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Abstract

Previous studies have demonstrated that the appearance of
an object under varying illumination conditions can be rep-
resented by a low-dimensional linear subspace. A set of
basis images spanning such a linear subspace can be ob-
tained by applying the principal component analysis (PCA)
for a large number of images taken under different light-
ing conditions. While the approaches based on PCA have
been used successfully for object recognition under varying
illumination conditions, little is known about how many im-
ages would be required in order to obtain the basis images
correctly. In this study, we present a novel method for an-
alytically obtaining a set of basis images of an object for
arbitrary illumination from input images of the object taken
under a point light source. The main contribution of our
work is that we show that a set of lighting directions can
be determined for sampling images of an object depend-
ing on the spectrum of the object’s BRDF in the angular
frequency domain such that a set of harmonic images can
be obtained analytically based on the sampling theorem on
spherical harmonics. In addition, unlike the previously pro-
posed techniques based on spherical harmonics, our method
does not require the 3D shape and reflectance properties of
an object used for rendering harmonics images of the object
synthetically.

1. Introduction
It is well known that the appearance of an object changes
significantly under different illumination conditions. For in-
stance, the appearance change of someone’s face often be-
comes much larger than the difference of two different faces
under the same lighting. Thus, for the task of object recogni-
tion, it is very important to be able to predict the variation of
objects’ appearance under varying illumination conditions.

Previous studies have demonstrated that appearance
changes of an object under varying illumination can be rep-
resented with a low-dimensional linear subspace. In the
most simplistic case of a convex Lambertian object under
distant illumination without attached and cast shadows, the
appearance of the object can be completely described with

a 3-D linear subspace defined with three input images taken
under linearly independent lighting conditions [9, 15, 18].
However, the assumption of this model would be too re-
strictive to be used for object recognition in more realistic
settings.

Other researchers have reported empirical studies for rep-
resenting image variation due to varying illumination for hu-
man faces and other objects [7, 4, 17]. Interestingly enough,
most of the image variation caused by varying illumination
can be explained with a low-dimensional linear subspace
slightly higher than 3D even when images contain a signif-
icant amount of shadows. For instance, Hallinan reported
a) that a 5-D subspace would suffice to represent most of
the image variation due to illumination change including ex-
treme cases where a face is lit from its sides, and b) that a
3-D subspace would be sufficient when a face is lit mainly
from its front [7]. Georghiades et al. used a similar observa-
tion more specifically for object recognition under varying
lighting conditions [5, 6].

A set of basis images spanning such a linear subspace
can be obtained by applying the principal component anal-
ysis to a large number of images of an object taken under
different lighting, e.g., by moving a point light source along
a sphere surrounding the object. One might ask whether a
certain set of input images of an object would be sufficient
to fully span the subspace of the object for arbitrary illumi-
nation conditions. Previous empirical studies do not nec-
essarily provide enough insight to this important question,
and thus it has been a common practice to use as many in-
put images as possible to ensure that the set of input images
span a subspace entirely. Another interesting observation of
Hallinan’s early work is that a subspace obtained by PCA
does not vary widely between sparsely and densely sampled
sets of lighting directions in the case of faces [7]. However,
it was not known how many images would be sufficient in
order to obtain the basis images correctly.

Recently, it was shown through the frequency-space anal-
ysis of reflection that appearance of a convex Lambertian
object can be well represented with a 9-D linear subspace
spanned by basis images of the object, called harmonic im-
ages, each of which corresponds to an image of the object
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illuminated under harmonic lights whose distributions are
specified in terms of spherical harmonics[10, 11, 1]. Basri
and Jacobs successfully used this 9-D subspace defined with
harmonic images for face recognition under varying illumi-
nation [1]. Other researchers have also used a set of har-
monic images for the purpose of efficient rendering of an ob-
ject under complex illumination [12, 16]. More recently, Ra-
mamoorthi has shown theoretically that, under certain con-
ditions of lighting and object shape and reflectance, a set of
basis images obtained from PCA on input images taken un-
der varying lighting coincides with a set of harmonic images
[13].

While harmonic images are specified analytically, it is
difficult to obtain harmonic images for various kinds of real
objects because harmonic lights consist of both negative and
positive values distributed in a complex way and thus do not
exist as real lighting. Therefore, the previously proposed
techniques for object recognition and image synthesis based
on harmonic images require the model of an object about its
3-D shape and reflectance properties such as albedo so that
harmonic images of the object under harmonic light can be
rendered synthetically. This is not a problem for the case
of synthetic objects because the model of a synthetic object
is given a priori by definition. On the other hand, acquiring
shape and reflectance properties of real objects is not an easy
problem and therefore, most of the previous studies treated
real objects as Lambertian objects and estimated only albe-
dos by using vision techniques such as photometric stereo.

This motivated us to develop a method for determining a
set of harmonic images of a real object by using only in-
put images of the object under simple lighting such as a
point light source. Lee et al. recently proposed an interest-
ing method to determine a configuration of 9 light source
directions such that input images taken under those light
source directions approximate a 9-D subspace spanned by
harmonic images [8]. They have reported that such a config-
uration of 9 light source directions does not vary much for
similar objects, e.g., different faces. However, Lee et al.’s
method still needs a set of harmonic images that are ren-
dered synthetically by using an object’s model in order to
determine a set of 9 lighting directions. Moreover, Lee et
al.’s method chooses 9 light directions from a large number
of candidates and therefore, a large number of input images
are required for each new object or new class of objects.

In this study, we present a novel method for analytically
obtaining a set of basis images of a convex object for ar-
bitrary illumination from input images of the object taken
under a point light source. The main contribution of our
work is that we show that a set of lighting directions can be
determined for sampling images of an object depending on
the spectrum of the object’s BRDF in the angular frequency
domain such that a set of harmonic images can be obtained
analytically based on the sampling theorem on spherical har-

monics [3]. Using those sampling directions determined
from the sampling theory, we are able to obtain harmonic
images by using a significantly smaller number of input im-
ages than other techniques which do not take into account a
relationship between a spectrum of BRDFs and a sampling
density of illumination directions. In addition, unlike other
methods based on spherical harmonics, our method does not
require the shape and reflectance model of an object used
for rendering harmonics images of the object synthetically.
Thus, our method can be easily applied for determining a set
of basis images for representing the appearance change of a
real object under varying illumination conditions.

The rest of the paper is organized as follows. We briefly
review the spherical harmonics transformation of a function
over the unit sphere and harmonics images based on spheri-
cal harmonics in Section 2. We show details of the sampling
theorem used in our method for obtaining harmonic images
of real objects in Section 3, and consider issues in obtain-
ing harmonic images of real objects based on this sampling
theorem in Section 4. In particular, we discuss what kind of
artifacts should be expected when input images provide in-
sufficient samplings of an object’s appearance. Finally, we
show experimental results of the proposed method applied to
images of real objects in Section 5, and present concluding
remarks in Section 6.

2 A Set of Basis Images for Variable
Illumination

2.1 Review of Spherical Harmonics

Spherical Harmonics define an orthonormal basis over the
unit sphere. Consider the unit sphere in ��, a unit vector
on the sphere can be described by the polar coordinate sys-
tem �� �� � � � �� in elevation and �� �� � � � ���
in azimuth. In this coordinate system, spherical harmonics
� �
� ��� ��� �� � ���� � � � �� are defined as

� �
� ��� �� � 	�

� 
�
� ���������� (1)

where 	�
� are the normalized constants, and 
 �

� ��� are the
associated Legendre functions of degree � and order �.

A function ���� �� defined over the unit sphere is ex-
panded as a linear combination of spherical harmonics as

���� �� �

��
���

��
����

��� � �
� ��� ��� (2)

and ��� denote coefficients in its spherical harmonic expan-
sion computed as 1

��� �

� ��

�

� �

�

���� ��� �
� ��� �� �������� (3)

1In this study, we consider spherical harmonics in a real form.
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2.2 Harmonic Image Representation

The reflectance property of an object is characterized by
a bidirectional reflectance distribution function (BRDF)
������ �

�
�� �

�
�� �

�
��, where ����� �

�
�� and ����� �

�
�� are incident and

reflection directions with respect to the surface normal of the
object surface whose local coordinate is denoted by using �.

Then, the brightness � of the object surface is repre-
sented by the global coordinate defined on the unit sphere
as

� �

� �

�

� ��

�

���� ���������� ��� ���� �
�
�� ��� � ��	 ������

(4)
where ���� �� is light source distribution, and ������ rep-
resents a rotation operator that rotates ��� �� into the local
coordinate.

In this paper, we consider the appearance of an object
under variable illumination seen from a fixed viewpoint and
therefore, we represent �������� ��� � ��� �

�
�� ��� � by using

the global coordinate as ���� ��, and refer to it as the reflec-
tion kernel.

Since both the light source distribution and the reflection
kernel are functions defined on the unit sphere, we can rep-
resent them as

���� �� �

��
���

��
����

��
� � �

� ��� ��� (5)

���� �� �

��
���

��
����

��
� � �

� ��� ��� (6)

where ��
� and ��

� are coefficients in their spherical har-
monic expansion from (3). Assuming spherical light sources
with � �

� ��� �� radiance in its ��� �� direction, ��
� repre-

sents the brightness seen under these spherical light sources
called harmonic lights in (3).

From (5), (6), and the orthonormality of spherical har-
monics, the surface brightness � in (4) is represented as

� �

��
���

��
����

��
� ��

� � (7)

Here, if we prepare��
� for all pixels, that is, for all corre-

sponding points on the object surface, images under variable
illumination are represented from (7). Images containing
��
� are called harmonic images [1].

3 Methods for Obtaining Harmonic
Image

There are several approaches for obtaining harmonic images
of an object. One approach is to provide a reflection kernel

���� �� of the object from the knowledge of its 3D shape
and reflectance properties. Since � �

� ��� �� are predefined
functions, ��

� are computed from (3). Most of the previ-
ously proposed methods employed this approach to compute
harmonic images synthetically.

One might think of observing an object under physi-
cally constructed harmonic lights. In this case, each pixel
value directly corresponds to coefficients ��

� , and thus the
3D shapes and reflectance properties of the object need not
be given a priori. However, as pointed out by other re-
searchers [1, 8], harmonic lights are complex diffuse light-
ing consisting of both negative and positive radiance. Thus,
it is difficult to physically construct such lighting in a real
setting.

In this work, we take an alternative approach of observ-
ing a reflection kernel ���� �� for each surface point on an
object directly by taking an image of the object under a point
light source located at the direction (�� ��. This approach is
based on the assumption that a point light source used in this
method is sufficiently distant from the objects and thus, this
light source projects parallel rays onto the object surface.

The reflectance kernel ���� �� represents radiance of re-
flected light due to incoming light with unit radiance from
the direction ��� ��. Thus if we suppose that this point light
source has unit radiance, the value of ���� �� can be ob-
tained simply as an observed brightness of the surface point
when the object is illuminated under a light source from the
direction ��� ��.2 Once we determine the values of ���� ��
for all directions, we can compute pixel values of harmonic
images as ��

� from (3). In this way, we do not need to syn-
thetically compute the reflection kernel ���� �� of the ob-
ject, nor are the 3D shapes and reflectance properties of the
object required.

Since the function ���� �� are continuously distributed
on the unit sphere in (3), we first need to approximate its
distribution by a discrete set of the function ���� �� so that
we can sample ���� �� using a point light source physically
located at ��� �� direction. Then, the question we have to ask
is how densely ���� �� need be sampled in order to correctly
compute coefficients ��

� from them. In other words, we
want to know how densely a point light source needs to be
positioned around an object to obtain harmonics images of
the object correctly. In the next section, we will consider this
issue in terms of the characteristics of spherical harmonics
� �
� ��� ��.

3.1 Sampling Theorem on Spherical Har-
monics Transformation

There have been several methods proposed in the field of
applied mathematics to efficiently compute coefficients of a

2Note that we can determine ���� �� only up to some unknown scaling
factor, so it is reasonable to treat a point light source to have unit radiance.
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function ���� �� in its spherical harmonic expansion using
fewer samplings of the function ���� ��. We have adapted
one of their theories to enable us to compute harmonic im-
ages using fewer input images of objects taken by moving a
point light source to particular locations.

It is common knowledge that the sampling theorem on
the 1D line tells us that a band-limited function can be re-
constructed accurately from properly sampled discrete data.
Namely, Fourier coefficients of the function can be deter-
mined by weighted sums of the function sampled at even
intervals. In the case of a function defined on the sphere, the
similar theorem, the sampling theorem on the sphere, has
been proved [3]. In this section, we outline the theorem.

Let us assume that the reflection kernel ���� �� is band-
limited with bandwidth N, that is, ��

� � � �� � 	�. Then,
consider the “comb” function ��� �� with equiangular grid
�
��
�� � ����	� ����	�

��� �� �

�
��

�	

�����
���

�����
	��

��Æ�� � ���Æ��� �	�� (8)

where ��� � �	� � ���� � ������	� �����	� are sampling
points on the sphere, and �� are weight of the points. We
can compute the coefficients �� of the comb function from
definition (3). For degree � � �	 , we obtain

�� �
�����
���

��

�
��� �

�

 �
� ���� ���Æ��� (9)

where the Kronecker delta Æ�� � � if � � �, and Æ�� � �
if � �� �. Here, we can uniquely choose the weight �� so
that
�����

��� ��

�
� ���� ��� �

�
�Æ��. Thus, the coefficients

are described simply as �� � Æ��Æ�� for degree � � �	 .
Equivalently, the comb function is represented by the addi-
tion of � �

� ��� �� � ����� and higher-degree terms as

��� �� � � �
�
����

�
�	���

	��
	
� ��� ��� (10)

Then, from (6) and (10), the product of the reflection ker-
nel and the comb function is written as

���� �� � ��� �� � ���� ��

�
�
�
�

�
�����

�
����

�
�	���

��
� 	��

�
� ��� ��� 	

� ��� ��� (11)

where degree � � 	 because ���� �� is band-limited. The
second term is known as aliasing introduced by discrete
sampling. However, it is known that the product of the
spherical harmonics � �

� ��� ��� 	
� ��� �� is represented as a

linear combination of spherical harmonics with a degree
greater than or equal to �� � ��. Accordingly, aliasing ap-
pears to be a degree greater than or equal to �	 � �	 � � 	

in this case. Therefore, for degree � � 	 , ���� �� � ��� ��
is equal to ���� ��, that is,

����� �� � ��� ����� � ��
� � (12)

Hence, the coefficients of the reflection kernel can be
computed accurately by the Fourier transform of ���� �� �
��� �� as

��
� �

�
��

�	

�����
���

�����
	��

������ � �	��
�
� ��� � �	�� (13)

where the weight �� are analytically given by

�� �
�
�
�

�	
��	 ��

����
���

�

��� �
��	���� ���� �� (14)

4 Appearance Sampling of Real Ob-
jects based on The Sampling Theo-
rem

The sampling theorem described in the previous section tells
us the minimum number of sampling �	 � �	 � �	 �

to compute spherical harmonics transformation of a band-
limited function with bandwidth 	 . In this section, we con-
sider issues in defining bandwidth of an object and discuss
what kind of artifacts we should expect when the function is
not band-limited within 	 .

4.1 Convex Lambertian Surface

Let us start with the simplest case of convex Lambertian ob-
jects. It has been shown in the previous studies that the first
nine spherical harmonics with the order � � � are sufficient
to capture more than ��� of the reflection energy of a con-
vex Lambertian surface [1, 10, 11].

Accordingly, we can consider that the function ���� ��
is band-limited with bandwidth 	 � �, and this results
in �	� � �� samplings of ���� �� necessary for comput-
ing ��

� correctly. In other words, the coefficients ��
� are

given as a finite weighted sums of the function ���� �� sam-
pled at equiangular grid: �� � ��������

� �� � �� � � � � ��,
�	 � ��	

� �� � �� � � � � ��. Namely, �� input images of an
object taken by moving a point light source to the directions
specified with (�� , �	) on a sphere around the object are re-
quired to compute harmonic images of the object.

Note that what needs to be satisfied is not the number of
samplings (�	 �) of the function but rather, the sampling in-
tervals (
� � ���	 , 
� � ����	 ) that this sampling
can provide. For instance, even when a large number of
input images of an object taken under a point light source
are available, there is no guarantee that this set of images

4

Proceedings of the IEEE International Conference on Computer Vision (ICCV 2003), pp. 800-807, October 2003. 



can produce correct harmonic images that can span a low-
dimensional linear subspace representing the appearance of
the object under arbitrary illumination unless those intervals
are satisfied.

4.2 Complex Appearance beyond Lamber-
tian

Ramamoorthi and Hanrahan analytically derived the band-
width of reflection kernels of objects that have more com-
plex appearance than convex Lambertian surfaces such as
the Phong reflection model and the Microfacet BRDF [10]. 3

For instance, this study shows that the bandwidth of the Mi-
crofacet BRDF is approximately 	 � ���. Thus, if the
surface roughness of an object is predicted even roughly, it
should help us to find the bandwidth of the reflection kernel
of the object.

There are a large number of previous studies on BRDF
measurements and BRDF databases which show reflectance
parameters of various kinds of surface materials. This
knowledge should be useful for estimating bandwidths of
reflection kernels of various objects based on the analysis
presented in [10].

4.3 Aliasing Caused by Insufficient Sampling

There certainly is a situation where bandwidth of reflection
kernels of an object is difficult to predict, or where only a
limited number of samplings of the function are obtainable
depending on a particular hardware set-up used for acquiring
input images. Hence it is important to consider what kinds
of artifacts we should expect when the function ���� �� has
a lower or a higher bandwidth than 	 determined from the
number of samplings �	 � based on the sampling theorem.

Let � denote actual bandwidth of the function. Driscoll
and Healy proved that the error in spherical harmonics trans-
formation, generally known as aliasing, is confined to coef-
ficients ��

� of degree greater than or equal to �� � �	 � in
[3]. This can be confirmed by replacing the bandwidth 	 of
the reflection function with � in (11).

From this, in the case where the function has bandwidth
� lower than	 (� � 	 ), there is no aliasing for degree less
than 	 � � for � � 	 � �. Since we compute coefficients
��
� for � � 	 , those coefficients are correctly computed. In

this case, all of the coefficients ��
� for � � � � 	 become

�.
In the case where the function���� �� has a bandwidth�

higher than 	 (� � 	 ), error due to insufficient sampling
of the function is confined to the coefficients of degree � �

3[14] is also a good reference to get insights into the bandwidth of a
reflection kernel of various types of objects in CURET database. This work
discusses appropriate sampling resolutions to model appearance of those
objects based on their experiments as well.

	 � � for � � 	 � �. In this case, the coefficients ��
� for

� � 	 � � degree are correctly computed. Therefore, closer
to � we select 	 , smaller error in ��

� we expect.
Next we show what happens when we have sufficient

or insufficient samplings of the function ���� �� by using
synthetic data. The function ���� �� used here is a reflec-
tion kernel for the Torrance-Sparrow reflection model with
known reflection parameters (� � 	���� ���� ���
��� �
����� � � ���).4 The surface normal and viewing direction
for this reflection kernel are set at the direction �� � �� � �
��.

We computed the coefficients ��
� up to the degree � �

��� � �� for this reflection kernel from discrete samplings
of���� �� at different sampling intervals: 	 � ��� (������
sampling), 	 � �� (��� samplings), 	 � � (100 sam-
plings), 	 � � (36 samplings). The computed coefficients
are shown in Figure 1a)�d). Spherical harmonic coefficient
for given degree � and order � are represented using a sin-
gle index  � ��� ���. The horizontal axis represents the
index  , and the vertical axis represents the computed co-
efficients ��

� . The number of samplings is shown for each
graph, and a red arrow represents the upper bound 	 deter-
mined from the number of samplings.

Figure 1e)�h) are visualization of the reflection kernel
���� �� reconstructed from the computed coefficients ��

�

in (6) up to the degree � � �� for the cases of 	 � ���,
	 � ��, 	 � �, and 	 � �, respectively. Figure 1i) shows
a reflection kernel reconstructed from the coefficients up to
the degree � � � for the cases of 	 � �. In these figures,
the upper half of ���� �� is visualized in a polar coordinate
system with radius indicating 	��� � � � ���
, and angle
indicating 	��� � � � ��
 as illustrated in Figure 1j).

From Figure 1a) and b), we can see that the coefficients
��
� obtained from �	 � � ��� samplings are almost the

same as those obtained from �	 � � ������ samplings, and
the ���� �� is reconstructed correctly in both cases. This
shows that a set of samplings for 	 � �� are sufficient to
capture the appearance of a surface with this reflection ker-
nel under varying illumination. This follows what the sam-
pling theorem tells us.

On the other hand, in the cases of 	 � � and 	 � �
where 	 is smaller than � � ��, the computed coefficients
suffer from aliasing. It is important to note that the coeffi-
cients ��

� for � � 	 (the left side of the red arrow in Fig-
ure 1c) and d)) closely match the coefficients obtained from
sufficient samplings (Figure 1a)) while the coefficients ��

�

for 	 � � � � (the right side of the red arrow) differ. As
a result, distinct ringing effects are evident in the reflection
kernel reconstructed from the coefficients up to the degree
� � �� (Figure 1g) and h)). On the other hand, the reflec-

4�� and �� are constants for the diffuse and specular reflection com-
ponents, and � is the standard deviation of a facet slope of a simplified
Torrance-Sparrow reflection model.
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Figure 1: Experimental results using synthetic data: coeffi-
cients are computed from a discrete set of ���� �� sampled
at different sampling intervals.

tion kernel reconstructed from the coefficients up to the de-
gree � � � for 	 � � shown in Figure 1i) does not show
such ringing effects while high frequency components such
as specularity are missing at the center.

It follows from these examples that it is appropriate to
compute ��

� for � � 	 only when �	 � samplings of the
function are available. In this way, we can avoid annoying
ringing effects caused by ��

� for 	 � � in the reconstructed
function ���� ��.

5 Experimental Results

We have tested the proposed method using real images of
several objects taken by moving a point light source to
equiangular grid points defined by the sampling theorem.
Figure 2 shows an overview of our hardware set-up 5 used

5Surface Reflectance Sampler, TechnoDream21 corporation

Figure 2: Image acquisition set-up

for obtaining the input images of the objects; an array of
light sources is mounted on a turntable. These light sources
are equally spaced in elevation, and the set of light sources
is rotated around the objects in azimuthal.

In the case of the sheep and the Venus examples, since
those objects have an appearance similar to that of a Lam-
bertian surface, �� input images of them are taken under
a point light source positioned at equiangular grid points:
�� � ��������

� , �	 � ��	
� ��� � � �� � � � � ��. For the fish

example, since it has a more complex appearance, ��� input
images are taken under a point light source at equiangular
grid points : �� � ��������

�� , �	 � ��	
�� ��� � � �� � � � � ���.

Based on the sampling theorem, coefficients ��
� are com-

puted up to the degree � � � from the �� images, and up to
the degree � � � from the ��� images.

The first nine harmonic images obtained from those input
images are shown in Figure 3. In spite of given discrete
sets of the appearance of the objects, the obtained harmonic
images have complex and smooth shading that reflects the
distribution of harmonic lights in these examples.

To evaluate the accuracy of the recovered harmonic im-
ages, we took images of those objects under normal lighting
conditions in our laboratory, including direct light sources
such as fluorescent lamps. Coefficients ��

� in (5) represent-
ing the illumination condition are computed from an omni-
directional image of the scene taken by a camera with a fish-
eye lens in the same manner as described in [12]. Then ap-
pearance of the objects under this illumination condition is
synthesized from (7).

In Figure 4, the left column shows the real images of the
objects and the right column shows the synthesized appear-
ance. The synthesized appearance of the objects resembles
that of the objects in real images, and this shows that the re-
covered harmonic images provide a good representation of
the appearance of the objects. The shoulder of the plaster
figure in the middle right image appears darker than that in
the real image. This is due to severe cast shadows observed
in the input images that do not follow our method’s assump-
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Figure 3: Obtained harmonic images: positive values are shown in green, and negative values are shown in red.

tion for convex objects.
To demonstrate how well the recovered harmonic images

represent the appearance of those objects under varying illu-
mination, we synthesize their appearance from the recovered
harmonic images under several natural illumination condi-
tions provided by high-dynamic range light probe measure-
ments by [2]. Figure 5 shows the results. In this figure,
synthesized appearance changes dynamically depending on
characteristics of the illumination, and one can say from this
that the proposed method succeeded in providing a set of
basis images representing appearance of those objects under
varying illumination.

6 Summary and Conclusions

In this study, we have presented a novel method for analyt-
ically obtaining a set of basis images of an object for ar-
bitrary illumination from input images of the object taken
under a point light source. The main contribution of our
work is that we have shown that a set of lighting directions
can be determined for sampling images of an object depend-
ing on the spectrum of the object’s BRDF in the angular
frequency domain such that a set of harmonic images can
be obtained analytically based on the sampling theorem on
spherical harmonics. The future directions of this study in-
clude extending our method for: (1) modeling appearance
of object seen from arbitrary viewing directions, and (2)
extending our method further for reducing aliasing effects
caused by insufficient sampling of appearance of objects.
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