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Abstract

This paper describes a new method for estimating the
illumination distribution of a real scene from a radiance
distribution inside shadows cast by an object in the scene.
First, the illumination distribution of the scene is approx-
imated by discrete sampling of an extended light source.
Then the illumination distribution of the scene is estimated
from a radiance distribution inside shadows cast by an ob-
ject of known shape onto another object in the scene. In-
stead of assuming any particular reflectance properties of
the surface inside the shadows, both the illumination dis-
tribution of the scene and the reflectance properties of the
surface are estimated simultaneously, based on iterative op-
timization framework. In addition, this paper introduces
an adaptive sampling of the illumination distribution of a
scene. Rather than using a uniform discretization of the
overall illumination distribution, we adaptively increase
sampling directions of the illumination distribution based
on the estimation at the previous iteration. Using the adap-
tive sampling framework, we are able to estimate overall
illumination more efficiently by using fewer sampling direc-
tions. The proposed method is effective for estimating an
illumination distribution even under a complex illumination
environment.

1 Introduction

Image brightness is a function of shape, reflectance, and
illumination [4]. The relationship among them has pro-
vided three major research areas in physics-based vision:
shape-from-brightness (with a known reflectance and illu-
mination) [6, 7, 8, 16], reflectance-from-brightness (with a
known shape and illumination) [9, 1, 11, 12, 15, 17], and
illumination-from-brightness (with a known shape and re-
flectance).

In the past, shape-from-brightness and reflectance-from-
brightness have been extensively explored. In contrast, rel-
atively limited amounts of research have been conducted in
the third area, illumination-from-brightness [3, 14]. Some
researchers attacked this problem as a related analysis of
shape-from-shading. For example, Brooks and Horn de-
termine shape as well as light sources from image bright-
ness [7]. However, their analyses are conducted under very
specific illumination conditions as in, for example, the case
where there is only one direct light source in the scene; the
analyses cannot be extended for more natural illumination
conditions that include many types of direct and indirect il-
lumination.

Recently, we proposed a method to recover an illumi-
nation distribution of a scene from image brightness with
known shape and reflectance of an real object [19]. The
method modeled illumination distribution of the scene with
discrete sampling of the illumination radiance distribution,
then formulated them as a simultaneous linear equation of
unknown point sources. Then their brightness was deter-
mined by solving them from observed radiance changes in-
side shadows cast by an object of known shape onto an-
other object surface of known shape and reflectance.1 This
method was effective and could estimate an illumination
distribution even under a complex illumination environment
such as an ordinary office, including reflections from the
wall and other objects in the scene.

This method, however, has two limitations. First, it as-
sumes that the reflectance properties of the surface inside
shadows are given a priori. Otherwise, the method is appli-
cable only if the surface is a Lambertian surface. Second,
since the method uses a uniform discretization of the over-
all illumination for the estimation, the number of sampling

1In the past, shadows have been used for determining the 3D shapes and
orientations of an object which cast shadows onto the scene [2, 10, 13, 20],
while very few studies have focused on the the illumination information
which shadows could provide.
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directions of illumination tends to be exceedingly large in
order to accurately approximate the illumination distribu-
tion.

This paper presents a method to overcome these limi-
tations. The solution consists of two main aspects. First,
we combine the illumination analysis with an estimation
of the reflectance properties of a surface inside shadows.
As a consequence, the proposed method becomes applica-
ble to the case where reflectance properties of a surface are
not known. This enlarges the variety of images to which
the method can be applied. Second, we propose an adap-
tive sampling framework for efficient estimation of illumi-
nation distribution. Rather than using a uniform discretiza-
tion of the overall illumination distribution, we adaptively
increase the sampling directions of the illumination distri-
bution based on the estimation at the previous iteration. Us-
ing this adaptive sampling framework, we can avoid un-
necessarily dense sampling of the illumination and estimate
the entire illumination distribution more efficiently with a
smaller number of sampling directions of the illumination
distribution.

Our method estimates the illumination distribution of a
real scene by using a single color image of the scene with
shadows cast by an object. The rest of the paper refers to
the image with shadows as theshadow image, to the ob-
ject which casts shadows onto the scene as theoccluding
object, and to the surface onto which theoccluding object
casts shadows as theshadow surface. In our experiments,
we recovered the camera parameters and the shape of the
occluding objectby using a photo-modeling tool interac-
tively.2

The rest of the paper is organized as follows. We first
obtain a formula which relates an illumination distribution
of a scene with the image irradiance of theshadow image
in Section 2. In Section 3, we describe the basic steps of
the proposed method for simultaneously estimating both an
illumination distribution of a scene and reflectance proper-
ties of theshadow surface. In Section 4, we explain how
to estimate an illumination radiance distribution from given
reflectance parameters of theshadow surfaceand the ob-
served image irradiance of ashadow image. In Section 5,
we describe how to estimate the reflectance parameters of
theshadow surfacefor a current estimation of the radiance
distribution of the scene. In Section 6, we introduce an
adaptive sampling framework for efficient approximation of
the entire illumination. In Section 7, we show experimental
results of the proposed method applied to real images. In
Section 8, we present concluding remarks.

2In our examples shown in Section 7, we used a modeling tool called
the 3D Builder from 3D Construction Company [22] for modeling the
shape of anoccluding objectfrom a shadow image. At the same time,
the plane ofz = 0 is defined on theshadow surface.

2 Formula for Relating Illumination Radi-
ance with Image Irradiance

In this section, we obtain a formula which relates an illu-
mination distribution of a real scene with the image irradi-
ance of ashadow image. The formula will later be used as
a basis for estimating the illumination distribution of a real
scene and reflectance properties of theshadow surface.

2.1 From Illumination Radiance to Scene Irradi-
ance

First, we find a relationship between the illumination dis-
tribution of a real scene and the irradiance at a surface point
in the scene. To take illumination from all directions into ac-
count, let us consider an infinitesimal patch of the extended
light source, of a sizeδθi in polar angle andδφi in azimuth
as shown in Figure 1.

Seen from the center pointA, this patch subtends a
solid angleδω = sinθiδθiδφi. Let L0(θi, φi) be the
illumination radiance per unit solid angle coming from
the direction (θi, φi); then the radiance from the patch is
L0(θi, φi)sinθiδθiδφi[5], and the total irradiance of the
surface pointA is

E =
∫ π

−π

∫ π
2

0

L0(θi, φi)cosθisinθidθidφi (1)

Then occlusion of the incoming light by theoccluding ob-
ject is considered as

E =
∫ π

−π

∫ π
2

0

L0(θi, φi)S(θi, φi)cosθisinθidθidφi (2)

whereS(θi, φi) are occlusion coefficients;S(θi, φi) = 0 if
L0(θi, φi) is occluded by the occluding object; Otherwise
S(θi, φi) = 1.

2.2 From Scene Irradiance to Scene Radiance

Some of the incoming light at pointA is reflected toward
the image plane. As a result, pointA becomes a secondary
light source with scene radiance.

The bidirectional reflectance distribution function
(BRDF) f(θi, φi; θe, φe) is defined as a ratio of the radi-
ance of a surface as viewed from the direction(θe, φe)
to the irradiance resulting from illumination from the
direction (θi, φi). Thus, by integrating the product of
the BRDF and the illumination radiance over the entire
hemisphere, the scene radianceRs(θe, φe) viewed from the
direction(θe, φe) is computed as

Rs(θe, φe) =
∫ π

−π

∫ π
2

0

f(θi, φi; θe, φe)L0(θi, φi)

S(θi, φi)cosθisinθidθidφi (3)
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Figure 1. (a) the direction of incident and emit-
ted light rays (b) infinitesimal patch of an ex-
tended light source

2.3 From Scene Radiance to Image Irradiance

Finally, the illumination radiance of the scene is related
with image irradiance on the image plane. Since what we
actually observe is not image irradiance on the image plane,
but rather a recorded pixel value in ashadow image, it is
also necessary to consider the conversion of the image ir-
radiance into a pixel value of a corresponding point in the
image. This conversion includes several factors such as D/A
and A/D conversions in a CCD camera and a frame grabber.

Other studies concluded that image irradiance was pro-
portional to scene radiance [5]. In our work, we calibrate
a linearity of the CCD camera by using a Macbeth color
chart with known reflectivity so that the recorded pixel val-
ues also become proportional to the scene radiance of the
surface. From Equation 3 the pixel value of theshadow im-
ageP (θe, φe) is thus computed as

P (θe, φe) = k

∫ π

−π

∫ π
2

0

f(θi, φi; θe, φe)L0(θi, φi)

S(θi, φi)cosθisinθidθidφi (4)

where k is a scaling factor between scene radiance and
a pixel value. Due to the scaling factork, we are able
to estimate unknownL0(θi, φi)(i = 1, 2, .., n) up to scale.
To obtain the scale factork, we need to perform photo-
metric calibration between pixel intensity and physical unit
(watt/m2) for the irradiance.

2.4 Approximation of Illumination Distribution
with Discrete Sampling

In an actual implementation of our method, the illumi-
nation distribution is approximated by discrete sampling of
radiance over the entire surface of the extended light source.
This can be considered as representing the illumination dis-
tribution of the scene by using a collection of imaginary

directional light sources. As a result, the double integral in
Equation 4 is approximated as

P (θe, φe) =
n∑

i=0

f(θi, φi; θe, φe)L(θi, φi)ωiS(θi, φi)cosθi

(5)
wheren is the number of sampling directions,L(θi, φi) is
the illumination radiance per unit solid angle coming from
the direction(θi, φi), which also includes the scaling factor
k between scene radiance and a pixel value, andωi is a solid
angle for the sampling direction(θi, φi).

For instance, node directions of a geodesic dome can
be used for uniform sampling of the illumination distribu-
tion. By usingn nodes of a geodesic dome in a northern
hemisphere as a sampling direction, the illumination distri-
bution of the scene is approximated as a collection of di-
rectional light sources distributed with an equal solid angle
ω = 2π/n.

In our method, BRDFf(θi, φi; θe, φe) in Equation 5
is then parameterized using a simplified Torrance-Sparrow
model [15, 21]. Using the model, the pixel value of the
shadow imageP (θe, φe), is computed as

P (θe, φe) =
n∑

i=0

(Kdcosθi + Ks
1

cosθr
e

−γ(θi,φi)
2

2σ2 )

S(θi, φi)L(θi, φi)ωi (6)

whereθr is the angle between the surface normal and the
viewing direction,γ(θi, φi) is the angle between the surface
normal and the bisector of the light source direction and the
viewing direction,Kd andKs are constants for the diffuse
and specular reflection components, andσ is the standard
deviation of a facet slope of the Torrance-Sparrow reflection
model.

Note that, since each pixel consists of 3 color bands (R,
G, and B), each band of radianceL(θi, φi) is also estimated
from the corresponding color band of the image separately.
Also, based on the dichromatic reflection model, five pa-
rameters (Kd,R, Kd,G, Kd,B, Ks, andσ) are considered as
the reflectance parameters of theshadow surface. Accord-
ingly, L(θi, φi) is estimated usingKs, σ, and the corre-
sponding color band ofKd. In this paper, we explain our
method by usingL(θi, φi),Kd, Ks, andσ for the simplic-
ity of our discussion.

3 Basic Steps of the Proposed Method

Based on the formula in Equation 6 which relates the il-
lumination radiance of the scene with the pixel values of the
shadow image, the illumination radiance distribution of the
scene is estimated from image brightness inside shadows as
described in the following steps.
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1. Initialize the reflectance parameters of theshadow sur-
face. Typically, we assume theshadow surfaceto be
Lambertian, and the diffuse parameterKd is set to be
the pixel value of the brightest point on theshadow
surface. The specular parameters are set to be zero
(Ks = 0, σ = 0). 3

2. Estimate radiance valuesL(θi, φi) of imaginary di-
rectional light sources which model the illumination
distribution of a real scene. By using the reflectance
parameters (Kd, Ks, σ) and image brightness inside
shadows in theshadow image, the radiance distribu-
tion L(θi, φi) is computed. (Section 4)

3. Estimate the reflectance parameters of theshadow sur-
face(Kd, Ks, σ) from the obtained radiance distribu-
tion of the sceneL(θi, φi) by using an optimization
technique. (Section 5)

4. Estimate the radiance distribution of the scene
L(θi, φi) from the obtained reflectance parameters
(Kd, Ks, σ). (Section 4)

5. Proceed to the next step if there is no significant
change in the estimated valuesL(θi, φi),Kd, Ks, and
σ. Otherwise, go back to Step 3. By estimating
both the radiance distribution of the scene and the re-
flectance parameters of theshadow surfaceiteratively,
we can obtain the best estimation of those values for
a given set of sampling directions of the illumination
radiance distribution of the scene.

6. Terminate the estimation process if the obtained illu-
mination radiance distribution approximates the real
radiance distribution with sufficient accuracy. Other-
wise, proceed to the next step.

7. Increase the sampling directions of the illumination
distribution adaptively based on the obtained illumina-
tion radiance distributionL(θi, φi) (Section 6). Then
go back to Step 2.

We should clarify the assumptions that we made for the
proposed method. In our method, it is assumed that light
sources in the scene are sufficiently distant from the objects,
and thus all light sources project parallel rays onto the ob-
ject surface. Also, the method does not take into account
interreflection between a shadow region and anoccluding
objectcasting the shadow. We also assume that theshadow
surfacehas uniform reflectance properties over the entire
surface. Although these assumptions are not exactly true

3Note that the initial value ofKd is not so important since there is a
scaling factor between the reflectance parameters and illumination radi-
ance values in any case. To fix the scaling factor, we need to perform pho-
tometric calibration of our imaging system with a calibration target whose
reflectance is given a priori.

in real situations, we find through experiments that these
assumptions have little effect on estimated illumination dis-
tribution in most cases.

In the following sections, each step of the proposed
method will be explained in more detail.

4 Estimation of Radiance Distribution based
on Reflectance Parameters of Shadow Sur-
face

In this section, we explain how to estimate the radiance
distribution of the sceneL(θi, φi) for a given set of re-
flectance parameters (Kd, Ks, σ). In the following sections,
we referL(θi, φi) as toLi for simplicity.

Using Equation 6 which relates the illumination radiance
of the scene with the pixel values of theshadow image, illu-
mination radiance is estimated based on the recorded pixel
values of theshadow image. From Equation 6, a linear
equation is obtained for each image pixel of theshadow im-
ageas

a1L1 + a2L2 + a3L3 + · · · + a1nLn = P (7)

whereLi (i = 1, 2, .., n) aren unknown illumination radi-
ance specified byn sampling directions of the radiance dis-
tribution for the scene. The coefficientsai(i = 1, 2, .., n)

represent(Kdcosθi + Ks
1

cosθr
e

−γ(θi,φi)
2

2σ2 )S(θi, φi) (i =

1, 2, .., n); we computeθi, θr, γ(θi, φi), andS(θi, φi) based
on 3D geometry of the surface point corresponding to the
image pixel, the illumination direction, and the shape of
the occluding object. P is the values of the image pixel
P (θe, φe).

If we select a number of pixels, saym pixels, a set of
linear equations is obtained as

a11L1 + a12L2 + a13L3+ · · · + a1nLn = P1

a21L1 + a22L2 + a23L3+ · · · + a2nLn = P2

a31L1 + a32L2 + a33L3+ · · · + a3nLn = P3

· · · · · ·
am1L1 + am2L2 + am3L3+ · · · + amnLn = Pm (8)

Therefore, by selecting a sufficiently large number of im-
age pixels, we are able to solve for a unique solution set of
unknownLi’s.

In general, the number of image pixels in shadows is far
larger than the number of illumination radiance values to
be estimated. Thus we need to select appropriate image
pixels for better computational efficiency. In our method,
image pixels are selected by considering their coefficients
ai so that the set of linear equations (Equation 8) becomes
sufficiently over determined by a smaller number of image
pixels.
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5 Estimation of Reflectance Parameters of
Shadow Surface based on Radiance Distri-
bution

In this section, we describe how to estimate the re-
flectance parameters of theshadow surface(Kd, Ks, σ) by
using the estimated radiance distribution of the sceneLi.

Unlike the estimation of the radiance distribution of the
sceneLi which can be done by solving a set of linear equa-
tions (Equation 8), we estimate the reflectance parameters
of theshadow surfaceby minimizing a sum of squared dif-
ference between the observed pixel intensities in theshadow
imageand pixel values for the corresponding surface points.
Hence the function to be minimized is defined as

f =
m∑

j=0

(Pj
′ − Pj)2 (9)

wherePj
′ is the observed pixel intensities in shadows cast

by theoccluding object, Pj is the pixel value of the corre-
sponding surface points computed by using the given radi-
ance distribution of the sceneLi in Equation 6,m is the
number of pixels used for minimization. In our method,
the error function in Equation 9 is minimized with respect
to the reflectance parametersKd, Ks, andσ by the Pow-
ell method to obtain the best estimation of those reflectance
parameters.

6 Adaptive Sampling of Radiance Distribu-
tion

If the estimated radiance distribution for a set of sam-
pling directions does not approximate the illumination dis-
tribution of the scene with sufficient accuracy, we increase
the sampling directions adaptively based on the current es-
timation of the illumination radiance distribution.

Radiance distribution changes very rapidly around a di-
rect light source such as a fluorescent light. Therefore,
the radiance distribution has to be approximated by using
a large number of samplings so that the rapid change of
radiance distribution around a direct light source is cap-
tured. Also, to correctly reproduce soft shadows cast by
extended light sources, radiance distribution inside a direct
light source has to be sampled densely.

On the other hand, coarse sampling of radiance distri-
bution is enough for an indirect light source such as a wall
whose radiance remains small. As a result, the number of
sampling directions required for accurately estimating an il-
lumination distribution of a real scene becomes exceedingly
large.

To overcome this problem, we increase sampling direc-
tions adaptively based on the estimation at the previous it-
eration, rather than by using a uniform discretization of the

overall illumination distribution. In particular, we increase
sampling directions around and within direct light sources.

Based on the estimated radiance distributionLi for the
sampling directions at the previous step, additional sam-
pling directions are determined as follows.

Suppose three sampling directions with radiance values
L1, L2, andL3 are placed to form a triangleM1 as illus-
trated in Figure 2. To determine whether a new sampling
direction needs to be added betweenL1 andL2 or not, we
consider the following cost function.

U(L1, L2) = diff(L1, L2) + αmin(L1, L2)angle(L1, L2)
(10)

wherediff(L1, L2) is the radiance difference betweenL1

andL2, min(L1, L2) gives the smaller radiance ofL1 and
L2, angle(L1, L2) is the angle between directions toL1

andL2, andα is a manually specified parameter which de-
termines the relative weights of those two factors. The first
term is required to capture the rapid change of radiance dis-
tribution around direct light sources, while the second term
leads to fine sampling of the radiance distribution inside di-
rect light sources. The additional termangle(L1, L2) is
used for avoiding unnecessarily dense sampling inside di-
rect light sources. In our experiments,α is set to0.5.

If the costU is large, a new sampling direction is added
betweenL1 andL2. In our experiments, we computed the
cost function valuesU for all pairs of neighboring sampling
directions, then added additional sampling directions for the
first 50% of all the pairs in order of the cost function values
U .

L1

L2

L3

L1

L3

L2

Ln+1

M1

Figure 2. Subdivision of sampling directions

7 Experimental Results

We have tested the proposed method by using real im-
ages taken in both indoor and outdoor environments.

An image with anoccluding object, i.e., shadow im-
age, was taken under usual illumination environment in
our office, including direct light sources such as fluorescent
lamps, as well as indirect illumination such as reflections
from a ceiling and a wall. The input image is shown in Fig-
ure 3 (a).

First, the shape of theoccluding objectand the camera
parameters of the input image were obtained by using a
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(a) (b)

Figure 3. Input image : (a)shadow imagetaken in an
indoor scene (b) the region where synthesized images with
the estimated radiance distribution and reflectance parame-
ters are superimposed in Figure 4

n = 140

n = 20

n = 40

n = 80

(a) (b) (c)

Figure 4. Adaptive refinement of illumination
distribution estimation: (a) synthesized images with
the estimated radiance distribution and reflectance param-
eters (b) adaptive refinement of sampling directions with
a ground truth of an omni-directional image of the scene
(c) the estimated radiance values visualized for comparison
with the ground truth

average error

the number of samplings
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Figure 5. Error Analysis

photo-modeling tool [22]. Then, an illumination distribu-
tion of the scene was estimated using the image irradiance
inside shadows in theshadow imageas explained in Sec-
tion 3. Starting from a small number of uniform sampling
directions of the illumination distribution, the estimation of
the radiance distribution of the scene was iteratively refined
as described in Section 6. At the same time, the reflectance
parameters (Kd, Ks, andσ) of theshadow surfacewere es-
timated as explained in Section 5.

Then an appearance of theshadow surfacearound the
occluding objectwas synthesized by using the estimated
radiance distribution of the scene and the estimated re-
flectance parameters of theshadow surface. To demonstrate
how well the estimated radiance distribution and the re-
flectance parameters could represent the scene, we replaced
the region inside the red rectangle in Figure 3 (b) with the
synthesized appearances. The left column in Figure 4 shows
the results synthesized by the estimated radiance distribu-
tion and the estimated reflectance parameters of theshadow
surface. The number of sampling directions of the radiance
distribution used for the estimation is shown under the re-
sulting images.

We found through our experiments that, the larger num-
ber of sampling directions we used, the more the shadows of
the synthetic object resembled those of theoccluding object
in the shadow image. Especially in the case of 140 sam-
pling directions, we can see hardly any distinct boundaries
in the shadows, and the synthesized shadow of theocclud-
ing objectmatches the real one in the input image very well:
this shows that the estimated illumination distribution gives
a good presentation of that of the real scene.

To see how well the adaptive sampling of radiance distri-
bution works for real images, we took an omni-directional
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image of the office scene as a ground truth. The middle col-
umn of Figure 4 shows the omni-directional image of the
scene taken by placing a camera with a fisheye lens look-
ing upward on theshadow surfacein Figure 3 (a). The
omni-directional image shows both direct light sources, i.e.,
fluorescent lamps in our office, and indirect light sources
such as a ceiling and walls. The right column of Figure 4
shows the estimated radiance values visualized for compar-
ison with the ground truth. In those images in Figure 4 (b)
and (c), we can see that sampling directions of the radi-
ance distribution were nicely added only around the direct
light sources at each step by the proposed adaptive sampling
framework, starting from the coarse sampling directions at
the top row.

Figure 5 numerically shows the improvement of the ac-
curacy by adaptive refinement of sampling directions and
the estimation of reflectance properties of theshadow sur-
face. The vertical axis represents average error in pixel val-
ues inside the synthesized images in the region shown in
Figure 3 (b) compared with that in the input image Figure 3
(a). Here, the initial average pixel values of shadow regions
in theshadow imageare set to100 %. The horizontal axis
represents the number of sampling directions used for the
estimation. From the plot in the figure, we can clearly see
that the accuracy improves rapidly as we adaptively increase
sampling directions of the radiance distribution. Also the
small pictures at the bottom show error distributions inside
the region. Darker color represents larger error in a pixel
value in the shadow regions compared with the real shad-
ows of theoccluding objectin theshadow image.

To confirm the merit of the adaptive sampling frame-
work and the estimation of the reflectance parameters of the
shadow surface, we also estimated the illumination radiance
distribution with uniform sampling and fixed reflectance pa-
rameters. In that case, even 300 uniformly sampled direc-
tions could not achieve the same level of accuracy as the
estimation result obtained by 80 sampling directions with
the method proposed in this work.

Figure 6 (a) shows another example image taken outside
the entrance lobby of our building in the late afternoon. In
this image, we used the rectangular pole with two colors as
anoccluding objectcasting shadows. In the same way as the
previous example, the shape of theoccluding objectand the
camera parameters of the input image were obtained by us-
ing a photo-modeling tool. Then, an illumination distribu-
tion of the scene was estimated using the image irradiance
inside shadows in the input image as explained in Section 3.

Then an appearance of theshadow surfacearound the
occluding object, illustrated with a red rectangle in Figure 7
(b), was synthesized by using the estimated radiance distri-
bution of the scene and the estimated reflectance parame-
ters of theshadow surface[18]. Figure 7 shows the result-

(a) (b)

Figure 6. Input image : (a) shadow imagetaken in
an outdoor scene (b) the region where synthesized images
with the estimated radiance distribution and reflectance pa-
rameters are superimposed in Figure 7

n = 20 n = 40

n = 80 n = 140

Figure 7. Adaptive refinement of illumination
distribution estimation: synthesized images with the
estimated radiance distribution and reflectance parameters

ing images by our method. Although the grid pattern on
theshadow surfaceis missing in those synthesized images
due to the assumption of uniform reflectance on theshadow
image, the appearance of the shadow around theoccluding
objectsis virtually indistinguishable in the case of 140 sam-
pling directions. This shows that the estimated illumination
distribution gives a good representation of the characteris-
tics of the real scene.

8 Conclusions

In this paper, we have proposed a new method for esti-
mating an illumination distribution of a real scene from a
radiance distribution inside shadows cast by a real object
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of known shape onto other object surfaces of known shape
and known reflectance. By using the occlusion information
of the incoming light, we were able to estimate an illumina-
tion distribution of a real scene reliably, even for the images
taken in a complex illumination environment.

In particular, the proposed method has been significantly
extended from our previous approach in two main aspects.
First, we combine the illumination analysis with an estima-
tion of the reflectance properties of a shadow surface. As
a consequence, the proposed method becomes applicable to
the case where reflectance properties of a surface are not
known. Second, we propose an adaptive sampling frame-
work for efficient estimation of illumination distribution.
Rather than using a uniform discretization of the overall
illumination distribution, we adaptively increase the sam-
pling directions of the illumination distribution based on
the estimation at the previous iteration. Using this adap-
tive sampling framework, we can avoid unnecessarily dense
sampling of the illumination and estimate the entire illumi-
nation distribution more efficiently with a smaller number
of sampling directions of the illumination distribution.

To demonstrate the effectiveness of the proposed
method, we have successfully tested our method by using
sets of real images taken in our office with different surface
materials of shadow regions.
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