナギのぼりである� (`be rapidly increasing')
is similar in meaning to �増えている� (`be increasing'). The
other pair suggests the need of the knowledge that Halloween
is October 31. It is important to arrange some resources
constructed on various perspectives for the recognition of
phrase-level correspondences.
The feature set `Temporal' worked very well in the EXAM

subtask, due to the frequent appearance of the expressions of
the year, decade or century in the EXAM data. Table 10(a)
and Table 10(b) show the relations of the system outputs
and the correct tags when the temporal expressions matched
together (fmatch = 1) and when the temporal expressions
did not overlap (funmatch = 1), respectively. These results
show that the mismatch of the temporal expressions will be a
strong hint for the non-entailment relation. This is because
often T in the dataset with the `N' label includes statements
with a wrong year, for example, �The Constitution of the
U.S. was established in the early 19th century�, and the
corresponding S includes the correct year (�1788� in this



Table 11: Pearson correlation coefficient between the average accuracy on 5-fold CV using the training data
and the performance measures using formal-run data based on 280 different feature sets.

Test Data BC MC EXAM RITE4QA

Training Data BC BC+MC' MC MC+BC' EXAM BC BC+MC'

Perf. Measure AC AC AC AC AC AC TOP1 MMR5 AC TOP1 MMR5

Correlation 0.43 0.30 0.57 0.49 0.74 -0.34 -0.42 -0.44 0.23 -0.20 -0.31

case). Another remark is that even in the cases of fmatch =
1, more than half of them are correctly predicted as `N'. This
suggests the advantage of the learning method that handles
this kind of strong tendencies as a preference, instead of a
constraint by a hand-tailored rule.
In our feature sets, there is weak relationship between the

accuracies on training data and formal-run performance in
BC & RITE4QA subtasks. Although the good feature set
on CV also show the good formal-run performance on MC &
EXAM subtasks, the best feature set on CV and formal-run
are di�erent on BC & RITE4QA subtasks. Table 11 shows
a correlation between the average accuracy on 5-fold CV
using the training data and the performance measures us-
ing formal-run data based on 280 di�erent feature sets. For
example, the last column shows that there is a negative cor-
relation between the average accuracy using the BC+MC'
training data and the MMR5 score on the RITE4QA test
data. The correlation values suggest that our feature rep-
resentation of training data in BC & RITE4QA subtasks is
not good enough to induce general classi�cation rules or ,
at least, the classi�cation rules for the speci�c test data.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a classi�cation approach for

NTCIR-9 RITE. In the experiments, we presented that tree
edit distance and operations were e�ective feature for the
MC subtask and temporal expression matching was e�ective
feature for the EXAM subtask.
One drawback of the tree edit distance approach is the

di�culty of the design of the cost functions. Although we
implemented four di�erent cost functions, the di�erences of
these edit distances were small and the edit distance based
features were e�ective only on the MC subtask. The super-
vised learning of the edit cost function is one of the inter-
esting research directions [7].
In the EXAM subtask, the Temporal feature set worked

to increase the accuracy, and the combined use of tempo-
ral and geological expressions is a interesting research line.
However, it is far from the complete understanding of the
question and the world knowledge. To make the system
more general and robust, we need to seek ways to handle
the semantics of the whole sentences, and that of the pair
of the whole sentences.
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