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ABSTRACT
The expressiveness of the vertex-centric programming model in-
troduced by Pregel attracted great attention. Over the years, nu-
merous frameworks emerged, abiding by the same programming
model, while relying on widely different architectural designs. The
vast majority of existing vertex-centric frameworks exploits dis-
tributed memory parallelism or out-of-core computations. To our
knowledge, only one vertex-centric framework is designed upon
in-memory storage and shared memory parallelism. Unfortunately,
while built on a faster architecture than that of other vertex-centric
frameworks, it did not prove to significantly outperform other ex-
isting solutions.

In this paper we present iPregel: another in-memory shared
memory vertex-centric framework. The optimisations developed
and presented in this paper particularly target three hotspots of
vertex-centric calculations: selecting active vertices, routing mes-
sages to their recipient and updating recipients inbox. We compare
iPregel against the state-of-the-art in-memory distributed memory
framework Pregel+ on three of the most common vertex-centric ap-
plications: PageRank, Hashmin and the Single-Source Shortest Path.
Experiments demonstrate that the single-node framework iPregel
is faster than its distributed memory counterpart until at least 11
nodes are used. Further experiments show that iPregel completes
a PageRank application with an order of magnitude less memory
than popular vertex-centric frameworks.
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1 INTRODUCTION
Almost a decade ago, the vertex-centric model was introduced
through Pregel [15]. Thanks to its expressiveness and scalability, this
model rapidly found an echo. Vertex-centric applications were soon
developed for social network analysis [16] and data analytics [1, 2].

The vertex-centric programming is designed upon calculations
that are described at vertex level, a message passing interface be-
tween vertices, and the concept of superstep inspired from the Bulk-
Synchronous Parallel model [18]. The BSP programming model
is structured around three phases. First, elements perform local
computations, then communications between elements take place.
Finally, a global synchronisation is applied to all elements in order
to guarantee they all completed previous phases. An example of a
BSP superstep is given in Figure 1. This model provides an execu-
tion flow that is clear, and for which parallelisation is easy to design
and reason about. Over the years, numerous implementations of
the vertex-centric frameworks emerged.

The vast majority of existing frameworks use distributed mem-
ory parallelism, out-of-core computations or both. Such architec-
tures allow to process graphs that would be too large to fit in RAM.
This flexibility comes at the expense of additional overheads, due
to disk IO for out-of-core solutions, and network communications
for distributed memory systems. At the other end of the spectrum
is the in-memory shared memory architecture, consisting of single-
node solutions that use exclusively RAM storage. While being the
fastest architecture, it suffers from the amount of RAM available
on a single, which is typically very limited.

However, it is reported [20] that the memory consumption of ex-
isting vertex-centric frameworks can reach up to 800GB to process
a graph occupying 28GB of disk space. The large memory usage
of vertex-centric frameworks is also mentioned in [9]. Such an
overhead is incompatible with a viable in-memory shared memory
framework. There is therefore a need to greatly reduce the memory
footprint of vertex-centric frameworks. In addition, the existing in-
memory shared memory vertex-centric framework does not prove
to clearly outperform other types of frameworks. However, we
argue that the potential of the in-memory shared memory architec-
ture, as illustrated with Ligra [17] in graph-centric programming,
is yet to be leveraged in vertex-centric programming.

In this work, we target a machine that has the performance
comparable to that of a modern laptop. This configuration supports
the argument that experiments are run on a reasonably affordable
hardware.

In this paper, we present iPregel; our in-memory shared memory
framework, whose multi-version design is introduced in Section 3.
Sections 4, 5 and 6 present the three core features provided by our
framework iPregel, respectively:
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Local computations

Communications

Synchronisation

Figure 1: A Bulk-Synchronous Parallel superstep

• Selection Bypass. By exploiting communication patterns
of vertex-centric applications, iPregel detects vertices to run
before the selection phase.

• Efficient Vertex Addressing.Millions of messages may be
sent during a superstep; rapidly finding recipients inmemory
is therefore essential. iPregel semantically enriches vertex
identifiers to also represent vertex locations in memory and
fasten message delivery.

• Leverage of Combiners. Updating recipients inbox is a
hotspot of vertex-centric models. Combiners are a known
optimisation, iPregel exploits them further by implementing
several versions, including one that offers a race-free design.

Then, Section 7 relates the experiments conducted, from themethod-
ology, graphs and applications used to the presentation and analysis
of the results obtained. Finally, this paper concludes on Section 8.

2 RELATEDWORK
The majority of existing vertex-centric frameworks today exploits
distributed memory parallelism, such as Pregel+ [19] and Giraph [5]
to name a few. These frameworks are also in-memory; they use
exclusively RAM for storage. Distributed memory parallelism thus
acts as an additional supply of resources. However, as the size of
graphs increases, so does the number of nodes needed. Inevitably,
this results in larger distributed architectures, which generate more
network communications hence exacerbate the fundamental bot-
tleneck of distributed memory parallelism.

Technically, distributed memory systems using in-memory stor-
age can process graphs of any size, given enough nodes. Nonethe-
less, a recent trend is observed in vertex-centric frameworks to
move away from in-memory storage to out-of-core computations.
Such frameworks expand their storage capacity from RAM-only
to both RAM and disks. Typically, they offload unused data to disk
and keep in RAM vertices and edges currently processed. The chal-
lenge of out-of-core computations is the disk IO, which needs to
be hidden using overlapping techniques for instance. To date, sev-
eral vertex-centric frameworks exploit both distributed memory
parallelism and out-of-core computations, such as GraphLab [14],
Pregelix [4] and GraphD [20].

The need for more memory can be satisfied with out-of-core
computation and distributed memory parallelism. However, certain
frameworks moved from distributed memory to shared memory
parallelism, while preserving out-of-core computations. This can be
observed with GraphChi [12], which is a spin-off of its distributed
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Figure 2: Structure of iPregel framework

memory counterpart GraphLab [14]. FlashGraph [6] is another ex-
ample of an out-of-core shared memory vertex-centric framework.
While still able to process large graphs, these frameworks benefit
from shared memory parallelism, which is easier to program and
reason about.

Finally, shared memory parallelism can also be paired with in-
memory storage instead of out-of-core. The architecture obtained
is free from disk IO and network communications, which makes it
the fastest of all architectures presented in this section. Ligra [17]
demonstrated the potential of in-memory shared memory solutions
in graph processing compared to other architectures. Its counterpart
in vertex-centric frameworks is FemtoGraph [3]. To our knowledge,
it is the only in-memory shared memory vertex-centric framework.
FemtoGraph demonstrated that at best it equals the performance of
GraphLab, and remains slower until 28 cores are used.

The motivation of the work presented in this paper is twofold.
First, despite relying on a faster architecture, no clear performance
gains of in-memory shared memory frameworks were observed.
This tends to suggest that there is room for optimisation to leverage
the potential of such frameworks. Second, it seems that vertex-
centric frameworks in general suffer from large memory footprints.
As reported in [20], existing vertex-centric frameworks may re-
quire up to 800GB of memory to process a graph taking 28GB of
disk space. Memory footprint is not a critical challenge to frame-
works exploiting out-of-core computation or distributed memory
parallelism since they have large amounts of memory available. In-
memory shared memory systems however are significantly more
limited, and being lightweight is crucial. Moreover, minimising the
framework memory overhead maximises the size of graph that can
be processed in RAM.

3 OVERVIEW OF IPREGEL
This section introduces the technical aspects of iPregel, from its
architecture to the vertex representation, through its multi-version
design.

3.1 Architecture
The iPregel framework is developed in C and parallelised using
the shared memory API OpenMP [7]. In programming, certain
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// Version -dependent

bool IP_get_next_message(struct IP_vertex_t* me,

IP_MESSAGE_TYPE* msg;

void IP_send_message(IP_VERTEX_ID_TYPE destID ,

IP_MESSAGE_TYPE msg);

void IP_broadcast(struct IP_vertex_t* me,

IP_MESSAGE_TYPE msg);

void IP_vote_to_halt(struct IP_vertex_t* me);

// Version -independent

size_t IP_get_superstep ();

bool IP_is_first_superstep ();

size_t IP_get_vertices_count ();

Figure 3: Functions provided by iPregel

optimisations are always applicable but most optimisations only
hold under a given set of assumptions. Generally, the latter are not
considered because they come at the expense of software flexibility.
In iPregel however, this is mitigated via the multi-version design
illustrated in Figure 2.

It is made of a core that is unique and static, and modules that
have alternative implementations. Eachmodule version is optimised
for a specific set of assumptions. With this design, iPregel remains
flexible while able to apply assumption-specific optimisations. The
three modules visible in Figure 2, as well as their versions, are
presented later in this paper, in Sections 4, 5 and 6.

3.1.1 Multi-Version Module Selection. In order to keep lower-
level optimisations concerns hidden from the user, themulti-version
layer is abstracted away from them. Nonetheless, the user knowl-
edge about the graph processed or the application written are pre-
cious information that may trigger heavy optimisations. As such,
they must be provided with a means to express this addition infor-
mation. In iPregel this is achieved via defines passed via compilation
flags. It is a mechanism already widely used in programming, it
allows to keep application source codes untouched and requires
little effort from the user. For instance, most vertex-centric applica-
tions use exclusively neighbour-broadcasts when communicating.
Should a user write an application exposing this property, they
can inform iPregel by passing the corresponding define during the
compilation phase.

3.1.2 The core. The core is the static and central part of iPregel;
it is invariant and fulfils numerous roles. For instance it is where
the multi-version selection takes place. The core also acts as the
interface to iPregel by providing all function declarations, which are
consistent across module versions. However, there are two types of
functions in iPregel.

First, there are functions that are declared and defined by iPregel.
A list of the main ones is given in Figure 3. Among these func-
tions, certain are version-dependent, that is, they have a different
implementation in each module version. Nonetheless, they share
the same function prototypes. This design choice allows to easily
plug-in any additional implementation version. It also allows users
to write their code once, and see it adapted to any module version.

void IP_compute(struct IP_vertex_t* me);

void IP_combine(IP_MESSAGE_TYPE* old ,

IP_MESSAGE_TYPE new);

Figure 4: User-defined functions of iPregel

Then, there are functions that are provided by iPregel too but whose
implementation does not vary across module versions. These func-
tions are in charge of auxiliary features such as keeping track of
the supersteps, or the total number of vertices in the application.
However, not all functions are defined by iPregel.

In addition to functions defined by iPregel, there are also func-
tions declared in iPregel that must be defined by the user. The two
major ones, listed in Figure 4, consist of compute and combine.
The former contains the code to execute on each active vertex at
each superstep, and the latter is called each time a vertex with a
message in its mailbox receives a new message.

3.2 Vertex Representation
As an in-memory shared memory solution, iPregel is bounded to
the main-memory available on the single node it runs on. Therefore,
reducing its memory footprint is essential. Since the cornerstone of
vertex-centric models is the vertices themselves, a great effort was
made towards the design of iPregel regarding vertex representation.

In vertex-centric frameworks, a vertex contains the attributes
that are specified by the user, and internals that are used by the
framework itself, such as the active state of the vertex. Generally,
vertex-centric frameworks rely on object-oriented languages like
C++ and use a base class that contains all internals. That same
class also has virtual methods such as compute and combine,
presented in Figure 4. The user then derives their own class from
the base class and customises it. However, due to the presence of
virtual methods, a virtual table is created. This results in every
vertex object carrying a hidden additional pointer, which increases
the total memory footprint.

To avoid this memory overhead in iPregel, vertices are repre-
sented with structures. They contain arbitrary members provided
by the user, as well as internals required by the framework. Due
to the multi-version design of iPregel, internals too have alterna-
tive implementations, but again this is abstracted away from the
user. In this case, a macro IP_VERTEX_INTERNALS is used to
conceal the internals of iPregel. Concretely, the user defines the
structure struct IP_vertex_t and includes the macro inside,
then they are free to append any additional member needed in their
application.

Having multiple possible vertex internals helps iPregel keep its
memory footprint to a minimum. For instance, some applications
require vertices to know both their in and out neighbours, while
some others require only the former. On one hand, a single vertex
internals design would have to consider the most conservative
hypothesis and store both in and out neighbours. On the other hand,
iPregel proposes several tailor-made internals (in only, out only, in
and out) that take into account the module versions selected and
the compilation flags passed from the user as explained in Section
3.1.
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void IP_compute(struct IP_vertex_t* me) {

IP_MESSAGE_TYPE ref = is_source(me->id)

? 0

: UINT_MAX;

IP_MESSAGE_TYPE m;

while(IP_get_next_message(me, &m))

ref = min(ref , m);

if(ref < me->val) {

me->val = ref;

IP_broadcast(me, me->val + 1);

}

IP_vote_to_halt(me);

}

void ip_combine(IP_MESSAGE_TYPE* old ,

IP_MESSAGE_TYPE new) {

if(*old > new) *old = new;

}

Figure 5: SSSP implemented in iPregel

3.3 Graphs Accepted
Similarly to numerous vertex-centric frameworks, iPregel expects
vertex identifiers to be integral numbers, which is the case in the
vast majority of graphs. In addition, iPregel requires vertex identi-
fiers to be consecutive. Finally, it accepts static graphs only.

4 SELECTION BYPASS
The first phase of vertex-centric models consists in selecting the ver-
tices to execute; known to be a delicate part of vertex-centric mod-
els [10]. Typically, frameworks (including Pregel+) iterate through
all vertices at every superstep and check for each vertex its active
state and inbox. Then, vertices that are already active or have a
message in their inbox are run. However, unfruitful checks (i.e:
inactive vertices) result in a waste of time and memory accesses.
In this section, we present a technique which allows to bypass the
selection phase, hence avoiding unfruitful checks.

It is observed that in many vertex-centric applications, all ver-
tices systematically halt at the end of each superstep. It is visible
for instance in the iPregel implementation1 of SSSP, given in Figure
5. This characteristic implies that after the first superstep, a vertex
is active if and only if it has received a message at the beginning of
the superstep.

In other words, as soon as a vertex sends a message, it knows
that the recipient vertex will have to be run during the following
superstep because it will have at least one message in its inbox. The
technique presented in this section consists in the sender adding
its recipient identifier to the list of vertices to execute during next
superstep. At the beginning of next superstep, the list established
contains all vertices to run, so there is no need any more for check-
ing or selection.

1It is assumed that val contains the distance from the source vertex, UINT_MAX
contains a value greater than the maximum distance possible and that all edge weights
are equal to 1.

From a parallel programming point of view, the selection bypass
also participates to load-balancing by filtering vertices before they
are split across threads. Indeed, before the selection phase, each
thread receives an equal share of the vertices to process thus are
in charge of identical numbers of vertices. With the traditional
approach, one cannot know the proportion of active vertices in
each share before the actual selection takes place. It follows that
each thread may end up with a share containing a very low number
of active vertices, or a very high one, resulting in load imbalance.
With the selection bypass however, the vertices that are distributed
across the threads are already known to be active. In other words,
threads are guaranteed to run every vertex they are given. Therefore,
with the selection bypass, the fact that threads are assigned equal
shares implies that threads run identical numbers of vertices, which
improves load-balance.

Note: In algorithms like PageRank where vertices may not halt
at the end of each superstep, the implication between "active ver-
tex" and "vertex that has received a message" does not hold. As a
result, the selection bypass technique presented in this section is
not applicable.

5 EFFICIENT VERTEX ADDRESSING
Vertex-centric models typically have a high number of communi-
cations, hence the importance of a quick message delivery. This
section focuses on the first step of message delivery; finding the
recipient vertex.

The vertex addressing mechanism is conventionally achieved
with hashmaps matching vertex identifiers against their locations.
This intermediate layer in the vertex addressing process incurs addi-
tional memory accesses, grows the memory footprint and exposes
bad data locality inherent to hashmaps. In-memory shared memory
solutions like iPregel typically store all vertices in a single array,
so the location of a vertex is its index in that array. Based on the
observation that most graphs use integral numbers as vertex iden-
tifiers, this paper proposes to semantically enrich vertex identifiers
so they represent their vertex location as well.

The first strategy presented in this section is called Direct Map-
ping and is simple though fast: vertices are stored in the global
array at the index equal to their identifier. For example, a vertex
with identifier 5 resides at index 5 in the vertex array. This approach
provides an overhead-free addressing mechanism but requires iden-
tifiers to start at 0, since iPregel is developed in C that is 0-indexed.

However, it may be the case that vertex identifiers start at an
arbitrary number, the use of an offset must therefore be considered;
resulting in what is calledOffsetMapping in this paper. This offset
is then subtracted to the vertex identifier to find the corresponding
location. The offset therefore provides an index-identifier matching
consisting of a simple subtraction, which is a marginal overhead.

Direct mapping can still be used in situation normally requir-
ing offset mapping, with the technique named Desolate Memory.
By forcing direct mapping, vertices will reside at the array index
matching their identifier. Since in this case vertex identifiers have
an offset, the array elements whose indexes are lower than the ac-
tual offset will be unused, resulting in a waste of memory. However,
for graphs whose indexes start at 1 for instance, using desolate
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memory incurs the waste of a single element, which can be argued
to be a reasonable memory sacrifice to benefit from direct mapping.

The addressing mechanism presented in this section allows for
an efficient mapping between a vertex identifier and its location
in memory. In addition, every addressing technique presented in
this section can be used in conjunction with the selection bypass
mechanism introduced in Section 4.

6 COMBINERS AND DATA CONSISTENCY
Once the location of the recipient vertex is found, the message
sent must be appended to the recipient inbox; this is where combi-
nation takes place. Concretely, when a vertex sends a message, if
its recipient inbox is empty then the message is added, otherwise
it is combined with the existing one. It follows that shared mem-
ory combiners guarantee vertices to have at most one message in
their inbox. This greatly reduces memory consumption, as well as
making memory consumption more predictable, because no dynam-
ically resizeable structure is needed to represent inbox messages.
From an implementation perspective, several techniques are dis-
cussed in this section. It must be noted that techniques presented
in this section are independent from (thus compatible with) the
selection bypass (see Section 4) and the efficient vertex addressing
(see Section 5).

6.1 Push-Based Combiner
The first combiner presented in this section is referred to as Push-
Based Combiner, which designates the action of vertices to put
messages in their recipient inbox. In this configuration, multiple ver-
tices may send a message to a same recipient concurrently, which
arises potential data-race and must then be prevented via synchro-
nisation. This is achieved with the use of a lock that is acquired in
turn by the threads executing the sender vertices to serialise the
accesses to the protected data (the receiver vertex mailbox).

The most common locking technique, known as Block-Waiting
Synchronisation, consists in blocking the threads awaiting to
acquire a lock. The threads blocked are paused and put in a waiting
queue, fromwhich they will be taken off when they acquire the lock.
By putting threads to sleep, this mechanism frees CPU resources
that can be allocated to other threads. However, handling features
such as a waiting threads queue requires a heavier lock structure,
that is, fundamentally, more bytes.

This contrasts with another form of synchronisation calledBusy-
Waiting Synchronisation, where the threads repeatedly attempt
to acquire the lock until they eventually succeed. This technique
is generally discarded because threads are not put to sleep, hence
waste CPU cycles while waiting. Yet, this mechanism presents two
advantages over its block-waiting counterpart. First, when the criti-
cal section2 is very small, such as combiners which typically consist
of a compare-and-replace operation, busy-waiting locks prove to
be more reactive because they do not incur thread pausing and
resuming overheads. Also, not handling block-waiting features (i.e:
pausing/queuing/dequeuing/resuming) make busy-waiting locks
lighter.

In gcc, the compiler used in this work for iPregel, the block-
waiting and busy-waiting synchronisations are implemented with
2The region of code protected by a lock.

void IP_compute(struct IP_vertex_t* me) {

if(IP_is_first_superstep ())

me->val = 1.0 / IP_get_vertices_count ();

else {

IP_MESSAGE_TYPE sum = 0.0;

while(IP_get_next_message(me, &me->val))

sum += me->val;

me->val = 0.15 / IP_get_vertices_count ()

+ 0.85 * sum;

}

if(IP_get_superstep () < ROUND)

IP_broadcast(me, me->val

/ me->out_neighbours_count );

else

IP_vote_to_halt(me);

}

void ip_combine(IP_MESSAGE_TYPE* old ,

IP_MESSAGE_TYPE new) {

*old += new;

}

Figure 6: PageRank implemented in iPregel

mutexes and spinlocks respectively (the later requires GNU99 ex-
tensions). The former weights 40 bytes while the latter is only 4;
which is a reduction of 90%. Since there is one lock per inbox and
one inbox per vertex, this memory gain is to be multiplied by the
total number of vertices. For instance, if considering the Wikipedia
and USA graphs used in this research, which are given in Table 1,
switching from mutexes to spinlocks drops the memory footprint
of the data-race protection from 730 and 958 megabytes to 73 and
96 megabytes respectively. This is all the more valuable in iPregel
where being lightweight is crucial.

6.2 Pull-Based Combiner
The combination process is understood in Section 6.1 as a sender
pushing the message into the recipient’s inbox. However, this sec-
tion presents a mirrored approach where it is up to the recipients to
fetch the messages sent by the senders, named Pull-Based Com-
biner. This technique is designed upon the observation that a high
number of vertex-centric algorithms use neighbouring broadcasts3
as their unique means of communications. In other words, every
time a vertex communicates, an identical value is sent to all out-
neighbours at once. This is visible for instance in PageRank whose
iPregel implementation is given in Figure 6.

This approach requires to reverse the way communications are
designed, and consists of three phases. First, vertices must be given
their in-neighbours identifiers to locate the senders from which
fetch messages. This is handled automatically in iPregel. Second, a
sender vertex must buffer the message meant for broadcast in an
outbox, as well as updating its internal state to indicate that it has
a message to broadcast. Third, at the end of every superstep each
vertex must iterate through all its in-neighbours outbox, fetch the
3By opposition to graph-wise broadcast.
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broadcast message (if any) and add it to its own inbox (or combine
it with its existing inbox message if any).

With this technique, inter-vertex interactions are exclusively
read-only (i.e: fetching messages) while write actions (i.e: combina-
tion) are kept intra-vertex. Since a vertex is processed by a single
thread, it follows that threads never modify the value of a vertex
they do not run. Therefore, there is no risk of data-race, which
means that pull-based combiners provide a key improvement for
parallelism performance: a race-free design. However, these benefits
are impacted by two factors:

(1) The ratio of active vertices because each vertexmust fetch
messages from its in-neighbours at every superstep. There-
fore, the more active vertices in these in-neighbours, the
fewer unfruitful checks.

(2) The number of in-neighbours because each vertex must
iterate through every one of its in-neighbours. Consequently,
the fewer in-neighbours, the faster.

Nonetheless, locks are no longer needed, which drops the memory
footprint of data-race protection to 0.

As said previously, vertices in iPregel are given their list of in
and out neighbours at creation. Therefore, from an implementation
perspective, each vertex stores a pointer to its array of in neighbours
as well as a corresponding counter, identically for out neighbours.
However, the vertex structure may contain neighbour information
that will never be used, resulting in a waste of memory. One may
suggest to set the unused counters to 0 and the unused pointers
to null. But storing unused pointers and counters wastes several
bytes per vertex, surging to a total of approximately 250MB4 when
considering 20 millions vertices such as the graphs selected for
experimentation (see Section 7.1.3). It has therefore been decided to
indicate unused neighbour information through compilation flags;
that allows iPregel to select the lightest structure to represent a
vertex and keep its memory footprint to a minimum.

6.3 Single Message Mailboxes
With the use of combiners, vertex mailboxes can have two states:
empty or containing onemessage. Upon reception of a newmessage,
an empty mailbox takes it as is, and a mailbox with an existing
message combines it with the existing one. Either way, at most one
message is contained in a vertex mailbox. This allows iPregel to
design the mailbox as one message and avoid the use of dynamically
resizeable data structures as well as the memory overhead they
incur. As a result, it greatly helps iPregel keep its memory footprint
to a minimum.

7 EXPERIMENTS
7.1 Experimental Setup

7.1.1 Computing Environment. Experiments are run on Amazon
EC2 usingm4.large instances, which provide 8GB of DIMMmemory,
2 cores of an Intel(R) Xeon(R) CPU E5-2686 v4, clocked at 2.30GHz,
and a maximum bandwidth of 450Mbps. Instances are set-up with
Ubuntu 16.04.3 LTS 64-bit operating system.

4Assuming a 64-bit operating system, hence 8-byte pointers, and an unsigned int
counter, being 4-byte long in most implementations.

Table 1: Graphs used in the comparison with Pregel+

Name |V | |E |

Wikipedia 18,268,992 172,183,984
USA Road network 23,947,347 58,333,344

iPregel is compiled with gcc version 5.4.0, using C99 standard by
default and GNU99 extensions when using spinlocks (see Section
6.1). The optimisation level is set to -O2, and to exploit both cores
available on the EC2 instance, two OpenMP threads are used.

Pregel+ is compiled with mpic++ (MPICH version 3.2), using
g++ version 5.4.0 with C++11 standard as the underlying C++ com-
piler. The optimisation level is set to -O2, and to exploit both cores
available on each EC2 instance, two MPI processes are created per
node.

7.1.2 Methodology. The experiments are initially run 5 times,
and are repeated until the margin of error obtained represents
less than 1% of the average runtime, given a confidence level of
99%. The timings collected report superstep execution time; that is,
graph preprocessing and graph loading are not included. Memory
consumption is measured as well, represented by the maximum
resident set size5 as returned by the bash command time -v.

7.1.3 Graphs Used. Experiments presented in this paper are
conducted on graphs presented in Table 1. The Wikipedia is pub-
licly available6 at KONECT [11], so is the USA roads graph7 at
DIMACS [8]. Both graphs are made of contiguous indexes starting
at 1, and are processed in iPregel using offset mapping with desolate
memory as explained in Section 5.

7.1.4 Applications Selected. In this work, three applications
have been selected for experiments, namely: PageRank, Hashmin
and SSSP. These three applications are widely used in vertex-centric
experiments and thus act as standards. They also expose three dif-
ferent evolutions of the number of active vertices: constantly all
active in PageRank, decreasing from all active to none in Hashmin
and in SSSP it starts with one active vertex typically followed by a
bell evolution (increasing then decreasing).

Also, it is observed that all three applications exclusively use
broadcasts, and are therefore compatible with the pull-based com-
biner presented in Section 6.2. However, only Hashmin and SSSP are
compatible with the selection bypass of Section 4 because, unlike
PageRank, their vertices vote to halt at the end of every superstep.

Note: PageRank experiments are run with 30 iterations and SSSP
experiments use the vertex identified by ’2’ as the source.

7.2 Performance of iPregel Versions
The round of experiments presented in this section intends to eval-
uate the impact of the selection bypass and combination techniques
presented in Sections 4 and 6 on performance. Concretely, each of
the three applications presented in Section 7.1.4 is performed using

5It stands for the maximum amount of memory taken by a program throughout its
execution.
6http://konect.uni-koblenz.de/networks/dbpedia-link
7http://www.dis.uniroma1.it/challenge9/data/USA-road-d/USA-road-d.USA.gr.gz
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Figure 7: Runtime (in seconds) of iPregel on PageRank,
Hashmin and SSSP as the version varies

every compatible version of iPregel. There are in total six versions
possible: three combiners (see Section 6) which can be used with or
without the selection bypass (see Section 4). Except for PageRank,
which is implemented only in the three versions without selection
bypass, Hashmin and SSSP are implemented in all six versions. The
execution times collected are given in Figure 7.

On both graphs, we observe that PageRank execution times drop
by about 30% between the mutex and spinlock versions. It is the
broadcast version however which provides the best performance
by halving the spinlock runtime and becoming the only version
able to process the 30 PageRank iterations under a minute.

The runtimes of Hashmin and SSSP are similar in that that broad-
cast versions are slower than mutexes, themselves slower than spin-
locks. In addition, all combiner versions become faster when they
exploit the selection bypass. Therefore, the best version is always
the spinlock combiner with selection bypass and the worst is al-
ways the broadcast version without selection bypass. By moving
from the Wikipedia to the USA roads graph, the speed-up between
these two fastest and the slowest versions increases from 7.5 to 20
for Hashmin, but surges from 15 to 1,400 for SSSP.

To analyse these differences, two factors must be considered: the
ratio of active vertices compared to the total number of vertices,
and the graph density.

The first factor directly impacts the performance of the broadcast
version (a.k.a: pull-based combiner) as explained in Section 6.2. It
turns out that PageRank offers an optimal ratio since all vertices

stay active during the entire execution time. On the other hand,
Hashmin and SSSP expose lower ratios, continuously decreasing
and constantly low respectively. This first factor explains why the
broadcast version performed well in PageRank and badly in both
Hashmin and SSSP.

The second factor is the key to explain the surge in SSSP perfor-
mance. A lower density means a smaller average out degree, which
results in a slower propagation of messages, thus a high number
of supersteps to completely reach a graph. In SSSP, the number
of active vertices is constantly very low, which is optimal for the
selection bypass. It is the lower density of the USA graph paired
with the very low number of active vertices in SSSP that explain
the gap between the versions using selection bypass to those which
do not. Hashmin reaches a very low number of active vertices only
in the late supersteps, which partially mitigates the benefits of a
lower graph density.

In this first round of experiments, the broadcast version proves
to be the fastest for PageRank, so is the spinlock with selection
bypass version for both Hashmin and SSSP. Each of these versions is
now meant to be compared against the state-of-the-art in-memory
distributed memory solution: Pregel+.

7.3 Comparison with Pregel+
The existing in-memory shared memory vertex-centric framework
is FemtoGraph. Unfortunately, we have not been able to observe
correct results from this framework, even when using the PageRank
implementation provided. Consequently, the comparison between
these two frameworks sharing the same architecture cannot be
made. Therefore, the comparison must include a framework that
has an architecture different from that of iPregel. In other words,
either out-of-core computation or distributed memory parallelism
must be allowed. It has been decided to compare against a dis-
tributed memory system because despite suffering from network
communications, it benefits from additional memory and process-
ing power.

Yet, comparing shared memory and distributed memory solu-
tions on a single node is unfair, so is comparing them over multiple
nodes. The former disadvantages distributed memory solutions,
which have an overhead for distributed parallelism, while the lat-
ter disadvantages shared memory solutions that by definition are
single-node. As a consequence, experiments presented in this sec-
tion are twofold: to compare the performance of Pregel+ and iPregel
on a single node, then determine the number of nodes required by
Pregel+ to outperform iPregel (referred to as lead change in the rest
of this paper).

Results presented in this section are collected from experiments
that are run with a maximum of 16 nodes. The lead changemay not
always be observed within this interval, in which case extrapolation
is used by assuming the efficiency between 8 and 16 nodes to stay
constant every time the number of nodes is doubled8. The same
extrapolation method is used backward to estimate the runtimes
for the number of nodes under which Pregel+ fails to complete due
to insufficient memory. The timings that have been collected are
presented in Figure 8.

8Given an efficiency of x between 8 and 16 nodes, the runtime of 32 nodes is projected
assuming an efficiency of x between 16 and 32 nodes.
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Across both graphs, the execution time of Pregel+ on PageRank
remains stable at approximately 200 seconds. On the other hand,
that of iPregel decreases by 43%, from slightly less than a minute
to about 30 seconds. The lead change happens at 11 nodes on the
Wikipedia and is estimated at 30 nodes for the USA graph.

To analyse the timings obtained for PageRank, it must first be re-
minded that the iPregel version used for that application implements
the pull-based combiner introduced in Section 6.2. As explained in
Section 7.2, PageRank characteristics are optimal for the pull-based
combiner, making iPregel several times faster than Pregel+; by a
factor of 3.57 and 6.47 on Wikipedia and USA graphs respectively.

The drop in the runtime of iPregel is caused by the variation
of the number of in-neighbours between the two graphs. Indeed,
the graph density is the second performance factor of pull-based
combiner (see Section 6.2). Consequently, iPregel takes advantage
of the fact that this number is divided by three between the two
graphs and almost halves its runtime.

The round of experiments run on SSSP exposes two particulari-
ties: insufficient memory failures and the biggest difference between
the performance of Pregel+ and iPregel. On the Wikipedia graph,
iPregel proves to be approximately 7 times faster than Pregel+, with
almost 5 seconds against more than 33 seconds. This difference
is multiplied by an order of magnitude on the USA graph, where
the runtime of Pregel+ grows by more than 560% to reach 221 sec-
onds while that of iPregel falls by 30% to approximately 3 seconds;
making it 70 times9 faster than its distributed rival. Although the
lead change is reached at 13 nodes for the Wikipedia graph, it is
estimated that it would require more than 15,000 nodes for the
USA graph. The low number of active vertices and the low graph
density of the USA graph provide optimal conditions to exploit the
potential of selection bypass.

The third and last set of experiments is run on Hashmin, and
contains the longest execution times observed; up to almost one
hour. Although iPregel and Pregel+ process the Wikipedia graph in
less than 25 and 150 seconds respectively, their runtime surge to
more than 10 and 50 minutes10 when it comes to the USA road net-
work graph. The lead change remains constant however, requiring
11 nodes for both graphs.

The specificity of Hashmin is its variation of the number of ac-
tive vertices throughout the computation: starting with all vertices
active, progressively, they halt. Consequently, most of the execution
time is spent on supersteps containing a medium number of active
vertices, which does not permit to the selection bypass technique
to reach its full potential as in SSSP. Furthermore, the low density
of the USA graph makes the deactivation propagation all the more
slower, which causes the soar in the runtimes observed. Hashmin
is the only application in which the speed-up between iPregel and
Pregel+ decreases from the Wikipedia to the USA graph. Indeed,
while iPregel is 6.5 times faster than Pregel+ on the former, it is only
5 times faster on the latter.

Across all experiments, iPregel proves to be faster than Pregel+
on a single node, where the former was naturally advantaged due
to its shared memory design. However, it is not less than 10 ad-
ditional nodes that are needed by Pregel+ to outperform iPregel.

9Exact results are 220.97/3.17 = 69.70.
10Exact results are 624.13 and 3,065.03 seconds.
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Figure 8: Evolution of the Pregel+ runtime (in seconds) of
PageRank,Hashmin and SSSP as the number of nodes varies

Certain configurations like SSSP on the USA graph contain too few
active vertices during too many supersteps, and make impossible
for Pregel+ to outperform iPregel within a reasonable number of
nodes.

7.4 Memory Footprint
7.4.1 Measured. The memory footprint of vertex-centric mod-

els is a known weakness [9]. Yet, being lightweight is crucial to
in-memory shared-memory frameworks like iPregel. Indeed, be-
ing lighter increases the amount of vertices and edges that can
be processed under a specific amount of memory. This is why the
memory footprint of iPregel was measured too during experiments
presented in Section 7.

On the Wikipedia graph, both mutex versions (with and with-
out selection bypass) took 2GB of memory, while their spinlock
counterparts needed 1.5GB. However, the use of selection bypass in-
creased the memory footprint of the broadcast version from 1.5GB
to 2.5GB. This is due to the out-neighbours information that are
needed by the selection bypass on top of the in-neighbours infor-
mation required by the pull-based combiner used in the broadcast
version. Then, for the USA graph, it is observed that the memory
consumption of all versions increased by 10%. It is due to the fact
that vertices are heavier than edges that are typically just integers.
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Table 2: Graphs used for further iPregel memory footprint
experiments

Name |V | |E |

Twitter (MPI) 52,579,682 1,963,263,821
Friendster 68,349,466 2,586,147,869

In this case, between the Wikipedia graph to the USA graph, the
100M fewer edges do not compensate for the 5M additional vertices.

Overall, it is between 1.5GB and 2.8GB of memory that were
necessary to iPregel, out of the 8GB available.

7.4.2 Breaking point. Throughout experiments presented in
this paper, iPregel used at most 35% of the 8GB available in main-
memory. To estimate the maximal size of graphs that iPregel can
process under 8GB, additional experiments were conducted. The
Twitter (MPI) graph presented in Table 2 is a KONECT [11] graph
publicly available11. This graph is selected due to existing results
about the memory footprint of Pregel+ and GraphLab on this same
graph. It must be reminded that the memory footprint of in-memory
frameworks includes that of the graph itself. In order to distinguish
the part required to store the graph from the memory overhead
generated by the framework, the graph binary size is calculated.
It takes into account that vertices store their identifier as well as
those of their out-neighbours, and assumes 4-byte vertex identi-
fiers. However, it excludes information specific to vertex-centric
applications (such as the rank value in PageRank) and internals
required by frameworks, which are considered as parts of the mem-
ory overhead. The binary size of the Twitter graph is calculated to
8GB, it follows that iPregel cannot process this graph with 8GB of
RAM. Instead, an incremental approach was used to determine the
breaking point of iPregel with 8GB of memory. Concretely, several
synthetic graphs were generated12, with a number of vertices and
edges proportional to the original Twitter graph. That is, a synthetic
graph described as 20% contains a fifth of the number of vertices
and a fifth of the number of edges of the original Twitter graph.
PageRank was then run by iPregel on each of the synthetic graphs,
from the smallest to the largest, until it runs out of memory. The
results obtained are shown in Figure 9. It turns out that up to 70% of
the Twitter graph can be processed before memory failure occurs.
In other words, iPregel is able to run PageRank on a graph made of
37 million vertices and 1.4 billion edges under 8GB of memory.

7.4.3 Projections. However, existing results related in [20] about
Pregel+ and Giraph consider PageRank run on the entire graph. Re-
garding iPregel, linear extrapolation drawn in Figure 9 indicates
that 11GB would be sufficient. To verify this statement, a new Ama-
zon EC2 instance was deployed, the m4.xlarge, which has 16GB
of memory. PageRank was then run on a synthetic graph with a
size identical to that of the original Twitter graph. In total, iPregel
needs 11.01GB to run PageRank on the complete graph, compared
to Pregel+ that requires 109GB and Giraph which needs 264GB.

11http://konect.uni-koblenz.de/networks/twitter_mpi
12The out-degree distribution is not preserved but this has no impact on the size of
the graph or the memory footprint of iPregel
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The memory footprint of iPregel is therefore 10 times smaller
than that of Pregel+ and 25 times smaller than that of Giraph. Ex-
cluding the 8GB allocated to the graph itself, out of the 11GB taken
by iPregel, 3GB are due to its overhead. Comparatively, the over-
heads of Pregel+ and Giraph are 101GB and 256GB respectively;
equivalent to 33 and 85 times that of iPregel.

A last experiment was run to estimate the biggest graph that
iPregel could process under 16GB of RAM. To that end, two online
graph collections KONECT [11] and SNAP [13] were parsed and
the largest graph available overall was selected. It turns out to be
the friendster graph from KONECT, publicly available13. As shown
in Table 2, this graph is made of approximately 70 million vertices
and 2.5 billion edges. The results collected reveal that iPregel is
able to process PageRank on the Friendster graph with 14.45GB of
memory. In other words, iPregel is able to process a multi-billion
edge graph under 16GB of RAM.

7.4.4 Memory footprint analysis. The gap observed in memory
footprints is explained by factors that are of two types.

To begin with, there are advantages inherent to the in-memory
shared memory design. For instance, shared memory systems man-
age local communications only. This contrasts with distributed
memory systems, in which messages between remote vertices are
passed over the network, and typically involves the storage of send-
ing and receiving buffers like in Pregel+. In addition, for the receiver
node to know how to dispatch the messages received to their recip-
ient vertex, messages are wrapped with the vertex identifier of the
recipient vertex. This results in heavier messages, hence a memory
overhead. Another advantage of the shared-memory structure is to
avoid the storage of redundant information. Indeed, frameworks
that use exclusively distributed memory exploit intra-node paral-
lelism by creating multiple distributed workers per node. This leads
to multiple instances of both the application and the distributed
software environment to be stored in the memory of every node.
The redundant copies therefore waste memory. Finally, frameworks
that rely on distributed memory or out-of-core computations man-
age vertices that may reside in main-memory, on disk, or on a
13http://konect.uni-koblenz.de/networks/friendster
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remote node. They must therefore use an additional addressing
layer storing where each vertex currently resides, which increases
the overall memory footprint too.

Then, come the differences that are due to the design of iPregel.
The leverage of combiners, as explained in Section 6.3, permits to
store at most one message per vertex mailbox. This avoids the use
of dynamically resizeable structures like queues, replaced instead
with a single variable of the message type. In addition, the memory
overhead of data-race protection can be reduced to zero when
using the lock-free structure provided by the pull-based combiner
presented in Section 6.2. The multi-version design of iPregel also
plays an important role in its overall memory footprint. Indeed, by
selecting at compile-time the best structures to use, iPregel does
not include vertex attributes that would be unused or left empty,
such as in-neighbours. Finally, as explained in Section 3.2, the use
of structures in iPregel avoids the hidden virtual pointer that is
embedded in each vertex object when using derived classes like in
Pregel+.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a vertex-centric model that uses in-
memory storage and shared memory parallelism. By allowing the
user to pass additional information about the graph and the appli-
cation via compilation flags, iPregel applies techniques optimised
specifically for such contexts. The capacity of iPregel to adapt is
provided by its underlying multi-version design, which permits
to exploit assumption-specific optimisations without sacrificing
software flexibility. In addition, this paper presented several optimi-
sation techniques, from selection bypass to direct mapping, through
a race-free combiner.

Experiments demonstrate that iPregel outperforms state-of-the-
art in-memory distributed memory. On a single-node, timings col-
lected show that iPregel is always faster than Pregel+, by a median
factor of 6.5. At worst, it is 3.5 times faster, and up to more than
600 times in the best case. In addition, the performance achieved by
iPregel remains competitive even when considering multi-nodes.
Indeed, timings collected reveal that at least 11 nodes are needed
by Pregel+ to equal or outperform iPregel. The results obtained
fulfil the first half of this work motivation; witnessing clear per-
formance gains from an in-memory shared memory vertex-centric
framework.

In addition, the performance gains of iPregel do not come at the
expense of memory consumption. In fact, the memory footprint
of iPregel is an order of magnitude smaller than its in-memory
distributed memory counterparts; needing 11GB when the latter
require up to a quarter of a terabyte. Further experiments demon-
strated that iPregel, albeit single-node, can process multi-billion
edge graphs under 16GB of memory, or the USA road network
using less memory than that of a smartphone. The results collected
demonstrate that there is room for optimisation in the memory
footprint of vertex-centric frameworks, which satisfies the second
half of this work motivation.

To conclude, iPregel demonstrates that the in-memory shared
memory architecture is competitive in vertex-centric programming
too. Further investigations about load-balancing strategies and in-
ternal parallelism would certainly benefit iPregel.
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