

Syntactic Difference Based Approach for NTCIR-9 RITE Task

Team ID: IBM

Yuta Tsuboi, Hiroshi Kanayama, Masaki Ohno

IBM Research – Tokyo

Yuya Unno

Preferred Infrastructure

Submitted results for four Japanese RITE subtasks (BC, MC, EXAM and RITE4QA)

- Performed the best score in **MC** and **EXAM** subtasks

Overview of the approach

- Very difficult task due to the real-world complex dataset
 - Impossible to write down hand-crafted rules
 Machine learning approach with various features
- Similarities and differences between <S> and <T> * are the key features for entailment determination
 - Matching on the surface is not sufficient

Calculation of tree edit distance between parsed trees

Alignment of two sentences considering syntactic structures

- Estimation of similarity (small edit operation costs similar pair)
- Edit operations (insert, delete and replacement) as features of ML

Techniques and resources for our machine learning approach

Tree edit distance - Concept

- Hypotheses
 - Two sentences (<S> and <T>) have syntactic similarities and differences
 - A pair of similar sentences has high possibility of entailment
 - -Difference parts can be clues for the determination of entailment
- Solution
 - Parse two sentences
 - Align parse trees by calculating the tree edit distance between them

IBM

Tree Edit Distance – General Implementation

- Edit distance δ

$$\delta(\boldsymbol{s},\boldsymbol{t}) = \min_{M} \sum_{(s,t) \in M} \gamma(s,t) + \sum_{s \in D} \gamma(s,\epsilon) + \sum_{t \in I} \gamma(\epsilon,t)$$

Edit operations

- Edit distance computation: $O(|\mathbf{s}|^2 | \mathbf{t} |^2)$ time and space
- Our code for tree edit distance is available at

https://github.com/unnonouno/tree-edit-distance (new BSD license)

IBM Research

Cost Functions for Tree Edit Distance

- Insertion / Deletion cost: constant.
 - $-\gamma(s, \varepsilon) = \gamma(\varepsilon, t) = 1$
- Replacement cost: a smaller value for a more similar bunsetsu pair –Mixed various metrics for similarity:

Cost functions	How to measure the similarity of two bunsetsus
Jaccard distance metrics using word overlap (WO)	 ✓ Overlap ratio between each morpheme set (handling both content and functional words)
Semantic distance metrics using an ontology (Ontology)	✓ Inverse of shortest path length of two head content words in the ontology (see next slide)
Semantic distance metrics using thesaurus (BGH)	✓ Common depth of two head content words in the thesaurus tree
Heuristic distance metrics (HDM)	 ✓ Similarity value considering parts-of-speech and the thesaurus above

Semantic Similarity and Resources

We defined two measures for semantic similarity with two complementary resources.

*Y. Shibaki. Constructing large-scale general ontology from wikipedia. Master's thesis, Nagaoka University of Technology, Japan, 2011.

IBM Research

IBM

Pair features (1) – Similarity and difference between S and T

- Represent a sentence pair with several features
- Train the logistic regression model using the annotated data

IBM Research

Pair features (2) – Ad-hoc strong clues

Strong

clue for

non-entail

Sentiment polarity matching

- Applied existing sentiment detector
 - "It is excellent" \rightarrow positive
 - "I don't like this" \rightarrow negative
- Sentiment orientation of the sentence pair
 - Same polarity
 - Different polarity
 - Opposite polarity

PAS fulfillment test (PAS)

• Convert S and T to the sets of predicate-argument structures

彼は 大きな 駅へ ゆっくり 行った。 ('He went to a big station slowly.')

(P1) 行く(彼,駅)('go (he, station)')
(P2) 大きな〈駅〉('big 〈station〉')
(P3) ゆっくり〈行く〉('slowly ⟨go〉')

• Whether all predicate-argument structures in *T* are covered by

9 those in S

	sentence pairs	features
S	 PET (ボジトロン断層撮影)検査は、肺がん、 大腸がん、食道がんなど、ほとんどのがんの 診療に有効とされている。 'The PET (positron emission tomography) is believed to be effective for the care of 	$f_{pol} = (+, +)$ $f_{same} = 1$
Г	most types of cancers such as' PETはがんの診断に役立っている。 'PET helps the care of cancers.'	
S	山田洋次監督は男泣きの場面を作るのがうまい。 'Director Yoji Yamada is good as making scenes of men's weeping.' 山田洋次は映画監督です	$f_{pol} = (+, 0)$ $f_{diff} = 1$
Γ	'Yoji Yamada is a film director.'	2
S	失われた10年は立ち遅れた反省や経験が生か され、無駄でなかった。	$f_{pol} = (+, -)$
Г	'The Lost Decade was not wasted because' 失われた10年は無駄だった。 'We learned nothing from the Lost Decade.'	$f_{diff} = 1$ $f_{opp} = 1$

Examples of fulfillment

	Strong clues for entailment © 2011 IBM Corporation
	'The organ transplantation law became effective in Japan.'
T	日本で臓器移植法は施行された。
~	7 years in Japan.'
S	'The organ transplantation law have been effective for
	日本で臓器移植法が施行されて7年以上になる。
1	'Ms. Susan Torres became brain dead.'
T	スーザン・トレスさんは脳死になった。
	'Ms. Susan Torres became brain dead due to melanoma'
S	メラノーマが脳に広がり、脳死になった。
	スーザン・トレスさんは極めて悪性度の高いがんの一種

Pair features (3) – Designed for EXAM subtask

Temporal Matching

- Many sentence pairs in EXAM data includes temporal expressions
- Exploit a feature whether the temporal expressions in S and T have overlap

- Convert the training data for the MC subtask as the additional training data for BC subtask, and vice versa.
 - e.g. Forward entailment label (F) between S and T is equal to the true entailment (Y) for $S \rightarrow T$ and false entailment for $T \rightarrow S$.
- Label conversion rule

MC relation	BC relation
$S \xrightarrow{\mathrm{F}} T$	$S \xrightarrow{\mathbf{Y}} T, \ T \xrightarrow{\mathbf{N}} S$
$S \xrightarrow{\mathbf{R}} T$	$S \xrightarrow{\mathbf{N}} T, \ T \xrightarrow{\mathbf{Y}} S$
$S \xrightarrow{\mathrm{B}} T$	$S \xrightarrow{\mathbf{Y}} T, \ T \xrightarrow{\mathbf{Y}} S$
$S \stackrel{\mathrm{C}}{ ightarrow} T$	$S \xrightarrow{\mathrm{N}} T, T \xrightarrow{\mathrm{N}} S$
$S \xrightarrow{\mathrm{I}} T$	$S \xrightarrow{\mathrm{N}} T, \ T \xrightarrow{\mathrm{N}} S$

- Enhanced data
 - BC+MC' data : 500+880 pairs

MC relation
$\begin{array}{ccc} S \xrightarrow{\mathbf{F},\mathbf{B}} T \\ S \xrightarrow{\mathbf{R},\mathbf{C},\mathbf{I}} T \end{array}$

* F,B over arrow denotes either Forward (F) or Bidirectional (B) entailment between S and T (label ambiguities).

 MC+BC' data : 500+440 pairs (To handle label ambiguities, we train logistic regression by *marginal log*-likelihood maximization)

Results – BC Subtask

	Cross validation on training data			Accuracy in formal run	
	Cost Function	Features	Training	CV	ĂC
w/o edit distance	None	Word + Sentiment + PAS + Temporal	BC	52.8	52.0
IBM BC1	HDM	EDO + Word + Sentiment + PAS	BC	54.8	52.2
IBM BC2	HDM + BGH	EDO + Word + Sentiment + PAS	BC	54.0	52.6
IBM BC3	HDM + BGH + WO	EDO (POS fine) + Word	BC + MC'	64.1	47.0
Oracle	BGH	EDO + Word + Sentiment + PAS	BC	51.8	56.0

Best feature set in formal run

- Positive performance gain with the edit distance method
- Very low correlation between CV and AC
 - \rightarrow the results are unpredictable
- BC+MC' increases CV by 8%~13%, but no effect for AC

Results – MC Subtask

	Cost Function	Features	Training	CV	AC
w/o edit distance	None	Word + Sentiment + PAS + Temporal	MC	33.6	35.9
IBM MC1	HDM	EDO + Word + Sentiment + PAS	MC + BC'	46.8	43.6
IBM MC2	HDM + BGH + WO	EDO + Word	MC	50.2	50.2
IBM MC3	HDM + BGH + WO	EDO (POS fine) + Word	MC + BC'	51.3	44.5
Oracle	HDM + Ont + WO	EDO + Word + Sentiment	MC	51.1	51.6

- Achieved high accuracy for 5-fold classification
- EDO features increased the accuracy by 10%
- Other pair features tend not to work well
- Extended development data (MC+BC') was not effective

Results – EXAM Subtask

	Cost Function	Features	Training	CV	AC
w/o edit distance	None	Word + Sentiment + PAS + Temporal	EXAM	67.9	69.5
	HDM	EDO + Word + Sentiment + PAS	EXAM	63.7	67.6
IBM EX1	HDM	EDO + Word + Sentiment + PAS+ Temporal	EXAM	69.1	72.2
IBM EX2	Ontology	EDO + Word + Sentiment + PAS+ Temporal	EXAM	62.5	67.4
IBM EX3	HDM + BGH + WO+ Ontology	EDO (POS fine) + Word + Sentiment + PAS +Temporal	EXAM	61.5	58.4
Oracle	HDM	EDO + Word + Sentiment + PAS+ Temporal	EXAM	68.3	72.6

Relatively small contribution of edit distance

- Temporal increased the accuracy by 5%
- High correlation between CV and AC

Summary

- Achieved good performance in MC and EXAM subtasks
 - -Machine learning approach with various features
 - -Tree edit operations worked as key features (especially in MC task)
 - –Use of thesaurus and ontology complementary resources

- Performance is unpredictable the model is still immature
- No special treatment for 5-fold classification in MC task needed more observation

Backup

Details of MC results – confusion matrix

		F	R	В	С	I
ut	F	87	6	21	30	40
Outp	R	7	89	20	9	16
tem (В	7	12	30	16	6
Sys	С	4	0	1	5	4
	I	5	3	3	5	14

Correct Label

Results – RITE4QA Subtask

	Cost Function	Features	Training	AC	Top1	MMR 5
w/o edit distance	None	Word + Sentiment + PAS + Temporal	BC	34.5	5.5	19.8
IBM R4QA1	HDM & Ont & WO	EDO (POS fine) + Word + Sentiment + PAS	BC	33.3	11.3	23.3
IBM R4QA2	HDM & BGH	EDO	BC	31.6	9.1	21.7
IBM R4QA3	HDM & Ont & WO	EDO (POS fine) + Word + Sentiment + PAS +Temporal	BC+MC'	40.1	8.7	22.2
Oracle	None	Word + Sentiment + PAS + Tempora	BC+MC'	63.5	18.1	29.0