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Abstract
Java program adaptation between different APIs is a common task
in software development. When an old API is upgraded to an in-
compatible new version, or when we want to migrate an application
from one platform to another platform, we need to adapt programs
between different APIs. Although different program transforma-
tion tools have been developed to automate the program adaptation
task, no tool ensures type safety in transforming Java programs:
given a transformation program and any well-typed Java program,
the transformed result is still well-typed. As a matter of fact, it is
often observed that a dedicated adaptation tool turns a working ap-
plication into a set of incompatible programs.

We address this problem by providing a type-safe transforma-
tion language, SWIN, for Java program adaptation between differ-
ent APIs. SWIN is based on Twinning, a modern transformation
language for Java programs. SWIN enhances Twinning with more
flexible transformation rules, formal semantics, and, most impor-
tantly, full type-safe guarantee. We formally prove the type safety
of SWIN on Featherweight Java, a known minimal formal core of
Java. Our experience with three case studies shows that SWIN is as
expressive as Twinning in specifying useful program transforma-
tions in the case studies while guaranteeing the type safety of the
transformations.

1. Introduction
Modern programs often depend on different APIs (Application Pro-
gramming Interfaces), and it is a common task for the developers
to adapt programs between alternative APIs. One example is API
update: when an old API is updated to a new version with incom-
patible changes, we need to transform client programs with the old
API to new programs using the new API. Another example is API
switching: we often need to migrate programs between different
platforms, such as from the Android platform to iOS, or from Java
Swing to SWT. In such cases, we need to transform the programs
with the API on one platform to new ones with the API on an-
other platform. However, manually adapting programs is not easy:
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we need to examine every use of the source API and replace them
with the suitable target API. Thorough knowledge of the source and
target APIs as well as the client program is required.

Given the importance of program migration, it would be help-
ful and beneficial for tool vendors to provide automated tools to
assist application adaptations. When API upgrades, API providers
could provide tools to automate the upgrade of client applications,
preventing potential loss of users from the incompatibility of the
new API. Similarly, platform providers could provide tools to fa-
cilitate the migration of application from other platforms to their
own platforms, attracting more applications and users on their plat-
form. For example, Microsoft has provided the Visual Basic up-
grade wizard tool, to facilitate the transition from Visual Basic to
Visual Basic.Net. RIM has provided a tool suite to transform An-
droid applications into blackberry applications. These tools work
in the form of program transformation: they take a client program
as input, and produce a new program that preserves the behavior
of the source program as much as possible while targeting the new
API.

However, providing a program transformation tool is not easy.
Among the large body of API adaptations performed in practice,
only a small portion has transformation tool supports, and it is
common for the transformation tools to introduce bugs in the trans-
formed programs. A particular type of bugs we are concerned with
in this paper is type error: a well-typed program becomes not well-
typed after the transformation. For example, Python has provided
an official 2to3 script to transform Python programs from Python
2.x to 3.x. However, as discovered in a case study by Pilgrim and
Willison [21], the script will introduce a type error in the trans-
formed code whenever the original code contains a call to the
“file()” method.

To overcome the difficulty of providing transformation tools, a
large number of program transformation languages [1, 11–13, 20]
have been proposed. These languages provide high-level constructs
for specifying transformations between programs, reducing the de-
velopment cost and preventing certain kinds of errors. For exam-
ple, a number of program transformation languages prevent the
possibility of introducing grammatical errors in transformation, ei-
ther by specifying the transformation on top of context-free gram-
mars [11, 12] or by designing the transformation language specifi-
cally for a programming language [1]. However, as far as we know,
no transformation language for mainstream object-oriented pro-
grams ensures type safety: for any transformation program p and a
well-typed source program s, the transformed program p(s) is still
well-typed. As a result, given a program transformation, we have
no guarantee that a well-typed program will still be well-typed af-
ter the transformation.



It is not easy to ensure type safety in transformation languages.
We highlight two challenges here. First, typing is one of the most
complex components in modern programming language design, in-
volving many interleaving of issues. The design of a transforma-
tion language needs to carefully check each intersection of the is-
sues, which is not an easy job. Second, type safety involves two as-
pects: correctness and completeness. Correctness means that every
transformed piece in the program is well-typed, while complete-
ness means that all unchanged pieces are still well-typed under the
new API. It is easy to ignore one aspect in transformation language
design. As a matter of fact, Twinning [1], a modern transformation
language for Java programs, have introduced strict rules for check-
ing types in the transformation program to prevent the introduction
of type errors. However, as our motivation section will show later,
these rules still fail to establish full type safety.

In this paper we report our first attempt to design a type-safe
transformation language for Java. As the first attempt, we focus
on the class of one-to-many mappings between APIs. One-to-many
mappings mean one method invocation in the source API will be
replaced as one or multiple method invocations in the target API
with possible gluing code. We choose this class for two reasons.
1) One-to-many mappings are dominant in the migration between
alternative APIs. An empirical study [22] shows that 95.3% of the
required changes are one-to-many mapping in the API update of
struts, log4j, and jDOM. 2) Studying one-to-many mappings is
a necessary step toward more general many-to-many mappings.
Since one-to-many mappings are a sub class of many-to-many
mappings, type safety in many-to-many mappings requires type
safety in one-to-many mappings. As a matter of fact, the language
Twinning is designed for one-to-many mappings, and is known for
its simplicity and usefulness in many adaptation applications. Our
approach is built upon Twinning, where we add extra conditions to
ensure type safety.

More concretely, our contributions are summarized as follows.

• We propose a new transformation language, SWIN (Safe tWIN-
ning), for Java program adaptation between alternative APIs.
The SWIN language is based on Twinning [1], a modern pro-
gram adaptation language for Java. Compared with Twinning,
SWIN includes a set of type checking rules to ensure type
safety. These type checking rules enable a cross-checking over
the source API, the target API, and the transformation program,
and ensure that any well-typed Java program using the source
API will be transformed into a well-typed Java program only
using the target API, if the transformation program is well-
typed under the type checking rules. SWIN also has more flex-
ible replacement rules than Twinning.

• We formalize a core part of SWIN, known as core SWIN. Core
SWIN works on Featherweight Java (FJ) [7], a formal model
of the core Java language often used to reason typing-related
properties of Java. We formally prove the type safety of core
SWIN on FJ. We also informally describe the rest of SWIN and
discuss the type safety of full SWIN.

• We have implemented SWIN1 and have evaluated SWIN by im-
plementing three real world transformation programs in SWIN.
These programs ranges from web APIs accessed by HTTP re-
quests [19] to local APIs, including both API updating and API
switching. Our case study shows that SWIN is able to specify a
range of useful program transformations in practice. More im-
portantly, compared with Twinning, the additional type check-
ing rules in SWIN does not confine the expressiveness of the
language.

1 https://github.com/Mestway/SWIN-Project

The rest of our paper is structured as follows. Section 2 briefly
introduces Twinning, and then give two motivating examples to
show why Twinning is not type-safe in program adaptation. Sec-
tion 2 also discusses how to maintain type safety in program
adaptation. Section 3 presents core SWIN, with an introduction
to Featherweight Java. Section 4 gives the type system for core
SWIN, as well as the proof of type safety while transforming pro-
grams using rules in SWIN on Featherweight Java. Section 5 ex-
plains how to extend core SWIN to full SWIN. Section 6 presents
three case studies which demonstrate the expressiveness of SWIN.
Finally, Section 7 discusses related work and Section 8 concludes
the paper.

2. Motivating Examples
Before explaining SWIN, we briefly explain the type safety prob-
lem in the existing systems. We shall first briefly describe Twinning
[1], a typical API adaptation language. Then, we will give some ex-
amples to show why Twinning cannot preserve the type correctness
in program transformation. Finally, we will informally present an
overview of our work.

Twinning is a rule-based language for adapting programs be-
tween alternative APIs. The design goal of Twinning is to be easy to
use while allowing a reasonable set of adaptation tasks to be speci-
fied. A Twinning program basically consists of a set of replacement
rules in the form of

[
T10(T11 x1, . . . , T1n xn) { return javaExp1; }
T20(T21 y1, . . . , T2n yn) { return javaExp2; }

]

which means (1) T1i will be replaced by T2i for all i (the set of pairs
[T1i, T2i] from all replacement rules are called a type mapping);
(2) xi is a meta variable that will match a Java expression of type
T1i in the source code and instantiates yi with that expression; (3)
javaExp1, which is a Java expression of type T10 that uses meta
variables x1 . . . xn, will be used to match Java expressions, and
these expressions will be replaced by javaExp2 of type T20, where
the meta variables yi are instantiated with the matched expressions
by x1 . . . xn

2.
As a simple example, consider the following replacement rule

1 [
2 Enumeration(Hashtable x)
3 {return x.elements ();}
4 Iterator(HashMap x)
5 {return x.values ().iterator ();}
6 ]

which will match any call to elements in class Hashtable, and
replace it by a call to values().iterator() in class HashMap. For
instance, given the following piece of code,

void f(Hashtable t) {
Enumeration e = t.elements ():
...

}

the replacement rule will produce the following piece of code,
where the meta variable x in the replacement rule matches the
expression t.

void f(HashMap t) {
Iterator e = t.values ().iterator ():
...

}

2 Strictly speaking, Twinning also allows replacing a block of statements
rather than a single expression. For the ease of presentation, we shall only
consider expression replacement in this paper. All discussions apply to
statements replacement as well.



Figure 1. Swing (left) and SWT (right) type mapping: boxes rep-
resent classes, arrows indicate the class hierarchy, and dotted lines
indicate the type mapping relations.

Twinning mainly checks two conditions to avoid introducing
new type errors in the code. First, Twinning requires each replace-
ment must be well-typed under the typing rules of Java. In this way,
we can ensure the replacement of expressions does not introduce
new type errors. Second, Twinning requires that one type is only
mapped to one type in the type mapping (i.e., one type cannot be
mapped to different types by replacement rules). This condition en-
sures that the replacement of types can be correctly performed.

Unfortunately, these two conditions cannot fully ensure type
safety. First, type errors may be introduced when subtyping re-
lations are involved. To see this, consider a practical example to
adapt programs from Java Swing API to SWT API [2], where the
correspondences between types of the two APIs are summarized in
Figure 1, and the following presents part of the rules for replacing
type constructors to their counterparts.

[
Container () {return new Container ();}
Composite ()
{return new Composite(new Shell(), 0);}

]

[ JList () { return new JList(); }
List () { return new List(); } ]

The typing problem happens if we apply the above rules to the
following piece of code:

Container x = new JList();

Clearly, it will yield the code

Composite x = new List();

which actually contains a type error: JList is a subtype of Container,
but List is not a subtype of Composite, so we cannot assign a List

object to a Composite variable. This example shows that, although
the two conditions used in Twinning ensure the replacement of ex-
pressions and the replacement of types are correct by themselves,
the intersection of the two replacements would introduce type er-
rors.

Second, Twinning has no guarantee the replacement rules cover
all necessary changes. When there are components appearing only
in the old API but are not transformed by any transformation
rule, type errors may be introduced. For instance, consider the
upgrade of Java SDK from v1.0 to v1.2: class Hashtable (Figure 2)
is replaced by HashMap (Figure 3). For this change, we write a

class Hashtable {
Enumeration elements () { }
boolean contains(Object v) { }
...

}
class Enumeration {

...
}

Figure 2. Hashtable API

class HashMap {
Collection values () { }
boolean containsValue(Object v) { }
...

}
class Collection {

Iterator iterator () { }
...

}
class Iterator {

...
}

Figure 3. HashMap API

[ Hashtable () { return new Hashtable ();}
HashMap () { return new HashMap (); } ]

[ Enumeration (Hashtable x)
{ return x.elements (); }

Iterator (HashMap x)
{ return x.values ().iterator (); } ]

Figure 4. Replacement Rules From Hashtable to HashMap

set of replacement rules (Figure 4). To be sure that any program
using Hashtable can be transformed in a type-safe way, we must
guarantee that all methods and classes in Hashtable have their
replacements. However, the method contains in class Hashtable

has no such replacements in the above set of rules.
In summary, the conditions of Twinning are not enough to en-

sure type-safety of the transformation program. We need additional
conditions to prevent the above two problems. For the first case, we
need to ensure that the type mapping does not break the subtyping
relations. For the second case, we need to ensure the replacements
cover the full API changes. Putting them together with the original
two conditions from Twinning, we have the following four condi-
tions.

• For each code snippet introduced in a replacement rule, the code
snippet itself must be well-typed.

• The type mapping must form a function, i.e., no type in the
source API is mapped to two or more types in the target API.

• The type mapping must preserve the subtyping relation. If X is
a subtype of Y in the source API and m is the mapping, m(X)
must be a subtype of m(Y ) in the target API.

• The replacement rules must cover all type changes between the
source API and target API.

It will be interesting to see later that these four conditions are
sufficient to ensure type safety. However, as Twinning is presented
informally in the original publication [1], to reason about type
safety, we need to first build a formal model of the Twinning
semantics. A particular challenge of presenting this formal model
is to understand how the replacement rules can be sequentially
applied. For example, to transform the following piece of code



new Hashtable ().elements ()

into

new HashMap ().values ().iterator ()

we need to begin with the second rule in Figure 4 to replace
“elements()” and then apply the first rule to replace “new Hashtable()”.
If we begin with the first rule, we shall get an expression

new HashMap ().elements ()

where the second rule cannot be applied because “new HashMap()”
has a type HashMap that cannot be matched by the meta variable x of
type Hashtable. In other words, the transformation is not confluent
since applying the rules in different orders gives us different results.

A related issue is that some sequences of rule applications may
be infinite. For example, let us consider the following rule.

[A (A x) {return x.a();}
A (A x) {return x.a().a();}]

Since the target side of the right also contains the call to a(), the
rule can be applied again after the transformation, forming a non-
terminating transformation. A terminating and confluent transfor-
mation is called a convergent transformation. A well-formed trans-
formation language should always produce convergent transforma-
tions. However, the publication on Twinning [1] provides no infor-
mation how Twinning deals with these issues.

Another usability issue of Twinning is that Twinning allows
only exact type matching, i.e., a meta variable of type T matches
a Java expression only when the expression has exactly type T
but not a subtype of T . This design eases the analysis as we can
infer all type changes from the type mapping, but also makes
transformation more difficult to write. For example, in Java v1.0
class Properties is a sub class of Hashtable, and thus any call to
Properties.elements() should be transformed in the same way as
Hashtable.elements(). However, the second rule in Figure 4 does
not apply to calls to Properties.elements() because the meta
variable x has type Hashtable. As a result, for any replacement
rule for a class C, we need to repeat the rule for each sub class of C,
which is quite tedious.

To overcome this problem, we design a new language, SWIN
(Safe tWINning). SWIN is based on Twinning but with the follow-
ing differences.

• SWIN has full formal semantics.
• SWIN has more flexible rule application behavior, allowing a

meta variable to match an expression of its sub type.
• SWIN is convergent. A well-typed SWIN program can act on

any Java program confluently and free from non-terminating
problems.

• SWIN includes a set of type checking rules to check the four
conditions presented above.

In the following sections we shall introduce SWIN formally and
present our proof of type safety.

3. Syntax and Semantics of Core SWIN
Before explaining full SWIN for Java, which will be discussed in
Section 5, we start with core SWIN for Featherweight Java [7],
a known minimal core of Java. If no confusion will be caused, we
shall directly use SWIN to refer core SWIN. We shall briefly review
Featherweight Java, and explain the syntax and semantics of our
transformation language SWIN for it.

3.1 Background: Featherweight Java
Featherweight Java (FJ for short) is a minimal core calculus for
Java [7]. FJ is small enough that a concise proof of the type-safety
property is possible while it can be easily extended to full Java.

Class Declaration

CL ::= class C extends C{C̄ f̄; K M̄}
Constructor Declaration

K ::= C (C̄ f̄) {super(f̄); this.f̄ = f̄}
Method Declaration

M ::= C m(C̄ x̄) {return t; }
Term

t ::= x | t.f | t.m(t̄) | new C(t̄) | (C) t

Figure 5. Syntax of Featherweight Java

Figure 5 shows the syntax of FJ. The class declaration

class C extends D {C̄ f̄; K M̄}
introduces a class named C with superclass D. The class has fields
f̄ with types C̄, a single constructor K, and a suite of methods M̄.

In the formal notations, we use the bar notation adopted by
Pierce [28] for repetitive elements: ā to indicate a vector a, and
all operations defined on single values expand componentwisely to
vectors. For example, let xi be the ith element in x̄, we have ā < b̄
is equal to ∀i. ai < bi and ā ∈ S is equal to ∀i. ai ∈ S. Here,
we write C̄ f̄, for C1 f1, · · · , Cn fn, where n is the length of C̄ and f̄.
Similarly, M̄ denotes M1 · · · Mn.

The constructor declaration

C (C̄ f̄){super(f̄); this.f̄ = f̄; }
defines the way to initialize a Java object, including a call to
superclass constructor and assignments to class fields.

The method declaration

C m(C̄ x̄){ return t; }
introduces a method named m with return type C and parameters x̄
of types C̄. The body of the method is just a single term return t.

There are only five terms in FJ, variable x, field access t.f,
method invocation t.m(t̄), object creation new C(ē), and cast oper-
ation (C)e. The key simplification in FJ is the omission of assign-
ment. This implies that an object’s field is initialized by its con-
structor and never changed afterwards. This restricts FJ to a “func-
tional” fragment of Java.

The typing rules of FJ are the same as those of plain Java. One
exception is that FJ does not support method overloading. We refer
the reader to the original paper [7] and Appendix A for the typing
rules.

3.2 Core SWIN
In this subsection we describe the syntax and evaluation rules of
SWIN formally. The type checking rules and the proof of the type-
safety property will be presented in Section 4 later.

3.2.1 Syntax
The formal definition of SWIN is presented in Figure 6. Similar to
Twinning, a SWIN program Π is a set of transformation rules, and
each transformation rule (π = (d̄) [l : Cl → r : Cr]) consists
of three parts: 1) meta variable declarations (d̄), 2) left hand side
source code pattern l and 3) right hand side target code pattern r.
The source code pattern l will be used to match an expression in



Π ::= {π̄} Transformation program

π ::= (d̄) [l → r] Transformation rule

d ::= x : C1 ↪→ C2 Variable declaration

l ::= x.f | new C(x̄) | x.m(x̄) Code pattern

r ::= t FJ term

Figure 6. Syntax of SWIN

an old client program, and the target code pattern r is an FJ term
using a new API with meta-variables bounded in d, which is used
to generate updated client code. And the variable declaration part
(d = x : A ↪→ B) associates a metavariable with its type migration
information: x is of type A in l and of type B in r.

An informal explanation of the rule can be seen from its corre-
spondence with the replacement rule in Section 2. For example, the
mapping rule

π = (x : A ↪→ L, y : B ↪→ M) [ x.m(y) : C→ x.h(y) : D ]

can be seen as the following replacement rule:

[
C (A x, B y) { return x.m(y); }
D (L x, M y) { return x.h(y); }

]

Now if there is a client source code term (new A()).m(new B()), the
rule will match the term as x binds to new A(), y binds to new B(),
and the method name m matches the method name in the term. It
results in that the updated term (new A()).h(new B()) is of type D.
Note that this rule does not match the term (new C()).m(new B()),
as the type of the variable x (type A) does not match the type of the
term new C() (type C).

To ensure convergence, we do not allow the left hand sides of
two rules to be the same. If two rules have the same left hand
side, they will always match the same term, resulting in possibly
divergent results.

3.2.2 Semantics: Evaluation Rules
We assume that an FJ program, which is a set of class decla-
rations, can be divided into two parts: {CLAPI} and {CLclient},
where {CLAPI} is the source API, consisting of class definitions
that are type-correct by themselves; {CLclient} is the client pro-
gram to be transformed, consisting of class definitions that depends
on {CLAPI}. A transformation on an FJ program is to apply the
transformation rules on {CLclient} to get {CL′client}, and then re-
place {CLAPI} with the target API {CL′API}, such that {CL′API} and
{CL′client} form a type-correct program.

In formal notations, we use API to denote { CLAPI }, and op-
erations on APIs are naturally set operations (e.g. API1 − API2 is
set substraction, which excludes class declarations in API2 from
API1). In particular, we use the notation APIs to denote the source
API, CLAPI, and APId to denote the target API, CL′API, respectively.

Figure 7 summarizes the formal semantics of SWIN. In the
rules, A <: B indicates that A is a subtype of B. A transformation
program Π is formalized as a transformation from source code to
target code on both types and terms. This transformation consists
of the following three steps.

1. Transformation Promotion: The first three rules
(E-DECLARATION, E-CONSTRUCTOR, E-METHOD) are
used to promote Π up to types and terms through a class dec-
laration, a construction definition, and a method definition, re-
spectively.

2. Type Transformation: The next E-CLASS rule is used to trans-
form source types in the source API to target types in target API
based on the type mappings defined in Π. Those types which are
not involved in the type mapping of Π will stay the same accord-
ing to the rule E-ALTER-CLASS. An important components
of the two rules is TypeMapping, which records how types in
APIs is mapped to APId by the transformation program, and it
is defined in Figure 8.

3. Term Transformation: The rest of the rules are used to trans-
form source code terms. As the syntactic definitions in Figure 6
show, an FJ term takes five forms. The form x and (C)t are
evaluated by E-T-VAR and E-T-CAST, respectively, which ba-
sically further applies Π to sub terms. The other three forms are
handled by E-T-FIELD, E-T-NEW, E-T-INVOKE, respectively.
The three evaluation rules apply matched SWIN transformation
rules to the current term. A term is matched by a rule when the
signature of the rule matches the term and there is no rule that
more “closely” matches the term. A rule rmore closely matches
a term than another rule r′ when any of the meta variable in r
has closer type to the matched term than r′. To deal with client
defined classes, evaluation rules E-ALTER-FIELD, E-ALTER-
INVOKE, E-ALTER-NEW are designed and they will apply Π
to sub terms. In the definitions, we use Type(t) to get the type
of a term t based on FJ typing rules.

To be concrete, let us see an example. Suppose that we want to
switch from the old API (APIs) to a new one (APId)3

APIs = {class A { A(){...}; A h(A a){...}; }; }
APId = {class B { B(){...}; B k(B b, B c){...}; }; }

and we use the following SWIN transformation program

Π = [π1, π2]
where
π1 = () [ new A() : A→ new B() : B ]
π2 = (x : A ↪→ B, u : A ↪→ B)

[ x.h(u) : A→ x.k(u, new B()) : B ]

to transform the following source client Java code.

(new A()).h(new A())

The transformation is done as follows:
Π((new A()).h(new A())

= { by E-T-INVOKE with rule π2 }
[x→ Π(new A()), u→ Π(new A())](x.k(u, new B()))

= { replace x and u in x.k(u, new B()) }
Π(new A()).k(Π(new A()), new B())

= { by E-T-NEW with rule π1 }
[ ](new B()).k([ ](new B()), new B())

= { since [ ](new B()) = new B() }
new B().k(new B(), new B())

Thus it results in the target code new B().k(new B(), new B()).

4. Type Checking System for Core SWIN
Now we turn to our type system that is used to check the type safety
of transformation programs in SWIN. Given two APIs (APIs and
APId), and a transformation program (Π), mapping from APIs to
APId, if Π passes our type checking, we can guarantee that Π will
transform any FJ program using APIs to a well-typed FJ program
using APId instead.

3 We omit the API method bodies here as it is not necessary to see the
details of how an API method is implemented; it is sufficient to show the
input types and the return type of each method in API. And this kind of
omission is also used in later sections.



CL = class C1 extends C2 { C̄ f̄; K M̄ }
(E-DECLARATION)

Π(CL) = class Π(C1) extends Π(C2) { Π(C̄) f̄; Π(K) Π(M) }

K = C1 (C̄2 f̄2) {super(f̄3); this.f̄i = f̄j}
(E-CONSTRUCTOR)

Π(K) = Π(C1) (Π(C̄2) f̄2) {super(f̄3); this.f̄i = f̄j}

M = C1 m(C̄ x̄) {return t; }
(E-METHOD)

Π(M) = Π(C1) m(Π(C̄) x̄) {return Π(t); }
C0 ↪→ C1 ∈ TypeMapping(Π)

(E-CLASS)
Π(C0) = C1

∀C. C0 ↪→ C /∈ TypeMapping(Π)
(E-ALTER-CLASS)

Π(C0) = C0
(E-T-VAR)

Π(x) = x

(x : C1 ↪→ C2)[ x.f : C → r : D ] ∈ Π Type(t) <: C1
¬∃ (x : C3 ↪→ C4)[ x.f : C → r : D ] ∈ Π.(Type(t) <: C3 <: C1 ∧ C3 6= C1)

(E-T-FIELD)
Π(t.f) = [ x 7→ Π(t) ]r

(E-T-CAST)
Π((C) t) = (Π(C)) Π(t)

(d̄)[ new C0( x̄ ) : C → r : D] ∈ Π

{ x̄ : C1 ↪→ C2 } ⊆ d̄ Type(t̄u) <: C̄1
(E-T-NEW)

Π(new C0(t̄u)) = [ x̄ 7→ Π(tu) ](r)

(ȳ : C1 ↪→ C2, x0 : C3 ↪→ C4)[ x0.m0( y ) : C → r : D] ∈ Π

Type(t0) <: C3 Type(t̄u) <: C̄1

¬∃ (ȳ : C1 ↪→ C2, x0 : C5 ↪→ C6)[ x0.m0( y ) : C → r : D] ∈ Π.(Type(t0) <: C5 <: C3 ∧ C5 6= C3)
(E-T-INVOKE)

Π(t0.m0(t̄u)) = [ x0 7→ Π(t0), ȳ 7→ Π(tu) ](r)

no other inference rule can be applied
(E-ALTER-NEW)

Π(new C0(t̄u)) = new C0( Π(tu) )

no other inference rule can be applied
(E-ALTER-INVOKE)

Π(t0.m0(t̄u)) = Π(t0).m( Π(tu) )

no other inference rule can be applied
(E-ALTER-FIELD)

Π(t.f) = Π(t).f

Figure 7. Evaluation Rules of SWIN

TypeMapping(( x̄ : C1 ↪→ C2 )[l : C → r : D]) = {C ↪→ D} ∪ { C1 ↪→ C2 }

TypeMapping({π̄}) =
⋃
π

(TypeMapping(π)) (Extract type migration information)

Decl(class C extends D {...}) = C (Extract the declared class name)

Figure 8. Auxiliary Functions used in Figure 7 and Figure 10

In the following sections, we will define our type-checking rules
and prove the type-safety property of SWIN.

4.1 Type Checking Rules
We present the rules in Figure 9 and Figure 10. Figure 9 depicts the
rule for checking a single transformation rule π. Figure 10 depicts
the rules for checking a transformation program Π.

Checking Rule for π This rule checks whether the types declared
in a transformation rule conforms to the actual types inferred using
FJ typing rules. In the formal notation, we use Γ `APIsFJ t : C to
denote that the term t has type C under context Γ by FJ typing
rules when considered together with APIs. When checking the left
hand sides, we introduce modified type checking rules ∗FJ, which
is used to ensure the exact matching on the parameters, so that our
rules are only declared on valid methods.



RuleOK(Π) = ∀ π.(π ∈ Π⇒ π ok)

ConstrCover(Π, APIs, APId) =

∀ C1, C̄.(class C1 extends {C1(C̄ )̄ ... } ∈ (APIs − APId)

⇒ ∃ C2, C̄′, x̄, r.(( x̄ : C ↪→ C′ )[new C1(x̄) : C1 → r : C2] ∈ Π))

MethCover(Π, APIs, APId) =

∀ C1, C2, m, C̄.(class C1 extends { C2 m( C̄ ¯ ){...} ... } ∈ (APIs − APId)

⇒ ∃ x, ȳ, C′1, C′2, C̄′, r.((x : C1 ↪→ C′1, ȳ : C ↪→ C′ )[x.m(ȳ) : C2 → r : C′2] ∈ Π))

FieldCover(Π, APIs, APId) =

∀ C1, C2, f.(class C1 extends {C2 f; ...} ∈ (APIs − APId)

⇒ ∃ x, C′1, C′2.((x : C1 ↪→ C′1 )[x.f : C2 → r : C′2] ∈ Π))

MapChecking(Π, APIs, APId) =

∀ C, D.(C ↪→ D ∈ TypeMapping(Π)

⇒ (∃ CL ∈ APIs ∩ APId.(Decl(CL) = C ∧ D = C))

∨(∃ CL ∈ APIs − APId.(Decl(CL) = C)))

Subtyping(Π, APIs, APId) =

∀ Ci, Di, Cj, Dj.(Ci ↪→ Di, Cj ↪→ Dj ∈ TypeMapping(Π) ⇒ (Ci <: Cj ⇒ Di <: Dj))

Figure 10. Checking rules (or checking funtions) for Π. A SWIN program Π with specified source API (APIs) and destination API (APId)
should pass these checking rules to maintain type safety. Underscore( ) is a wildcard and apostrophe (...) represents omitted declaration
sequences (field declarations or method declarations). And a special use of the notations used in ConstrCover etc. is C̄ ,̄ which represents
C1 , C2 , ..., Cn , as their types are known while the variable names are not necessary.

{ x̄ : C̄ } `APIs∗FJ l : C1 { x̄ : D̄ } `APIdFJ r : C2
(T-π)

(x̄ : C ↪→ D)[l : C1 → r : C2] ok

Γ `APIFJ x : C0 mtype(m, C0) = D̄→ C Γ `APIFJ ȳ : D̄
(T-L1)

Γ `API∗FJ x.m(ȳ) : C

fields(C) = D̄ f̄ Γ `APIFJ x̄ : D̄
(T-L2)

Γ `API∗FJ new C(x̄) : C

fields(C) = D̄ f̄ Γ `APIFJ x : C
(T-L3)

Γ `API∗FJ x.fi : Di

Figure 9. The checking rule for π

Please note that this rule also indicates that we can drop the
type declarations in the transformation rules, i.e., instead of writing
[ x.m(y) : C → x.h(y) : D ], we can write [ x.m(y) → x.h(y) ]
and deduce C and D using FJ typing rules. However, we decide to
keep these declarations in the code because with these declarations,
TypeMapping(Π) becomes more explicit, avoiding subtle bugs
on erroneous type mappings.

Checking Rules for Π The main goal of the type checking rules is
to check the four conditions presented in Section 2. Next we explain
how this is achieved.

1. All rules are well-typed themselves. (Rule RuleOK)

2. The class mapping in TypeMapping(Π) should be a func-
tion, i.e. one class in the old API should be mapped to only one
class in new API. In fact, this property is covered by the sub-
typing relationship check, as type equality can be treated as a
bi-directional subtyping relation. (Rule Subtyping)

3. The class transformation preserves the subtyping relationship
in the old API. (Rule Subtyping)

4. The transformation program covers all classes/methods/con-
structors/fields that only exist in the old API but not the

new API (Rules ConstrCover, MethCover, FieldCover),
and no unnecessarily type conversion is introduced (Rule
MapChecking). Note that the above three rules are declared
on constructors, methods, and fields directly. The coverage of
classes is implied by rule ConstrCover and the definition of
TypeMapping.

We say a SWIN program is well-typed iff it satisfies the check-
ing rules presented in Figure 10. As will be proved in Section 4.3, a
well-typed transformation program Π is type-safe, guaranteeing the
well-typedness of the target code when Π is applied to any client
code with old API. Otherwise, there must exist some client code
that cannot be transformed to a well-typed target code with this
transformation program.

4.2 Convergence Theorem
Our checking rules and evaluation rules ensure the convergence of
any SWIN program, which is discussed in the following theorem
and its proof sketch.

Theorem 1. Any SWIN program is convergent.

Proof sketch. SWIN employs a normal order evaluation semantics.
First, the evaluation rules visit a term leftmost and outermost. After
performing the transformation on that term, the evaluation rules
recursively visit the sub terms of the term, and for each visit, the
transformation will be applied on the original sub terms, and pro-
duce the transformation result by combining the transformed sub
terms. In this way we can ensure each recursive visit will be ter-
minated as the length of the sub terms are always shorter than the
term. Also, we can ensure the transformation on a term is conflu-
ent, as each program element is transformed by exactly one rule
according to the restrictions on π (checking rules for π) and the
definitions of the evaluation rules.

4.3 Type-Safety Theorem
In this subsection, we reason type safety of SWIN formally and
outline the key theorems and lemmas here.



Intuitively, SWIN is type-safe if and only if a well-typed SWIN
program can transform any well-typed FJ program to a well-typed
FJ program. The proof needs to bridge the type inference tree on an
old API to the new type inference tree on a new API, and we need
to generate a derivation tree based on conditions in checking rules
and the derivation tree on original client code.

Because of the space limit, we cannot present the full proofs
here. Instead, we present four key lemmas that can stepwise lead to
the final theorem. The full proofs of lemmas and the theorem can be
found in the technical report on the formal definition of SWIN [23].

In our lemmas, Γ = x̄ : C̄ represents the typing context of an FJ
term t, which designates each variable x in the term with a type C.
Specially, given a term t in client code and a transformation pro-
gram Π, Γs represents the variable environment for t (before trans-
formation) and Γd represents the environment of the transformed
term Π(t). The proof also depends on the typing rules of FJ, which
is presented in Appendix A.

Lemma 1 (Typing Context). Suppose the typing context for a term
t is Γs = x̄ : C̄. Given a SWIN program Π acting on APIs to APId,
we know that the typing context for Π(t) is Γd = x̄ : Π(C).

Proof sketch. Note that an FJ typing context Γ will be created in
the rule FJ-M-OK and will not change during the type deriving of a
term. According to the rule E-DELCARATION and E-METHOD,
the types of the method argument and the variable “this” (which
include all variables binded in Γ) will both be updated to Π(C).

Lemma 2 (Subtyping). Suppose a well-typed SWIN program Π
transforms an FJ program P with APIs to a new program P ′ with
APId, then the following holds.

C1 <: C2 in P =⇒ Π(C1) <: Π(C2) in P ′.

Proof sketch. The subtype relation between classes have the follow-
ing two cases:

• C1 is declared in client code: E-DECLARATION will guarantee
that the subtype relation will be preserved in transformation.

• C1 is declared in API: the checking rule Subtyping guaran-
tees it.

Combining these two cases and the transitivity of subtype relation,
we know that the lemma holds.

Lemma 3 (Variable Substitution). Suppose that an FJ term t is
well-typed under context Γ = Γ1, {x̄ : C̄x}, i.e. Γ `FJ t : Ct.
After substituting terms t̄u for variables x̄ , with the property that
Γ1 `FJ t̄u : C̄u and C̄u <: C̄x, t can be typed to Ct or a sub-class of
Ct. Namely,

Γ1, {x̄ : C̄x} `FJ t : Ct =⇒ Γ1 `FJ [x̄ 7→ t̄u]t : C′t, C
′
t <: Ct

Proof sketch. By induction on the derivation of a term t, we have
fives cases to discuss. (x, (C)t, t.f, new C(t̄) and t.m(t̄)). The
first three cases (x,(C)t and t.f) are obvious according to their
evaluation rules.

For case 4 and case 5, the following properties are used in proof:

• The arguments in the method invocation will be substitute by
terms whose types are subtypes of the original argument vari-
ables (Arguments are compatible).

• The target term (the caller) is of a type that is subtype to the
original caller variable (The method can be found in the new
caller term).

With subtype relation cleared, the proof is also obvious according
to the rule FJ-METHOD and FJ-CONSTRUCTOR.

Lemma 4 (Term Formation). Given a well-typed SWIN program
Π, if a term t in the original typing context can be typed to C, then
after transformation by Π, the term is well-typed and its type is a
subtype of Π(C). i.e.

Γs `APIsFJ t : C =⇒ Γd `APIdFJ Π(t) : C′, where C′ <: Π(C)

Proof sketch. Induction on the term derivation. Again we have five
cases to prove. (x, (C)t, t.f, new C(t̄) and t.m(t̄))

The first two cases (x, (C)t) are obvious according to Lemma
1 and their evaluation rules (E-T-VAR, E-T-CAST). The last three
cases are not trivial in proof, we simply mention some points for
case 5 (method invocation) as an example, and the full proof can be
found in the technical report [23].

For case t = t0.m(t̄u), we have two subcases to deal with:

• The method is defined in a class which is defined in client code:
to prove that arguments and the caller terms are well-formed
terms whose types are subtypes of the original ones.

• The method is defined in a class defined in old API: to prove
that the rule π to transform the term will finally leads to a well-
typed term according to the Substitution Lemma and Subtyping
Lemma.

And with these five cases proved, we have the property that a
well-typed SWIN program can correctly transform FJ terms.

Theorem 2 (Type-Safety). Any FJ program is well-typed after a
transformation by a well-typed SWIN program Π. i.e. For any CL,

Π(CL) = class Π(C1) extends Π(C2) { Π(C̄i) f̄i; Π(K) Π(M) }
is well-typed with new API if Π is well-typed.

Proof sketch. We need to prove that method calls are well formed
in the transformed FJ program and the class declarations are well
formed.

This can be a direct result from: 1) all terms are well formed af-
ter transforamtion (Lemma 4), 2) arguments and super class decla-
rations are well formed (this can be checked through E-METHOD-
DECLARATION, E-CLASS-DECLARATION and TypeMapping).

5. From Core SWIN to Full SWIN
In this section, we present the way to extend core SWIN on Feather-
weight Java to full SWIN on full Java language formally. Generally,
the extension is based on the term extension and type extension. By
extending source code pattern and target code pattern to a term in
full Java and extending types to full Java in variable declaration part
of update rules, we are able to match a Java term and then transform
it to a term with new API by meta-variable substitution.

Extending SWIN to full SWIN, we need some special treat-
ments of the following key points :

Package Full Java supports the package and import commands
for name organization. Pacakges support modularity naturally and
APIs in a full Java program should be stored in different packages.
When we transform Java programs with packages, we simply need
to transform the client codes and then replace the corresponding
API packages without touching other API packages.

To ease the writing of transformation rules, we also support
import command in SWIN, yet all internal processing is based on
fully qualified names.

Field and Assignment FJ has no assignment statements and all
fields are read-only. When assignments are introduced, expressions



in Java can be distinguished into L-value and R-value. To ensure
type safety, we need to ensure the transformation does not change
an L-value into an R-value. The most common L-value is field
access. For example, given “a.x = b”, if a transformation rule
transforms “a.x” into “new A()”, the new code will fail to compile
because “new A()” is not a L-value. This check can be implemented
by applying the Java rules for distinguishing L-value and R-value
on the source patterns and the destination patterns.

Static Method Access In full Java, a method can be defined as
a static method, and we can access it by C.m(a, b, ...). We treat
the application of full SWIN on static method access as a normal
method invokation, except that we need to apply the term directly
on the class identifier. As the transformation of a class definition is
by class name replacement, type safety can be guaranteed.

Interface In FJ, the subtyping relation is linear and full order. So
during pattern matching, there is always a “closest” parent class for
each class and this ensure that the term will always match that class
to ensure confluent.

In full Java, there may exist multiple parent classes, which will
then lead to no single “closest” parent class exists. For example, if
class A has two super types, class B and interface C, and all three
classes declare a method m. If there are two transformation rules
declared on B.m and C.m, respectively, we cannot find a closest rule
on A.m. In such case, we will report an error when executing the
transformation, and the programmers could resolve the error by
adding a rule on A.m, which is always closer than any other rules.

Overload When method overloading is considered, we need to
match a method not only using its name, but also the type of its
input parameters. Also, the subtyping relation should be considered
in the same way as Java: when there are several overloaded methods
that can be matched, we choose the one with the closest subtyping
relation on the parameters. For example, if we have a relationship
A <: B <: C, and in class D, we have methods f(B x) and f(C x).
Then (new D()).f(new A()) is a call to the first method as they have
a closer subtyping relationship. A pattern matching f(C x) should
not match this term.

Generics Generics in full Java affects the evaluation rules E-
CLASS and E-T-NEW. We have two extending rules to solve this
problem.

1. During pattern matching, a rule matches a generic type without
considering its type parameters.

2. After performing transformation on a generic type, the rules
recursively visit the type parameters.

The type safety is guaranteed because we require the preservation
of subtyping relation, and thus the constraints on generic parame-
ters will not be broken. Note that our rules always treat the generic
type and its parameters independently, and thus do not allow the
change in the number of type parameters from the source API to
the target API. This design choice keeps our language simple, and
has a limited negative effect on expressiveness: we have never ob-
serve the change in the number of type parameters in practice.

6. Case Studies
6.1 Research Questions
Since SWIN puts two more conditions on the replacement rules
than Twinning, a natural question to ask is whether these two ad-
ditional conditions confine the expressiveness of the language. In
other words, there are programs that can be written in Twinning
but not in SWIN, but are these programs useful in practice? Fur-
thermore, beyond Twinning, we also want to understand the ex-

pressiveness of SWIN in general. These considerations lead to two
research questions.

1. Does the extra conditions confine the expressiveness of SWIN
compared with Twinning?

2. In general, how much expressive is SWIN?

6.2 Study Setup
To answer these two research questions, we perform three case
studies. To answer the first research question, we need to compare
SWIN with Twinning. To do this, we repeat a case study in Twin-
ning that migrate programs from Crimson v1.1.34 to dom4j v1.6.15.
Crimson and dom4j are both Java libraries for manipulating XML
files, but Crimson is no longer supported. Thus, developers may
want to migrate programs from Crimson to dom4j.

To answer the second research question, we perform two more
case studies, one is about migration from one API to another API,
the other one is to upgrade clients for incompatible API upgrade.
More concretely, we chose the program migration from Twitter4J
v4.0.16 to Sina Weibo Java API v27, and the client upgrade from
Google Calendar API8 v2 to v3. Twitter4J is a Java wrapper for
the RESTful Twitter API. Sina Weibo is the Chinese counterpart of
Twitter, and it provides an official Java library for accessing its web
API. Google Calendar API is the official Java library for accessing
the data in Google Calendar.

The two case studies of program migration (from Crimson to
dom4j, from Twitter4J to Sina Weibo API) both involve large APIs,
and it is difficult for us to cover the full APIs. In the case study from
Crimson to dom4j, the Twinning authors [1] chose a client (log4j
v1.2.149) and only wrote transformations for the part of the API
covered by the client. We followed the same step as their case study.
In the case study from Twitter4J to Sina Weibo API, we consider
three example clients on manipulating the timeline provided in the
example directory in the Twitter4J source package, and cover only
the part of the API used in these examples.

To perform the case studies, we implemented SWIN in Java us-
ing the Polyglot compiler framework [24]. Both our implementa-
tion and all evaluation data are available at the project web site10.

6.3 Results
6.3.1 General Expressiveness
In total, we wrote 94 rules for the three case studies, each trans-
forming a method call to the old API into an expression using the
new API. Our rules cover 97% of the total API methods that needed
to be transformed in the three case studies. This results indicate
that, though our approach deals only with one-to-many mappings,
it is able to perform a significant portion of program adaptation
tasks in practice.

6.3.2 Comparison with Twinning
The only uncovered API changes are three method changes in
Google Calendar API, consisting of 3% of the total API meth-
ods that needs to be transformed. In the three uncovered method
changes, one method splits into several methods, and we need to
decide which new method to replace the original one based on the
calling context, which is not supported in SWIN.

4 http://xml.apache.org/crimson/
5 http://www.dom4j.org/
6 https://github.com/yusuke/twitter4j/
7 https://code.google.com/p/weibo4j/
8 https://developers.google.com/google-apps/calendar/
9 http://logging.apache.org/log4j/1.2/
10 https://github.com/Mestway/SWIN-Project

http://xml.apache.org/crimson/
http://www.dom4j.org/
https://github.com/yusuke/twitter4j/
https://code.google.com/p/weibo4j/
https://developers.google.com/google-apps/calendar/
http://logging.apache.org/log4j/1.2/
https://github.com/Mestway/SWIN-Project


More concretely, method “EventWho.getAttendeeType()” in
Google Calendar v2 returns a string that may contain either “at-
tendee” or “organizer”. Google Calender v3 replaces this method
with two methods: “boolean getSelf()” which returns true when
“attendee” should be returned and “boolean getOrganizer()”
which returns true when “organizer” should be returned. To mi-
grate the client, we may need to transform the code as follows,
where “getSelf()” is a client-written method to test whether the
argument is equal to “attendee”,

String attendeeType = attendee.getAttendeeType ();
boolean isSelf = isAttendee(attendeeType);

into the code as follows.

boolean isSelf = attendee.getSelf ();

This example shows two fundamental limitations of SWIN.
First, to perform the above transformation, we need to match a se-
quence of statements and transform them into one method calls.
This requires many-to-one mapping and is not supported by SWIN.
Second, we need to perform a semantic analysis on the implemen-
tation code of isAttendee to decide whether to transform the code
into getSelf() or getOrganizer(). This kind of conditional trans-
formation is not supported by SWIN.

Clearly, Twinning also has these limitations and cannot handle
the three split methods in Google Calendar API as well. This result
indicates that SWIN is as expressive as Twinning on our three case
studies. Please note that many API classes have sub classes, and
thus the SWIN programs should be much shorter than Twinning, as
in Twinning we need to repeat the rules for the parent class also on
each sub class.

6.3.3 Interesting Transformation Patterns
In the implementation of the three case studies, we also found that
many transformations are not direct method replacement, but can
still be expressed in SWIN by flexible use of the transformation
rules. We summarize three patterns below.
Method ↔ Constructor. We may need to map between class
constructors and methods, and in SWIN we can directly specify
such a replacement. For example, in the case from Crimson to
dom4j, we write the following piece of code. This program is in
the text form of SWIN, where we use ->> to denote ↪→ and -> to
denote→.

(f : DocumentBuilderFactory ->> DocumentFactory)
[ (f.newDocumentBuilder ()):DocumentBuilder ->

(new SAXReader(f)):SAXReader ]

Type Merging. Sometimes a set of classes in the old API become
one class in the new API. In class CalendarEvent in Google
Calendar v2, there is a method getTitle(). Developers can use
this method to acquire the title of a source, but the type of the title
is TextConstruct. Class TextConstruct is a wrapper of a string,
and there is a method getPlainText() which returns the internal
string. In Google Calendar v3, the class CalendarEvent becomes
Event, which directly contains a method getSummary() to return the
string of title. As a result, we may need to transform a sequence of
method invocations “x.getTitle().getPlainText()” into a single
invocation “x.getSummary()”.

Although such a transformation implies a many-to-many map-
ping, it can be implemented in SWIN because TextConstruct

is only used in the return type of getTitle() in Google Calen-
dar API. We can consider the API upgrade as merging classes
CalendarEvent and TextConstruct into Event and merging meth-
ods getTitle() and getPlainText() into getSummary(). As a
result, we can remove the call to getPlainText() and replace
getPlainText() with getSummary(). The rules are as follows.

(x : CalendarEvent ->> Event)
[ (x.getTitle ()):TextConstruct -> x:Event ]

(l : TextConstruct ->> Event)
[ (l.getPlainText ()):String

-> (l.getSummary ()):String ]

This pattern indicates that though SWIN is design for one-to-
many mappings, many-to-many mappings can also be supported in
a limited form from the flexibility of the rules.
Type Deletion. A class in the old API may become totally use-
less in the new API. In twitter4j, a Twitter object can be ob-
tained by first creating a factory TwitterFactory and then in-
voking the getInstance() method, but in Sina Weibo API class
Weibo, the counterpart of Twitter, can be directly created. In other
words, the class TwitterFactory is deleted. Similar to the previ-
ous case, we may need to merge a sequence of method invocations
“new TwitterFactory().getInstance()” into one single invoca-
tion “new Weibo()”.

To implement this transformation in SWIN, we use the dummy
class method [1]. We introduce a dummy class NoF into the client
code to represent the deleted TwitterFactory. This dummy class
has no class body and can be added to the client code before the
transformation. In this way we can delete a class while maintaining
the type safety. The transformation rules are as follows.
()[ (new TwitterFactory ()):TwitterFactory

-> (new NoF()):NoF ]
(f : TwitterFactory ->> NoF)

[ (f.getInstance ()):Twitter
-> (new Weibo()):Weibo ]

7. Related work
General Transformation Frameworks. A number of general-
purpose program transformation languages/frameworks have been
proposed. To be independent of any programming languages, most
of these languages work on the grammatical level, defining trans-
formations on top of syntax trees. For example, TXL [11] and
Stratego/XT [12] are general-purpose and grammar-oriented trans-
formation languages, which allow the definitions of a set of rules
to rewrite the abstract syntax trees of a program. Tom [13] is
a language extension for Java designed to manipulate tree struc-
tures. In Tom, term rewriting and plain Java code can be mixed
to write more powerful program transformations. Compared with
these general-purpose transformation languages, SWIN mainly fo-
cuses on transforming Java programs in the scope of API evolu-
tion and API switching. By using Java features, SWIN allows more
concise programs to be written for these tasks. Furthermore, none
of the general transformation languages guarantees type-safety, for
type-safety is difficult to specify in a language-independent way.
Transformation Frameworks for Java. Besides Twinning [1],
several transformation languages/frameworks for Java programs
are proposed. For example, Spoon [26] is a transformation frame-
work for Java programs, providing the ability to directly read and
modify program elements in Java programs. As far as we know,
these transformation frameworks for Java do not consider type
safety either, and there is no guarantee that the transformation does
not introduce compilation errors. Refaster [27] uses compilable
before-and-after examples of Java code to specify a Java refac-
toring. Similarly to our work, this work also mainly focuses on
solving the method replacement which is useful in real API migra-
tion. Moreover, using direct Java examples to describe the trans-
formation is convenient. However, Refaster cannot assure the well-
typedness of the whole program during transformation, as it only
requires that each transformed expression is well-typed.
Type-Safe Transformations. Approaches for ensuring type safety
also exist. Hula [15] is a rule-based update (or transformation) lan-



guage for Haskell, ensuring updates are performed in a type-safe
manner. The type-safe transformation depends on a core calculus–
update calculus [16], which provides type-safe transformation over
lambda calculus. This work distinguishes program changes into
declaration changes, definition changes, and application changes,
and requires the three changes to be consistent. Compared with our
work, update calculus allows the dynamic change of type defini-
tions during transformation while our approach focuses on static
type mappings as the difference between the old API and the new
API are already known during program adaptation for different
APIs. On the other hand, update calculus allows only the replace-
ment of a type to a more generic type, while our approach supports
more type mapping between independent types, such as Vector to
ArrayList, because these type changes are dominant in program
adaptation between APIs.

The work of Balaban [14] et al. focuses on a particular problem
in the adaptation of program between APIs: when some part of
the program cannot be changed, how to change the other parts
while preserving well-typedness and other properties. This work
extracts the type constraints from the Java program, then solves
the constraints using a constraint solver to prevent type incorrect
program transformations. Different from this work that considers
the well-typedness of a particular client program, our work focuses
on the type-safety of the transformation itself, taking into account
all possible client programs. The work of Spoon [26] focuses on
the well-typedness of a program using API with forthcoming or
deprecated methods. This work extends FJ with forthcoming and
deprecated methods, and proves the soundness of extended FJ.
However, this work only allows update on methods, rather than
update on classes.
Semantic-Preserving Transformations. Refactoring-based ap-
proaches [3, 4] treat the API changes as a set of refactorings. The
API developers records their changes on the API as a set of refac-
torings, and the later these refactorings can be replayed on the client
programs to transform the client programs to the new API. In this
way, the adaptation of the client programs is not only type-safe
but also semantic-preserving. However, this approach has limita-
tions. First, this approach cannot support API changes that cannot
be expressed as refactorings. Second, this approach only applies to
API update, and cannot support migrating programs between al-
ternative APIs, which are independently developed. The work of
Leather [17] et al. provides an approach to preserve semantics of
a program while changing terms involving type A to terms involv-
ing type B using type-changing rewrite rules. This work mainly fo-
cuses on conversion between isomorphic types, whereas our work
focuses on transformation between any two types. Moreover, un-
like this work performing transformations on lambda calculus with
let-polymorphism, our work performs transformations on Feather-
weight Java which need to solve problems introduced by object
orientation, such as subtyping.

Package templates [18] is an extension to Java to write reusable
and adaptable modules. Since the template instantiation process
in package templates includes operations like renaming and class
merging, it can be considered as a semantics-preserving program
transformation process. Different from our work, the program
transformation in package templates mainly focuses on the changes
on the class level, and does not consider the replacement of method
invocations. A key point in package templates is to avoid name col-
lision in transformation. Our approach does not consider this issue
because in Java language, the client code and the API are usually in
different packages, and the names are almost impossible to collide.
Heuristic-based Transformations. Several approaches try to fur-
ther reduce the cost of program adaptation between APIs by au-
tomatically discovering the transformation program using heuris-
tic rules. The heuristic rules range from comparing API source

code [5], analyzing existing client source code [6, 8, 9], and discov-
ering similar code pieces [10]. Since these approaches are heuristic-
based, there is no guarantee the discovered transformations are
type-safe.

8. Conclusion and Future Work
In this paper, we have proposed a type-safe transformation lan-
guage SWIN for program adaptation in the scope of API switch-
ing and API updating. Different from the existing language Twin-
ning, SWIN provides a full type-safe guarantee, more flexible rule
matching, and formal semantics of its core part. The type safety of
core SWIN is proved about formally in Featherweight Java, and the
case studies show that SWIN is expressive enough to handle many
useful transformations in practice and is as expressive as Twinning
on the cases.

In future, the inability of SWIN to handle the three method
splitting changes as discussed in Section 6.3 needs to be addressed.
This could possibly be handled by adding the dataflow information
into SWIN to handle many-to-many mapping, adding semantic
conditions to allow semantic checking, and loosing the restriction
on the type mapping to allow one-to-many type mapping.
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Appendix
A. Feather Weight Java
A.1 Syntax
This part presents the syntax for FJ.

CL ::= class C extends C {C̄ f̄; K M̄}
K ::= C(C̄ f̄){super(f̄); this.f̄ = f̄; }
M ::= C m(C̄ x̄){return t; }
t ::= x | t.f | t.m(t̄) | new C(t̄) | (C) t

v ::= new C(v̄)

A.2 Subtyping
This part presents the derivation of subtype relation in FJ.

(S-SELF)
C <: C

C <: D D <: E (S-TRANS)
C <: E

CL = class C extends D {...}
(S-DEF)

C <: D

A.3 Typing Rules
In this section we present the typing rules for FJ term and FJ class
declaration obtained from [28].

Note that CAST rule in FJ type system is divided into three
rules. FJ-UCAST and FJ-DCAST are for cast between two classes

with subtype relation while FJ-SCAST is the typing rule for cast
between two irrelevant classes, which will generate a “stupid warn-
ing” in the typing progress.

x : C ∈ Γ (FJ-VAR)
Γ ` x : C

Γ ` t0 : C0 fields(C0) = C̄ f̄
(FJ-FIELD)

Γ ` t0.fi : Ci

Γ ` t0 : C0 mtype(m, C0) = D̄→ C

Γ ` t̄ : C̄ C̄ <: D̄ (FJ-INVK)
Γ ` t0.m(t̄) : C

fields(C0) = D̄ f̄ Γ ` t̄ : C̄ C̄ <: D̄
(FJ-NEW)

Γ ` new C0(t̄) : C

Γ ` t0 : D D <: C
(FJ-UCAST)

Γ ` (C)t0 : C

Γ ` t0 : D C <: D C 6= D
(FJ-DCAST)

Γ ` (C)t0 : C

Γ ` t0 : D C ≮: D D ≮: C
stupid warning

(FJ-SCAST)
Γ ` (C)t0 : C

x̄ : C̄, this : C ` t0 : E0 E0 <: C0
CT(C) = class C extends D {...}

override(m, D, C̄→ C0)
(FJ-M-OK)

C0 m (C̄ x̄) {return t0; } OK in C

K = C (C̄ f̄){super(f̄); this.f̄ = f̄}
fields(D) = D̄ ḡ M̄ OK in C

(FJ-C-OK)
class C extends D {C̄ f̄; K M̄} OK

A.4 Auxiliary Definition
This part presents the auxiliary functions used in FJ typing rules.

(FIELD-OBJECT)
fields(Object) = {}

CT(C) = class C extends D {C̄ f̄; K M̄}
fields(D) = D̄ ḡ

(FIELD-LOOKUP)
fields(C) = D̄ ḡ, C̄ f̄

CT(C) = class C extends D {C̄ f̄; K M̄}
B m (B̄ x̄) {return t; } ∈ M̄

(METHOD-LOOKUP1)
mtype(m, C) = B̄→ B

CT(C) = class C extends D {C̄ f̄; K M̄}
m is not defined in M̄ (METHOD-LOOKUP2)

mtype(m, C) = mtype(m, D)

mtype(m, D) = D̄→ D0 implies C̄ = D̄ and C0 = D0
(OVERRIDE)

override(m, D, C̄→ C0)

https://github.com/Mestway/SWIN-Project/blob/master/docs/pepm-15/TR/TR.pdf
https://github.com/Mestway/SWIN-Project/blob/master/docs/pepm-15/TR/TR.pdf
https://github.com/Mestway/SWIN-Project/blob/master/docs/pepm-15/TR/TR.pdf
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