Software Engineering

(10-2) LLM-based Al for
Software Engineering

Sokendai / National Institute of Informatics
Fuyuki Ishikawa / &)1 &1
f-ishikawa@nii.ac.jp / @fyufyu

http://research.nii.ac.jp/~f-ishikawa/

AZAEFIRABBEA BH S RATLAREE

E;Iﬁ%ﬁnﬁ

http://research.nii.ac.jp/~f-ishikawa/

TOC
mQOverview of FM/LLM trends

®mFoundation Models

mlarge Language Models

mL LM for Software Engineering
mExamples and Discussion: LLM for Testing

Foundation Models: Definition

®mFoundation models (FM): models trained on broad data at
scale and can be adapted to a wide range of downstream

ta S kS [Bommasani+, On the Opportunities and Risks of Foundation Models, 2021]

mIncreasingly popular, especially for natural language processing
(NLP) before 2000, not building a model from scratch

mOriginally, adaptation was considered by fine-tuning (additional
training with task-specific dataset)

mImpressive especially in generative models, e.g., GPT, DALL-E, etc,,
often with customization by prompting, not fine-tuning

Foundation Models: Social Architecture

Data Creation Data Curation Training Adaptation Deployment

i

A\
N
[/
)
g
y
\p——

[/ Y;V
A\

h
| [N
Ya\l) N2
Lo, Q

~

Question answering, sentiment analysis,
information extraction, image captioning,
object recognition, instruction following, -+

A
L
:a) O

Cited from [Bommasani+, On the Opportunities and Risks of Foundation Models, 2021]

f-ishikawa@Sokendai 4

Impacts of FM

mDevelopment efficiency
mNo need for each organization to collect large amounts of data for
training
mSingle point of failure
mUndesirable biases or issues of FMs may be widely distributed

mlarge cost for building FMs
mStrong dependency on large companies, leading to loss of
accessibility and transparency
mUnclear incentives or imbalanced cost-benefit

Foundation Models: Case of NLP

mOverview of stories about NLP

mAround 2019, there were active development of FMs such as BERT,
GPT2, RoBERTa, T5 and BART

B Most state-of-the-art models are now based on such FMs for
specific downstream tasks — the competition changed from
crafting models from scratch to adapting FMs

mlarge language models (LLMs), such as GPT-3 (2020), has shown
emergent properties to be customizable broadly by prompts, not
training with additional, specialized dataset

Overview of Key Techniques (1)

[Rumelhard+, Learning Internal Representations

mAutoencoder (very original) by Erfor Propagation, 1986]
mEncoder: covert raw input to latent representation (compressed
and meaningful) by extracting the essence of the input
mDecoder: convert the latent representation to the original input

Hlatent representation very useful H*##E

m(Capturing conceptual similarity and even

nnnnnnnnnnnnnnnnnnnnnnnn

compositionality, e.g., “Queen=King-Man+Woman” Figure cited from
[Bank+, Autoencoders, 2023]
BEncoder, decoder, and encoder-decoder
models are very common, e.g., pix2pix translator

Overview of Key Techniques (2)

Figures cited from
.Tra nSfOrmer [Vaswani+, Attention Is All You Need, 2017]

mDid not use convolutional/recurrent networks, leading to

Output

higher accuracy and faster training

Linea

mUsed in many recent NLP models and also

r
Add & Norm

. . . . Feed
in other tasks, e.g., ViT (vision transformer)
| | | ==
Self-attention: the latent representation Fend_ M .
. | takesinto consideration relationships] — =
£:8f 25| between words in the same sentence SELn | [Wesked
&nﬂj} . Attent\on}
— y, . v,
crncoaing (O O ooy
> c A Input Qutput
£ E § 2 Embedding Embedding
B Encoder-Decoder (left-right) i -
nputs utputs
{shifted right)

f-ishikawa@Sokendai 8

Overview of Key Techniques (3)

BmBERT
mOne of the first FMs for NLP
B Transformer Encoder

NSP Maskim Maskim O\ /MNLI ER /SQuAD savEndspan\
LI Gl) L])] (0]
.} P
BERT | | I g BERT
[=alle] [a[E=]le] [&] [l e] [E [EellE] [&]
—— o—C—0 o— — == o—Oo—0 o—
,m Tok1 | Tok N [SEF] Tok1 | m| [E] Tok 1 Tok N [SEF] Tok 1 TokM
Masked Sentence A Masked Sentence B | Question * Paragraph
\ \ \ _ :
\\ Unlabeled Sentence A and B Pair /’f \\x _x _] Pair ,.//
~ o = =
Pre-training Fine-Tuning

Figure cited from

[Delvin+, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018]

f-ishikawa@Sokendai

Pretraining is done both for
binary next-sentence prediction (NSP) and
identification of masked words (Mask LM)

NSP:

“the man went to [MASK] store
He bought a gallon [MASK] milk”
-> |sNext = TRUE

Mask LM:

“the man went to [MASK] store
He bought a gallon [MASK] milk”
->

“the man went to the store

He bought a gallon of milk”

Overview of Key Techniques (4)

BGPT (initial)
mOriginally, an FM intended to be used with fine tuning
.Tra nSfOrmer DeCOder [Radford+, Improving Language Understanding by Generative Pre-Training, 2018]

Stepl Step 2 Step 3
. I I St r | l (t Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

] . A promptis A prompt and A new prompt »
. 3 t eS O ea rr l I r I Or r ' Ia I r l sampled from our e Severa | model Eestas maon is sampled from it astors
prompt dataset landing 1o a & year ald outputs are anding o a & year eld the dataset. absutiress

sampled
0 0
. . A labeler Hs— e The policy .pp(:.
n demonstrates the @ § o . .ﬁ?) genera tes L, -
- a I g e W I u l I I a l I Va l I e S desired output peecl Witis an output 2
£
behavior. 5 .
tttttttttt Alabeler ranks
* the outputs from @ Onge upen a time.
This data is used o best to worst i
to fine-tune GPT-3 S ©-6-0-0 The reward model
with supervised .\:’S.éf. * lculate: Sy
learnin . 2 . Y rewar d for 'W’
£ This data is used RM the output LI
EEE to train our Py
Ly e]
reward model ixt.a The reward is
r _/
D’G’O:D used to update k
the policy

using PPO

9 (Very |n|t|a| VerSIOn Of) ChatG PT Cited from [Ouyang+, Training Language Models to Follow

Instructions with Human Feedback, 2022]

f-ishikawa@Sokendai 10

Foundation Models: Case of Vision

mOverview of stories about computer vision (CV)
mImageNet dataset (2009) is one of the initial large datasets for FMs
mTransfer learning and fine-tuning were common, with the term

“pre-trained models” (not “FMs" yet)
BIn response to cost/unavailability of large custom datasets with labels

EGenerative models show great performance

mFirst with GAN techniques (generative adversarial networks)
mRecently, diffusion models such as DALL-E (2021), StableDiffusion (2022)

mFrom pixel-level processing to more commonsense-like one?

Overview of Key Techniques (5)

BGAN (generative adversarial networks)
mTrain two models together: a generative model that captures the
data distribution and a discriminative model that distinguishes a
generated sample from the training data el Conerative Adveraal Kets 20141

Bl ed to many impressive generative
models such as StyleGAN

Cited from
[Karras+, A Style-Based Generator Architecture
for Generative Adversarial Networks, 2018]

f-ishikawa@Sokendai 12

Overview of Key Techniques (6)

mCLIP

BOne of the well-known FMs with unsupervised learning (without
labels or fixing the target task)
Bl earn correlations between texts and images

(1) Contrastive pre-training (2) Create dataset classifier from label text
Text © e o=
Encod l l l l - : I::":‘_-:: '.- _. — El';rc;eox(;
| T | T | - | Te : '
L LT |I LT - I,-T,
> Lt . (3) Use for zero-shot prediction , ¥ v v
L » I LT, LT |LT:| . |LTy T, | . | T3 _ | &
Image i L - 2T T -
Encoder > B 5T | BT BT - (5T I Elr';“;%‘:' —3 I LT | LT | T . [Ty
! [Radford+, Learning Transferable
Iy | [Ty |IeTy |TyTs | .. [LgT A photo of ;
e e il _— 2 dog. Visual Models From Natural Language

Supervision, 2021]

f-ishikawa@Sokendai 13

Overview of Key Techniques (7)

. lefu SlO nm Od e | S [S.ohI—Dickstei.r{+, .Deep Unsupervised' Learning

using Nonequilibrium Thermodynamics, 2015]

m\Very roughly, learn how to restore broken data by iteratively
running systematic and slow diffusion steps

m| ed to widespread further high-quality models such as DALL-E
series and StableDiffusion series

mDALL-E internally uses CLIP to rank the generated image
candidates

Bl EEEEEEEEEETES
T

RS v X XN NN XX XYY

Figure cited from [Ho+, Denoising Diffusion Probablllstlc Models 2020]

f-ishikawa@Sokendai 14

TOC
mQOverview of FM/LLM trends

mFoundation Models

mlarge Language Models

mL LM for Software Engineering
mExamples and Discussion: LLM for Testing

Large Language Models

Bl arge language models (LLMs) had strong impact as FMs
Blanguage models: training to learn probabilities over word
sequence
m“Large”: at the time of GPT-3 (detail was open), 175B parameters

were trained with 45TB of compressed plaintext before filtering
mcf. BERT had 340M (for the “large” version)

®» Led to task-agnostic, few-shot performance, even outperforming
fine-tuned, dedicated models

[Brown+, Language Models are Few-Shot Learners, 2020]

f-ishikawa@Sokendai 16

Accuracy (%)

Large Language Models: Effect

Zero-shot One-shot Few-shot

l o~ 100
v ~ —

175B Params

Natural Language

60 Prompt

80

Aggregate Performance Across Benchmarks

—e— Few Shot
—e— One Shot
—e— Zero Shot

>, 60 —
8 e
3 —
Q
13B Params
20
1.3B Params
O =
Number of Examples in Context (K) 0.1B 0.4B 0.8B 1.3B 2.6B 6.7B 13B 175B

f-ishikawa@Sokendai

Parameters in LM (Billions)

[Brown+, Language Models are Few-Shot Learners, 2020]

17

Large Language Models: Toward ChatGPT (Revisited)

BGPT (initial)
mOriginally, an FM intended to be used with fine tuning
.Tra nSfOrmer DeCOder [Radford+, Improving Language Understanding by Generative Pre-Training, 2018]

Stepl Step 2 Step 3
. I I St r | l (t Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

] . A promptis A prompt and A new prompt »
. 3 t eS O ea rr l I r] Or r ' Ia I r l sampled from our e Severa | model Eestas maon is sampled from it astors
prompt dataset landing 1o a & year ald outputs are anding o a & year eld the dataset. absutiress

mpled o o
. . A labeler ftsy Frnm The policy .pp(:.
m demonstrates the @ (c] (o] genera tes LR,
- a I g n e W I t u a n Va u e S desired output e an output g
behavior. o & .
tttttttttt A |Eb8| ks
v the outputs from @ Onge upen a time.
This data is used - best t t)
to fine-tune GPT-3 S ©-6-0-0 The reward model
with supervised .\:’S.éf. calculates a Sy
learnin q. p v rewar d for A
- This dat ed th tput [}
@@@ to train our sl
reward mode| '\.\’5-.3{" The reward is
0:-6:0:0 used to update rk

the policy
using PPO

9 (Very |n|t|a| VerSIOn Of) ChatG PT Cited from [Ouyang+, Training Language Models to Follow

Instructions with Human Feedback, 2022]

f-ishikawa@Sokendai 18

-

Large Language Models: Active Effort

Evolutionary |
Tree Ee Be e 3G @TA@ | Crassicae Caxem

2023
Anthropic
OPT-IMLIwN
BLOOMZ & | Galactica AN

FEAGE |
GLM'"
c@ Switch
o
5 o }

= T5}c) 5 |u

G @ 1 XLNet fe] | open source Ao E

o a5 Cleosed sorce 13|58

. GPT-2 i lo

(2019) % o, : |

- N~ - GPT-115) . rg@
(018) E@W - S o Cited from
—_— [Yang+, Harnessing the Power of LLMs in Practice:
FastText RiE 7 L} 1

A Survey on ChatGPT and Beyond, 2023 |

f-ishikawa@Sokendai 19

Large Language Models: (Part of) Impact

mChatGPT got 1,00M active users in 2 months

[https://www.cnbc.com/2023/11/30/chatgpts-one-year-anniversary-how-the-viral-ai-chatbot-has-changed.html]

mTrillions of dollars in economic growth in the US??

[https://www.technologyreview.com/2023/03/25/1070275/chatgpt-revolutionize-economy-decide-what-looks-like/]

EmImpact everywhere, including software engineering
mProgramming support such as GitHub CoPilot
mMore generally, active work in “Al for SE”, different approaches
from traditional ones (with building custom models)

[Hou+, Large Language Models for Software Engineering: A Systematic Literature Review, 2023]

f-ishikawa@Sokendai 20

https://www.cnbc.com/2023/11/30/chatgpts-one-year-anniversary-how-the-viral-ai-chatbot-has-changed.html
https://www.technologyreview.com/2023/03/25/1070275/chatgpt-revolutionize-economy-decide-what-looks-like/

Impacts from the Viewpoint of User

®mMulti-task, easy use and control
mHigh performance in a variety of tasks
m/Zero-Shot/Few-Shot “Customization” only by prompts (at least we
can try it before fine-tuning with additional data)
m\Weak barrier to use in natural languages and possibility of
iterative and explorative improvement

®» Without large “development” or “data collection and training”, you
can construct your own solution on demand

f-ishikawa@Sokendai 21

Potential Limitations due to Machine Learning Nature

BNot C
mHal
H(Re

Heg.

but

eductive reasoning based on rules/knowledge
ucination issues

atively) weaker in mathematics and logics e 003
, it can answer “who is the mother of Tom Cruise”

not “who is the sun on Mry Lee South”

[https://www.theguardian.com/technology/article/2024/aug/06/ai-llms]

mMay be affected by training data coverage and biases

m | ack of latest knowledge (without use of web/database)
mPossible biases such as “make a story of nurse” > often “female”

https://www.theguardian.com/technology/article/2024/aug/06/ai-llms

(Very Old) Example of Plausible False Claims

4 Default (GPT-3.5)

_ B EEEEATROLER TR B DERDABL SIC
wrprramonrcEs, L5 LOEZE DAY

BLRHYEE AN, FaOFMFF20215F9 B FTOEDTHY . ZhLIEBOERIIIF TVERA. LI
Mo, 2023F MFERIOOVWURRETEZ A Io12L. —MBBICHEFISFFETAR (Tokyo Patent

EREFTFURBE BROEFTOEETICHRGHEE -BEHORFZ(T. BEEBEITOK ‘ Office) IOV THEELLET.
BEN—D2Td, ERFTRARXICHYET, EEENFUEE. BERCEH3ESPEEFE. EERYOINHERCEIIaEPES. =
EFELTILETY. BEHA R AFAERORRICEEINTOEIH, EoEEEa Bz
EREFFURTE. EFHECEEHEALOBEE 22T THY., BEEICLIZEEEEDY DR TEREEEREO LTS TS, oSSR R0TEREEEmsmeEhLLLE
ERFE-BEEOERBEARLETOCVET, &, BHFHBICSWTL, HEOZANSABEETO REACRUES.
FHEIBITOTVEY, HHHAEE. 555 (apan Patent Office, JPO) O FEMEHY L GESINTEY. MM ES
EO#RRELAIEEELREEBLLTNEY. BAEARE. B EFEERL 2
HEEFHFAREL. BAOSHEEOD LMHAKED—DTHY, DEPEADML T EEGE JNT, FREPEE R, ELE LOERARELYEEEL. BIHEOMSERELET.
CEELKREZRLLTVET, BB BFEEIONTE. BABHFOARITTH PO BET 3 A RSB AL TS
L.
[ChatGPT 2023 Jul 20 ver. (GPT-3.5)]
EF\%?F?FW%(D%%UERIIEZ'C?D‘ ? + GPT-4

B FEEEEETRONEHR T E///ﬁb\ﬁ J?‘J\Eﬂj]fc;f @%"[C

RREBFFUBOEFYRE, JRERRERABER I RRADRELR -5 XRETHR - AR ERE

B, ERANOEEPIR - AR K EETER |, BER T =BREBPIRIOVWThACEYE IR AR, ERCIFELARE0EAT. HARE0ROSELLTEATT. 207
¥, BRABERNSHESE TR 1002 E, FRTER L PRERN R E S TSR E DB FTICHY E L=Rld [E5ZL5E0BSBINEL N RET BN, BXFEEBEZLIIA L TERENELL
- < Regenerate response ESNBIEHZNTT.

ROSER. SEORFLEERLUTIEE LY -LALLTANGNAIEN —BIIT. REDES

5/? & ngfbf@j# //_5 "bEE I%-ﬁ/gg {/‘% HHE LW EBOYZLL FhEELEEOIEDNET, (RSB B ARIOLIBIL XM, FHASAA

FTCELDIEATES, BABOEBELLO—ETY.
[ChatGPT 2023 Feb 13 ver. (GPT-3.5)] [ChatGPT 2023 Jul 20 ver. (GPT-4)]

f-ishikawa@Sokendai 23

TOC
mQOverview of FM/LLM trends

mFoundation Models
mlarge Language Models

m| LM for Software Engineering
mExamples and Discussion: LLM for Testing

LLM for Software Engineering

mCoding has been one of the key applications of LLM

mSupporting tools/environments
BGitHub CoPilot, Cursor, Cline, -

mGoogle CEO said:

mToday, more than a quarter of all new code at Google is generated
by Al, then reviewed and accepted by engineers. This helps our

[https://blog.google/inside-google/

eng|neers dO more and move faSter. message-ceo/alphabet-earnings-q3-2024/#search |
B Active effort for SE not limited to coding

https://blog.google/inside-google/message-ceo/alphabet-earnings-q3-2024/#search

LLM for Software Engineering: Example of Survey (1)

m“Until early 2024" — that almost means a collection of studies
in 2023

Software quality

assurance
15.14%

Software
maintenance
22.71%

Recommendation

Classification 6.77%

21.61%

Requirements
engineering
3.90%

Software design Generation

Software

development 0.92% 10.97% Regression
56.65% Software 0.65%
management
0.69%

(a) Distribution of LLM usages in SE activities. (b) Problem classification based on collected studies.

Fig. 10. Distribution of LLM utilization across different SE activities and problem types.

Cited from [Hou+, Large Language Models for Software
Engineering: A Systematic Literature Review, 2024]

LLM for Software Engineering: Example of Survey (2)

m (i)

Requirements
engineering

Anaphoric ambiguity treatment (4)

Requirements analysis and evaluation (2)

Coreference detection (1)
Specification formalization (1)
Use cases generation (1)

Requirements classification (4)
Specification generation (2)
Requirements elicitation (1)
Traceability automation (1)

Software design

GUI retrieval (1)
Software specification synthesis (1)

Rapid prototyping (1)
System design (1)

Software development

Code generation (118)

Code summarization (21)

Code translation (12)

APl inference (5)

API recommendation (5)

Code representation (3)
Method name generation (2)
Agile story point estimation (1)
API documentation smells (1)
Data analysis (1)

Control flow graph generation (1)
Instruction generation (1)
Others (14)

f-ishikawa@Sokendai

Code completion (22)

Code search (12)

Code understanding (8)
Program synthesis (6)

Code editing (5)

Code comment generation (2)
Code recommendation (2)

API documentation augment (1)
API entity and relation extraction (1)
Fuzz driver generation (1)
Identifier normalization (1)
Type inference (1)

Cited from [Hou+, Large Language Models for Software
Engineering: A Systematic Literature Review, 2024]

27

LLM for Software Engineering: Example of Survey (3)

m (i)

Software quality
assurance

Vulnerability detection (18)
Bug localization (5)

Testing automation (4)

Defect detection (2)

Static analysis (2)

Compiler fuzzing (1)
Invariant prediction (1)
Mobile app crash detection (1)
Test prediction (1)

Test generation (17)
Verification (5)

Fault localization (3)

GUI testing (2)

Binary taint analysis (1)
Decompilation (1)

Malicious code localization (1)
Resource leak detection (1)

Software maintenance

Program repair (35)

Code review (7)

Bug reproduction (3)
Duplicate bug report detection (3)
Log parsing (3)

Sentiment analysis (3)

API misuses repair (1)
Bug triage (1)

Code review explained (1)
Crash bug repair (1)
Incivility detection (1)
Patch detection (1)
Rename Refactoring (1)
Technical debt payback (1)
Web test repair (1)

Others (5)

Code clone detection (8)
Debugging (4)
Review/commit/code classification (3)
Logging (3)

Code revision (2)

Vulnerability repair (2)

Bug prediction (1)

Code coverage prediction (1)
Code-Review defects repair (1)
Dockerfile Repair (1)

Patch correctness prediction (1)
Program merge conflicts repair (1)
Tag recommendation (1)
Traceability recovery (1)

Type error repair (1)

Software management

Effort estimation (2)

f-ishikawa@Sokendai

Software tool configuration (1)

28

TOC
mQOverview of FM/LLM trends

mFoundation Models
mlarge Language Models

m| LM for Software Engineering
mExamples and Discussion: LLM for Testing

Example of Research on LLM for Testing (1)

mAutomated explorative testing

mL LM iteratively suggests the next test action given the current
screen and the summary of history tests

l'eshing
App

: . Dperation: "Click”™. Widget: "Enter”,

Q1 (Start prompt): We want to test the "MoneyTracker” App. It
has following activities. The current page is "Main®, it == . What
operation is required? (<Operation=[click / double-click [-« f
scroll]+ <Widget Name:=)

: - . Operation; “Click”. Widget “"ADD =

LLMA

Q2 (Test prompt): We successfully did the abowve operation. The

current page is “Addincome”, it has "Prica”, . The upper part of

the app is +-. The "Price” is EditText - List of tested . . Please

enerate the input text in sequence (<Widget name>=+< Input
%antent = .. 1, and the aperation after input. (<=0Operation=-)

LR

Q3 (Feedback prompt): There i no "Enter”, please reselect. The
current page is “Addincome®, it has "Price”, . The "Price" is
EditText - ", -+ . Please generate the input text in sequence (), and
the operation after input. (<Operation=[+]+<Widget Name=>)

=]

Short summary

2OR0E0 ENAF Accownd

(3500]
itle [salary]
Category (Personal)

-

[Liu+, Make LLM a Testing Expert: Bringing
Human-like Interaction to Mobile GUI Testing
via Functionality-aware Decisions, ICSE'24 |

f-ishikawa@Sokendai

30

Example of Research on LLM for Testing (2)

LM makes more structured description of steps to

reproduce failures as a knowledge graph

®mThen, other techniques can be applied more easily, such as
statistical analysis and automated test generation

STEPS_TO_REPRODUCE:

1]Restart the browser after setting prerequisite prefere nces.|—[:

Restart the browser.

2. Dismiss the Make Firefox default message if it is displayed to trigger the Suggestions modal.

|_5. Observe the modal.

3]Open System Settings > Ease of Access > Display. Open 'System Settings'.
4. Set the “Make text bigger” slider to a larger value (e.g. 135%). Select 'Ease of Access'.

Click on 'Display' option.

Set prerequisite preferences.

(a) To-Be-Processed S2Rs

Please split STEPS_TO_REPRODUCE into steps, especially splitting the step with multiple Ul
operations into steps with one Ul operation.

(b) Step Splitting Query

[{"STEP":
{'sTEP": "
{"STEP": "
{'sTEP": "
{"STEP": "
{'sTEP": "
{'sTEP": "
_ ('STEP": "

"Set prerequisite preferences.", "STEP_TYPE": "OPERATION"},

Restart the browser.", "STEP_TYPE": "OPERATION"},

Dismiss the Make Firefox ... the Suggestions modal.", "STEP_TYPE": "OPERATION"},
Open 'System Settings'.", "STEP_TYPE": "OPERATION"},

Select 'Ease of Access'.", "STEP_TYPE": "OPERATION"},

Click on 'Display' option.", "STEP_TYPE": "OPERATION"},

Set the 'Make text bigger' ... larger value (e.g. 135%).", "STEP_TYPE": "OPERATION"},
Observe the modal.", "STEP_TYPE": "NON_OPERATION"}]

4

f-ishikawa@Sokendai

[Su+, Enhancing Exploratory Testing by
Large Language Model and
Knowledge Graph, ICSE'24]

31

Example of Research on LLM for Testing (3)

m LM makes structure of logs
mogs come from different libraries and have diverse formats

BA lot of studies on this direction
mAgain, other techniques can be used once the data is structured

wlr Log Message
17/08/22 15:50:46 ERROR BlockManager Failed to report rdd_0_1 to master; giving up. '
17/08/22 15:51:18 DEBUG BlockManager Putting block rdd_1_1 with replication took O
17/08/22 15:51:24 DEBUG BlockManager Putting block rdd_1_2 with replication took O
17/08/22 15:51:55 INFO BlockManager Writing block rdd_1_1 to disk
17/08/22 15:52:36 ERROR BlockManager Failed to report rdd_0_1 to master; giving up.

¥ Structured Log
Datetime Level | Component Log Template Parameters
17/08/22 15:50:46 | ERROR |BlockManager |Failed to report <*> to master; giving up. rdd_0_1
17/08/22 15:51:18 |DEBUG [BlockManager |Putting block <*> with replication took <*=|rdd_1_1,0
17/08/22 15:51:24 |DEBUG [BlockManager |Putting block <*> with replication took <*=|rdd_1_2, 0
17/08/22 15:51:55| INFO [BlockManager|Writing block <*= to disk rdd_1_1
17/08/22 15:52:36 |ERROR [BlockManager|Failed to report <*= to master; giving up. rdd_0_1

[Le+, Log Parsing with Prompt-based Few-shot Learning, ICSE'23]

f-ishikawa@Sokendai 32

Features of LLM-based Support

mSupports any types of tasks (at least look so)
mBut we may not use “only LLM” or “end-to-end LLM"

BAccepts unstructured or incomplete inputs
Bl ess requirements on data formatting, scheme standardization,
preliminary training with large datasets
mNo worry about different representations in natural languages
mPossibility to complement implicit knowledge (commonsense)
mConnection to existing techniques that require structured inputs

Review of Traditional Techniques (1) Algorithm/Reasoning

mTask-specific algorithms
Me.g., generating test suites that satisfy All-Pair constraints

mModel-based testing
Be.g., generating a test suite from UML design models

mSymbolic Reasoning / Concolic Testing
Me.g. generating high-coverage test cases with logical solvers

® Traditional techniques (enhanced with LLM?) can be
stronger if we need to satisfy constraints or improve metrics

f-ishikawa@Sokendai 34

Review of Traditional Techniques (2) “Al”

mSupervised learning with task-specific datasets
Be.g., extracting GUl components from a screenshot

mSearch/optimization methods such as evolutionary

computation or reinforcement learning
Me.g. generating a small test suite with high coverage
Me.g. automated testing smartphone apps

® Traditional techniques (enhanced with LLM?) can be
stronger if we need to improve quantitative metrics

f-ishikawa@Sokendai

35

Discussion: How to Proceed?

Wit is very easy to “start” by exploring prompts and

input/output formats
Bt seems now the most significant thing is “try” or “fail fast (resolve
uncertainty” rather than “plan carefully”
M|t is easy to just say “human validate the outputs”

® |s it possible to iterate the cycles of evaluation and

improvement? (critical issue in SE for LLM)

mFor example, can you prepare and iterate (ideally automated)
“tests for ‘LLM/Al for tests"??

f-ishikawa@Sokendai 36

Summary: LLM/AI for Software Engineering

mBreakthrough by LLM (and foundation models in general)
Ml arge impact in software engineering
B Active effort on coding, almost at the level of practical use
(at least in early adapters and some domains)
mAlso support of various tasks: model generation, model validation,
test design, test coding, debugging, -
mStill evolving a lot

	スライド 1: Software Engineering (10-2) LLM-based AI for Software Engineering
	スライド 2: TOC
	スライド 3: Foundation Models: Definition
	スライド 4: Foundation Models: Social Architecture
	スライド 5: Impacts of FM
	スライド 6: Foundation Models: Case of NLP
	スライド 7: Overview of Key Techniques (1)
	スライド 8: Overview of Key Techniques (2)
	スライド 9: Overview of Key Techniques (3)
	スライド 10: Overview of Key Techniques (4)
	スライド 11: Foundation Models: Case of Vision
	スライド 12: Overview of Key Techniques (5)
	スライド 13: Overview of Key Techniques (6)
	スライド 14: Overview of Key Techniques (7)
	スライド 15: TOC
	スライド 16: Large Language Models
	スライド 17: Large Language Models: Effect
	スライド 18: Large Language Models: Toward ChatGPT (Revisited)
	スライド 19: Large Language Models: Active Effort
	スライド 20: Large Language Models: (Part of) Impact
	スライド 21: Impacts from the Viewpoint of User
	スライド 22: Potential Limitations due to Machine Learning Nature
	スライド 23: (Very Old) Example of Plausible False Claims
	スライド 24: TOC
	スライド 25: LLM for Software Engineering
	スライド 26: LLM for Software Engineering: Example of Survey (1)
	スライド 27: LLM for Software Engineering: Example of Survey (2)
	スライド 28: LLM for Software Engineering: Example of Survey (3)
	スライド 29: TOC
	スライド 30: Example of Research on LLM for Testing (1)
	スライド 31: Example of Research on LLM for Testing (2)
	スライド 32: Example of Research on LLM for Testing (3)
	スライド 33: Features of LLM-based Support
	スライド 34: Review of Traditional Techniques (1) Algorithm/Reasoning
	スライド 35: Review of Traditional Techniques (2) “AI”
	スライド 36: Discussion: How to Proceed?
	スライド 37: Summary: LLM/AI for Software Engineering

