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Preface

This volume contains the papers presented at LN2FR 2022: The International
Workshop on Methodologies for Translating Legal Norms into Formal Represen-
tations, held on December 14, 2022 in a hybrid form (in person workshop was
held in Saarland University, Saarbrucken) in association with 35th International
Conference on Legal Knowledge and Information Systems (JURIX 2022).

Using symbolic logic or similar methods of knowledge representation to for-
malise legal norms is one of the most traditional goals of legal informatics as
a scientific discipline. More than mere theoretical value, this approach is also
connected to promising real-world applications involving, e.g., the observance
of legal norms by highly automated machines or even the (partial) automati-
sation of legal reasoning, leading to new automated legal services. Albeit the
long research tradition on the use of logic to formalise legal norms – be it by
using classic logic systems (e.g., first-order logic), be it by attempting to con-
struct a specific system of logic of norms (e.g., deontic logic) –, many challenges
involved in the development of an adequate methodology for the formalisation
of concrete legal regulations remain unsolved. This includes not only the choice
of a sufficiently expressive formal language or model, but also the concrete way
through which a legal text formulated in natural language is to be translated
into the formal representation. The workshop LN2FR seeked to explore the var-
ious challenges connected with the task of using formal languages and models
to represent legal norms in a machine-readable manner. We had 13 submissions,
which were reviewed by 2 or 3 reviewers. Among these, we selected 11 papers
(seven long papers, three short papers, one published paper) for presentation
and discussion.

Last but not least, we would like to thank all the authors who submitted
papers, as well as the members of the PC and additional reviewers for reviewing
the submitted papers.

December 14, 2022 Georg Borges
Ken Satoh

Erich Schweighofer
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Law to Binary Tree - An Formal Interpretation
of Legal Natural Language

Ha-Thanh Nguyen1,⋆, Vu Tran2, Ngoc-Cam Le3, Thi-Thuy Le4,
Quang-Huy Nguyen5, Le-Minh Nguyen6, and Ken Satoh1

1 National Institute of Informatics, Tokyo, Japan
2 The Institute of Statistical Mathematics (ISM), Tokyo, Japan

3 Vietnam Judicial Academy, Hanoi, Vietnam
4 Hanoi Law University, Hanoi, Vietnam

5 VINASECO JSC, Hanoi, Vietnam
6 Japan Advanced Institute of Science and Technology, Ishikawa, Japan

Abstract. Knowledge representation and reasoning in law are essen-
tial to facilitate the automation of legal analysis and decision-making
tasks. In this paper, we propose a new approach based on legal science,
specifically legal taxonomy, for representing and reasoning with legal
documents. Our approach interprets the regulations in legal documents
as binary trees, which facilitates legal reasoning systems to make deci-
sions and resolve logical contradictions. The advantages of this approach
are twofold. First, legal reasoning can be performed on the basis of the
binary tree representation of the regulations. Second, the binary tree
representation of the regulations is more understandable than the exist-
ing sentence-based representations. We provide an example of how our
approach can be used to interpret the regulations in a legal document.

Keywords: legal science · legal representation · binary tree · interpre-
tation

1 Introduction

In recent years, artificial intelligence technology has been widely used in the le-
gal field to facilitate legal analysis and decision-making tasks [1, 15, 9]. Although
legal documents usually describe the regulations in natural language, there is an
ordered and logical system based on legal doctrines and theoretical legal issues
behind the words. If it is only based on natural language processing without
focusing on the systematic structure of legal documents, an artificial intelligence
system is likely to give inaccurate or meaningless outcomes for the tasks which
require logical analysis, or systematic legal knowledge. Therefore, using a for-
mal logical representation to represent the regulations in legal documents is a
promising approach. In more detail, jurists can express systematic legal knowl-
edge through formal logical representation, while computers can easily process

⋆ Corresponding: nguyenhathanh@nii.ac.jp.
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formal logical representations and “understand” the legal logic made by jurists.
Thereby, artificial intelligence can simulate and learn how lawyers analyze certain
legal documents. In other words, through formal logical representation, artificial
intelligence and jurists can communicate logical problems with each other.

Many approaches have been proposed to represent the regulations in legal
documents as logic formulas. The legal rules can be represented in the form of a
structured representation [8], a rule-based representation [10] or a graph-based
representation [12]. These approaches share the same general idea of represent-
ing the regulations as formal rules. We find that the main challenges for bringing
the work to practical applications are not only in the technology of represent-
ing legal norms but also in the method of developing the technology with the
involvement of legal experts. It costs a huge amount of time for lawyers to un-
derstand the logical expression and then to produce the logical formulas from
the legal documents.

In this paper, we propose a new approach for representing and reasoning with
legal documents. Our approach interprets the regulations in legal documents as
binary trees and employs a legal reasoning system to resolve logical contradic-
tions. We prove that our approach can be used to perform legal reasoning on
the basis of the binary tree representation of the regulations. The biggest advan-
tage of our approach is that the binary tree representation is easy to understand
and to produce by jurists. As a result, our approach can be used to develop an
automatic legal reasoning system that is understandable by jurists.

2 Preliminaries

The legal system of a country is composed of vast legal norms. Taxonomy plays
an essential role in the arrangement of these legal regulations. Thanks to taxon-
omy, jurists think logically about legal problems by sorting legal rules, deciding
them into categories, and generalizing them into fields of law [11]. Therefore,
although the legal system consists of massive legal norms, it is still orderly, log-
ical, and coherent. That is why jurists often use a logic diagram that we call a
latent tree structure to analyze legal regulations and deal with legal documents.
In this way, it is easier for them to see the relationship and hierarchy between
the elements of the legal system. The word “latent” means that there is a hidden
tree structure behind the legal system, and the tree structure is generated by
the relationship between the legal rules and the fields of law.

A latent tree structure often consists of two parts: (i) The root presents
legal taxonomies which are widely analyzed and acknowledged in legal science.
This part may have similarities between the laws of countries in the same le-
gal traditions, i.e., civil law, common law, religious law, etc.; and (ii) The rest
shows the contents of current legal norms stuck with each legal taxonomy men-
tioned above. Depending on the policies of each state or nation, the part may be
differences between the laws of each country, even though they share the same
legal traditions.
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3 Proposed Approach

As mentioned in the previous section, the latent tree structure is an effective tool
for jurists to deal with legal documents. The latent tree can be drafted manually
on paper or in jurists’ minds without any standard. If there is a method to build
a latent tree structure from a legal document automatically, it will make jurists’
work more efficient and accurate. In addition, we can build an AI system that
could automatically interpret legal rules in a manner similar to how lawyers and
judges would.

Humans can use their common sense and legal experience to prioritize the
rules. However, this is difficult for the machine or even lay people. For example,
when checking a contract, if the agreement contains both particular rules and
general rules, the particular rules take priority over the general rules. Another
example is that before checking the contract, we need to check the parties to
determine if they are qualified. Are they eighteens or older? Do they have the
mental capacity to understand the contract? Which qualifications should take
priority when there is a conflict between them? When the contract contains
many qualifications, it increases the complexity of priority checking.

We propose a new way to resolve the problem of priority relationships be-
tween rules in latent trees. The idea is to construct a binary tree structure, in
other words, convert an ordinary latent tree into a binary tree. In a binary tree,
there are only two child nodes for each parent node. The position of nodes can
tell which rule needs to be considered first. For example, the root is always the
first node, and based on the result of the root we can go to the left or right node.
When we get to the leaf, we can get the final result. This representation can be
used by the machine to automatically resolve the conflict between the rules and
determine the priority.

4 Case Study

In this section, we use a part of legal norms on inheritance under wills with a
focus on the regulations related to testators to demonstrate how to convert the
latent tree into a binary tree.
Step 1: Drawing the latent tree
Please note that, in practice, jurists will draw this tree on an AI system based
on (i) technically fixed standards; and (ii) their systematic legal knowledge of
relevant legal norms.

First of all, the root of the latent tree structure can be drawn based on legal
taxonomies of laws on inheritance under wills.

From a legal point of view, the legal norm is created to govern the respective
legal relations. Jurists can classify a legal relation into three elements: a subject,
an object, and contents of legal relation[1, 6]. Besides, when analyzing and
assessing a legal relation, it is essential to consider its creation, change, and
termination. Thus, first of all, we draw the root of the latent tree structure
includes four nodes: subjects in the inheritance relation under wills, the object
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of the inheritance relation under wills, contents of the inheritance relation under
wills, and the creation, change, and termination of the inheritance relation
under wills. Then, we break down each element separately in detail as follows
(Figure 1):

(i) Subjects: In legal science, a subject (a legal person) includes two kinds:
a natural person (human person, sometimes also a physical person), and a
legal entity (non-human person) which is a body that can function legally, sue
or be sued, and make decisions through agents such as association, corporation,
partnership [4, 7]. Thus, main subjects in the inheritance under wills may include
the testator, heirs, administrators of estates, and witnesses.

(ii) The object: In legal science, object is what the subjects want to achieve
when entering into a legal relation, or the aim or purpose of legal norms which
govern the respective legal relation [4, 13]. So, estates are the object of the in-
heritance under wills relation.

(iii) Contents: In legal science, contents of a legal relation are legal rights,
and obligations of the relevant subject(s)[1, 6, 13]. Hence, the contents of the
inheritance relation under wills are rights as well as obligations of each relevant
subject, i.e., the testator, heirs, administrators of estates, and witnesses.

(iv) the creation, change and termination of the inheritance relation
under wills.

The laws of inheritance under the wills of many countries such as Viet-
nam[14], China[2], Germany[5], France[3] etc. should be classified the same tax-
onomy mentioned above. Figure 1 shows the root of the latent tree structure
based on legal taxonomies of laws on inheritance under wills.

Fig. 1. The root of the latent tree structure based on legal taxonomies of laws on
inheritance under wills

Next, we draw the rest of the latent tree structure which shows the con-
tents of current legal norms on the inheritance relation under wills stuck with
each legal taxonomy mentioned above. As mentioned above, this part of the tree
structure is different when representing the legal norms of different countries due
to differences in the practical laws of each country. After the task, we have a
complete latent tree structure on the inheritance relation under wills. For illus-
tration purposes, we only demonstrate legal norms on testators in two countries:
Vietnam, and China.
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Figure 2 and 3 show latent trees of Vietnamese and Chinese legal norms.
We can see that both trees have a similar structure. In general, legal norms for
this case are categorized into four groups: subjects, objects, contents, and the
problem of creation, change, and termination of inheritance relation under wills.
The trees are slightly different in terms of gestation and subject capacity. These
differences may lead to big differences in legal consequences. For example, in
Vietnam law, the legal capacity of the testator is divided into three cases: under
15 years of age, from 15 to 18 years of age, and over 18 years of age. The age
of the testator is one of the important elements that determine the status of
inheritance relation under wills.

Fig. 2. The latent tree structure based on Vietnamese laws on inheritance under wills

Fig. 3. The latent tree structure based on Chinese laws on inheritance under wills

Step 2: Converting the latent tree into the binary tree
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An example of the Vietnamese binary tree is shown in Figure 4. This tree has
a structure similar to a decision tree, with two branching arrows standing for
Yes and No. The leaf nodes are the legal consequences of the interpretation. For
example, in the case of Vietnamese law, if the testator is not a natural person,
then there is no right to make a will. This approach allows us to reason about
legal conclusions automatically. Besides, we can also utilize the game theory
or tree-based algorithm to make efficient and effective legal decision-making
applications with this structure.

With this binary tree structure, we create a deterministic and complete rea-
soning system, in which the legal consequences are determined by the input
features. This reasoning system is not only suitable for legal decision-making
applications but also an effective tool for analyzing legal regulations. For exam-
ple, if there is no logical way to arrange the nodes, this can be considered a
contradiction in the legal regulation. In addition, this structure can be used to
frame the reasoning process of black-box models when learning from data.

Fig. 4. The binary tree structure based on Vietnamese laws on inheritance under wills

5 Discussion and Conclusion

The proposed method for building the binary tree from the legal document is a
way to understand the structure of legal concepts and regulations and resolve
conflicts between rules automatically. This is important because it can make
the machine automatically interpret legal rules in a manner that is similar to
how lawyers and judges would. It will also make lawyers’ work more efficient
and accurate. In this paper, we also introduce a case study in which we can see
the application of the proposed method to inheritance analysis to demonstrate
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our idea better. Note that the example tree presented in this paper is only one
possible way to construct the binary tree. The tree can be customized to fit
the different needs of the particular legal problem. This representation can be
used to validate the outcome and reasoning ability of black-box machine learning
models. In future works, we will involve this proposal in our systems, research
activities, legal activities, and competitions.
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Rules for Automated Driving – Experiences and
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Möhlmann1, and Willem Hagemann1

German Aerospace Center (DLR) e.V., Institute of Systems Engineering for Future
Mobility, Oldenburg, Germany
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Abstract. The homologation of automated driving systems for public
roads requires a rigorous safety case. Regulations of the United Nations
demand to demonstrate the compliance of the developed system with
local traffic rules. Hence, evidences for this have to be delivered by means
of formal proofs, online monitoring, and other verification techniques in
the safety case. In order for such methods to be applicable traffic rules
have to be made machine-interpretable. However, that pursuit is highly
challenging. This work reports on our practical experiences regarding the
formalization of a non-trivial part of the German road traffic act. We
identify a central issue when formalizing traffic rules within a development
process, coined as the congruence problem, which is concerned with the
semantic equality of the legal and system interpretation of traffic rules. As
our main contribution, we delineate potential challenges arising from the
congruence problem, hence impeding a congruent yet formal interpretation
of traffic rules. Finally, we aim to initiate discussions by highlighting
steps to partially address these challenges.

Keywords: Automated Driving · Traffic Rules · Formalization.

1 Introduction to Traffic Rules for Automated Driving

Automated driving systems (ADSs) are anticipated to take over a large part of the
tasks that are currently performed by human drivers. Vehicles shall recognize their
environment and perform maneuvers without the need of human intervention.
This holds especially for critical situations within the operational design domain.
The task of recognizing a dynamic environment, interpreting this in the context
of traffic rules, and in particular reacting accordingly, is performed by human
beings with a high fault tolerance, as long as they are attentively following what
is happening. Due to ever extending operational domains, new risk potentials
arise, which must be analyzed before the release of the ADS.

Already in the early stages of the development of an ADS, the question arises
as to which requirements must be met to be approved for participation in road
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traffic. This includes technical requirements (resources, real-time, . . . ), control
requirements (longitudinal and lateral control of vehicle dynamics, . . . ), and
behavioral requirements (appropriate indication of actions, . . . ). At least for the
top-level requirement of traffic rule compliance, this question can be answered
with certainty: the United Nations regulation number 157, which is concerned
with the approval of automated lane keeping systems, states that ’the activated
system shall comply with traffic rules relating to the dynamic driving task in the
country of operation’ [22, clause 5.1.2]. This raises two important questions:

1. How ADSs can be designed to comply with the traffic rules, and
2. how it can be proven that they do so?

Traffic rules are written by legal experts to be interpreted again by humans.
Therefore, developing solutions for the first question is hindered by their inherently
and intentionally vague character. Scenario-based approaches are anticipated to
approach the second question [14]. However, due to the high number of test cases,
even with scenario-based testing not every test run can be presented to a legal
expert for evaluation. Thus, an automated assessment is necessary not only for a
correct implementation but also for verification. This directly results in the need
for a machine-interpretable understanding of these rules.

A promising way to make knowledge machine-interpretable is the use of formal
methods for specification and verification. These allow to analyze the consistency
of requirements, enable formal proofs by means of model checking, and evaluate
runs of a system during operation. The question therefore arises as to how a
formal understanding of traffic rules and case law can be realized. Specifically,
the following issue must be clarified: How can we ensure and demonstrate that
the implemented semantics correctly reflects the traffic rule interpretation by the
legal expert? The work at hand contributes to this core issue by

1. an experience report on formalizing a part of the German road traffic act,
2. a formal framework and key challenges distilled from our practical experience,

inhibiting a sound and complete rule interpretation, and,
3. potential directions of future work for the resolution of these challenges.

We highlight the second point as our main contribution. Our experience
indicates solutions therefor to be a prerequisite for the homologation of ADSs.

2 Related Work

The formalization of legal texts, such as the British nationality act [20], is not a
new endeavor. These early approaches already included applications on traffic
rules in 1991 [6]. Since ADS technology was still in its infancy, the focus was on
the support of legal experts and teaching aspects.

Recent advances in ADSs gave updraft to the formalization of traffic rules.
We are largely concerned with methodical issues. Related work includes a method
for formalizing traffic rules into a defeasible deontic logic [3]. Here, a special focus
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lies on the identification of terms, the definition of atoms based on these terms,
the type of the sentence and the eventual premise-consequence structure of the
formalized rule. Similarly, Costescu delineates the necessity of having a legal anal-
ysis prior to the actual traffic rule formalization process as to achieve a common
understanding between engineers and legal experts [5]. The key observation is
that the natural language character of traffic rules is preventing a straightforward
formalization. Moreover, the German research project VVMethods investigates,
among others, methods for the derivation of behavioral requirements from traf-
fic rules [18]. It highlights that a thorough legal analysis is required, adopting
methods for the creation of legal opinions and its associated mindset.

Apart from methodical considerations, most work focuses on formalization
techniques. Notably, work has been driven by the Technical University of Munich
and partners. First steps were performed by Rizaldi et al. [17], where monitors
were derived from linear temporal logic (LTL). Buechel et al. use an ontology-
based approach with a joint description logic and rule reasoner [4]. Work since
then focused on metric temporal logic, both for highways [13] and intersections
[12]. Traffic rule formalization within a development process was examined by
Esterle [7]. The thesis analyzes exemplary rules, albeit without apparent legal
support, understating the interplay of different expert domains. Formalization is
done by defeasible LTL rules, and observer automata are evaluated on realistic
data. Besides (derivatives of) LTL, related work relies on a multi-lane spatial
logic [19], a defeasible deontic logic [23], and answer set programming [11].

Technical advances have been pursued as well, such as LegalRuleML [1], which
partially addresses the challenges – e.g. exceptions – later presented. Due to the
large amount of prior work on the technicalities of traffic rule formalization, we
refrain from detailing formalisms and focus on the open methodical gaps.

3 An Experience Report

In joint work together with an Original Equipment Manufacturer, a law firm,
and BTC Embedded Systems AG (www.btc-embedded.com), we developed an
approach to formalize German traffic act (StVO) rules relevant for highway
driving. The approach was realized, resulting in 111 formalized StVO rules. An
implementation of observers for the formalized rules has been applied to simulated
traffic scenarios. The challenges raised in this paper originate in this work.

The taken approach is depicted in Fig. 1. In a first step, the terms and
rules of the relevant part of the StVO were assessed and, where ever possible,
clarified from a legal perspective. This provided the basis for the formalization,
which consists of two layers. The base layer is established by a description logic
ontology containing the basic terms (concepts and roles) used in the StVO, like
’vehicle’ and ’in front of’ [2]. We also call them ’observable entities’, as these are
assumed to be entities recognized by a suitable perception chain. The second
layer is established by a definition of predicates and function terms, which take
the ontology as their domain. Along this, a light-weight fragment of duration
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Fig. 1. Approach for the formalization and observer implementation of traffic rules.

calculus has been defined in order to allow specifying temporal terms. Finally,
the traffic rules were formalized based on those atoms using the same language.

As the subsequent section illustrates, traffic rules contain vague terms (e.g. ’to
endanger’). Many terms have therefore been defined in a sufficient and necessary
version. Hence, each rule has been formalized in two versions: One to safely detect
the satisfaction of the traffic rule, and one for the safe detection of violations.

Finally, a selected subset of the rules was manually implemented in the BTC
Embedded Platform (EP) [21]. For this, a set of traffic scenarios has been created,
simulated, and logged. A mapping of the relevant observable entities within the
legal ontology to the parameters observable in the ontology of the simulator
has been defined. The mapped simulation logs have been fed to the generated
observers in order to detect rule satisfactions and violations, respectively.

3.1 Example

In order to illustrate our approach, let us examine the exemplary rule of section
four, paragraph one, sentence one of the StVO: ’The distance to a preceding
vehicle shall be, generally, large enough to allow stopping behind this vehicle even
if it is suddenly braked.’ We also refer to this rule as the distance rule.

We identified the following relevant terms: distance, preceding, vehicle, gener-
ally, large enough, stopping behind. For those, legal experts delivered a (recursive)
definition. For example, explicating a large enough distance involves the stopping
distance, which in turn relies on the braking distance, speed, and the driver’s reac-
tion time. Moreover, it relies on the minimal stopping distance, which is dependent
on various complex factors such as road surfaces, tire types, weather conditions,
and temperatures, allowing only a partial definition. The set of relevant atoms
and their observability assumptions are depicted in Fig. 2.

Omitting details due to conciseness, we can assemble the safe satisfaction as

sat4.1.1 := ∀f1, f2 ∈ Vehicle : preceding(f1, f2) ∧ generallyn(f1, f2) =⇒
enough_distance(f1, f2).

We introduced the atom generally to model exceptions, both in a sufficient
and a necessary condition. This concerns e.g. situations of driving in a convoy
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Fig. 2. Ontology and atoms including the relevant terms for the exemplary distance rule.
Observable entities are denoted by a gray background, partially formalized atoms are
hatched. A directed edge is a binary relation where an open tip denotes the subsumption
relation. Properties are indicated by solid lines and functions by superscript f .

or during starting after waiting in traffic. This leads to the aforementioned two
versions of the rule; one including the necessary condition of generally for a
safe satisfaction and one including the sufficient condition of generally for a
safe violation of the rule. In the example of a convoy, a partially formalized
necessary condition is generallyn(f1, f2) := f1, f2 ̸∈ Convoy_Vehicle. A partial
formalization of a sufficient condition is, e.g., generallys(f1, f2) := f1, f2 ̸∈
Convoy_Vehicle∧f1.speed > 10m/s. This can be used to safely detect violations
of the safe distance, where vio4.1.1 evaluates to true only if it is violated:

vio4.1.1 := ∃f1, f2 ∈ Vehicle : preceding(f1, f2) ∧ generallys(f1, f2) ∧
¬enough_distance(f1, f2).

Observers are created by translation to EP Universal Patterns, where observable
quantities, e.g. speed, and atoms, e.g. generally, are represented as EP macros.

3.2 Results

In summary, over 160 traffic rules from the StVO have been identified as relevant
for highway driving. 69% of these rules were formalized as described above, while
26% defines particular terms and thus are covered at one of the two layers. 4%
of the rules are rather explanations and covered otherwise by the formalization.
The remaining rules define priorities. For rule formalization, more than 600
terms were needed, from which half have been defined as observable entities,
and the other half as atoms. Less than 60 atoms could not be (completely)
formalized, where half of them were identified as vague legal concepts. This led to
the overall result that 62% out of the formalized rules were completely formalized.
The remainder depends on not or only partially formalized terms. Simulation
scenarios for 26 rules have been created, where both satisfaction and violation of
the corresponding rule have been checked by handcrafted observers.
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4 Lessons Learned and Future Research Directions

The described practical experience was accompanied by various challenges. We
aim to extrapolate our lessons learned to enable, in the end, elaborations on
future research directions. We structure the discussion of our report as follows:

– Firstly, we introduce the central problem – called congruence problem – whose
resolution we distilled as an abstract key goal during our activities;

– secondly, we present challenges that arise from the congruence problem;
– and finally, we sketch potential research directions for these challenges.

4.1 The Congruence Problem

In a nutshell, the congruence problem is concerned with the equivalence of
semantics between a legal interpretation and the system’s implementation. Before
in-depth elaborations, we introduce the framework in which we place its definition.

The Semiotic Triangle as a Foundational Model As we are concerned
with the equivalence in understanding of stakeholders, the semiotic triangle as
introduced by Ogden and Richards [15] is a natural fit. It models how humans
express conceptualizations of their world and is concerned with

1. symbols, which are identifiers in a given language,1
2. concepts, which are semantic interpretations of the symbols, and
3. referents, which are the entities in some world referred to by a concept.

Symbol Referent

Concept

stands for

refers to
sy

mbo
liz

es

Fig. 3. The semiotic triangle, relating symbols, concepts, and referents.

Their relation is depicted in Fig. 3. Here, a symbol, e.g. ’vehicle’, symbolizes an
(intended) concept, e.g. ’a machine destined for transportation’. Communicating
the symbol ’vehicle’ invokes in the receiver the concept of a vehicle. This concept
in turn maps to a set of things, called referents. This set can include, e.g., the
bicycle in front of your house. Note that the mapping is not necessarily explicit.
Because concepts are learned, humans with different background may use the
same symbol for different concepts, or use different symbols for the same concepts.
We now formally introduce the notion of a semiotic triangle.
1 In our experience report, we referred to terms, which are defined as symbols that

occur in the natural language specification of the rule set.
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Legal Interpretation
of Traffic Rules

System Interpretation
of Traffic Rules

Congruence

Fig. 4. Congruence between legal and system interpretation of rules

Definition 1 (Semiotic Triangle). A semiotic triangle is a triple T = (S,R,C),
where S is the set of all symbols, R the set of referents, and the conceptualization
C a function C : S → 2R, assigning every symbol a set of referents.

We emphasize that referents can be anything that can be referred to; this includes
imaginary objects as well as traffic rules and scenarios. Furthermore, we highlight
that C may not be perfectly explicated. The interpretation of traffic rules is
especially affected by this, as traffic rules are designed by and for humans. They
exploit, e.g., inherent vagueness of concepts in order to reduce the degree of
required explicitness, keeping the rule set concise yet comprehensible.

The Congruence Problem The eventual goal of the system’s development is
the implementation of some valid interpretation of the relevant legal concepts, a
circumstance we call congruence. This relation is depicted in Fig. 4. Of course,
this view is simplifying as there may be dissensions also among legal experts.
Though this work assumes a harmonized legal interpretation, our general idea
may be applied to consensus-building as well. The goal is to maximize congruence
of legal and system interpretations of traffic rules, i.e. implement a system that
judges a scenario (1) as conform to a traffic rule if and only if a legal expert does,
and conversely (2) as violating a traffic rule if and only if a legal expert does.

Our practical experience shows that perfect congruence will not be achievable
for traffic rules. Rather, we are interested to maximize the cases where the system
judges a scenario as conform implies that the legal expert would have done so as
well. This is due to an automated legal judgement of all scenarios being unrealistic;
despite, we are interested in maximizing legal compliance of the system. Based
on Definition 1, we are now ready to formally define congruence.

Definition 2 (Congruence of Semiotic Triangles). The semiotic triangles
T1 and T2 over symbol sets S1 and S2 with S1 ∩ S2 ̸= ∅, and concepts C1 of T1,
C2 of T2, are congruent if for every s ∈ S1 ∩ S2 it holds that C1(s) = C2(s).

Congruence hence requires that each shared symbol stands for the same set
of referents. A visual interpretation is depicted in Fig. 5, assuming that both
parties refer to a shared set of referents, i.e., to the same universe.

The definition is motivated by the implication that, if the semiotic triangles
of the involved parties are congruent, their interpretation of the traffic rules and
all involved symbols has to be congruent as well, therefore achieving the goal
sketched in Fig. 4. In our practical experience, we identified congruence as a key
step required for correctly formalizing, implementing, and verifying traffic rules.
It is only due to congruence that subsequent discussions around technical means,
e.g. suitable logics as presented in Sect. 2, become substantiated.
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Fig. 5. Visualization of the definition of congruence between two semiotic triangles.

Up to this point, we have introduced both semiotic triangles – a formal
framework on comprehension and communication – as well as congruence – a
central problem in constructing a system that obeys traffic rules. The problem of
establishing congruence is non-trivial. We emphasize this by understanding its
emergence in the development process using the framework of semiotic triangles.

Emergence of the Congruence Problem Our report relates to the develop-
ment of a safety-critical ADS by means of a state-of-the-art development process,
i.e. compliant to ISO 26262 [9] and ISO 21448 [10]. A significant portion of the
safety case will be concerned with establishing congruence between the legal
and system interpretation of traffic rules. Obviously, a system development
process involves a variety of relevant parties apart from the legal expert and
the system. This includes requirement engineers, software programmers, test
designers, certification authorities, and even those interacting with the product
during operation. Each is equipped with a semiotic triangle, bidirectionally trying
to achieve congruence with other stakeholders’ triangles, such as those up- and
downstream but also on the opposite development phase. This harmonization
chain along a representative development scheme is depicted in Fig. 6.

A prototypical development process is displayed as a bridge between the legal
expert and the system. Initially, the legal expert interprets laws and acts s.t. there
arises a set of requirements on the system. They are written using the symbols
and conceptualization of the legal expert and systematically transformed into a
verified and validated system along a complex, iterative sequence of steps. For
example, initially, legal requirements are decomposed by a requirements engineer
into item-level and technical requirements which can then be used in the design
phase. In the end, the system thus implements neither the traffic rules nor the
interpretation of the legal expert directly but rather concepts that originated
through the alignment of various semiotic triangles. This leads to the core issue:

How can the congruence of the semiotic triangles of the system and the legal
expert be maximized in a development process?

A solution is the inductive definition of concepts based on other concepts.

A Decompositional Approach for Congruence: A natural way of aligning semiotic
triangles of expert groups is to ask the experts for definitions of the relevant
legal symbols. This is based on the compositionality principle of symbols [16].
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Fig. 7. An approach for congruence
by compositionality.

For example, we can use the symbols distance
to, preceding, and vehicles to construct a new
symbol distance to preceding vehicles. In gen-
eral, symbols can have different contextual se-
mantics, so it is not possible to reconstruct
the semantics of a sentence from the non-
contextual semantics of its atoms as obtained
by syntactic decomposition. However, we as-
sume a clear context with no syntactic ambi-
guity, justified by the observation that traffic
rules are intentionally written this way. Under
this assumption, the compositionality principle states that the meaning of a
sentence is unambiguously inferred from the contextual meaning and the ordering
of contained symbols. We can inductively build definitions from an initial symbol
set S0 symbolizing the same concepts for the first (C) and the second stakeholder
(C′). As Fig. 7 shows, by having congruent semiotic triangles T0 and T′

0, and S0
for definitions of new symbols S \ S0, the semiotic triangles T and T′ are also
congruent. The two-level approach of Sect. 3 exploits this idea.

4.2 Key Challenges in Addressing the Congruence Problem

We introduced the congruence problem as a central issue. This sections substan-
tiates its hardness by challenges that need to be solved as to mitigate its effect.
We inferred them from our practical insights, but we do not claim completeness.

Alignment A development process involves various cross-domain experts, includ-
ing lawyers, logicians, and engineers (cf. Fig. 6). Alignment is the establishment
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of congruence between these parties as to achieve an overall congruence of the
legal and system’s interpretation. This challenge was already experienced during
our work, where comparatively small teams collaborated. It becomes even more
pressing when involving entire companies along automotive supply chains.

Example 1 For the distance rule, we identified the symbol vehicle. An alignment
has to be reached as to what a vehicle entails. Whereas a machine learning engineer
may learn a perception component on a data set with only wheeled vehicles, a
legal expert may assume that a vehicle may not need to have wheels. Thus, the
system may exhibit illegitimate behavior near rail vehicles.

In the framework of semiotic triangles, alignment includes explicating the set
vocabulary of relevant legal symbols S, and then agreeing on a definition of C(s)
for each s ∈ S and each involved stakeholder in the development process.

Observability In our experience report, we relied on decomposing terms into
sub-terms until one assumes observability by the perception chain. The question
arises: how do we agree on a justification for this observability assumption? This
requires in-depth stakeholder discussions during the design and implementation
phase, e.g. when selecting suitable perception technologies from suppliers.

Example 2 We assumed vehicles to be observable based on a given natural
language explanation for the concept of a vehicle. We now have to justify this,
or, alternatively, need to ask the legal experts for a detailed definition for the
concepts used in the definition of a vehicle, such as machine and transportation.

Formally, the challenge of observability asks for a justification of the assump-
tion that it is sufficient to give an informal explication of C(s) for an s ∈ S.

Vagueness Vagueness can be understood as the circumstance that concepts
necessary for situation assessment do not have a clear truth condition. This
implies that their set of referents is not crisp but rather fuzzy. For traffic rules, a
common source of fuzziness are vague legal concepts. This can lead to the use
of non-exhaustive enumerations of examples in definitions, which, during the
development process, hinders the alignment. Thus, this challenge is located even
prior to system development, namely within the traffic rules themselves.

Example 3 generally is a vague legal term as exceptions can not be exhaus-
tively explicated, which, legally, indicates the necessity of case-by-case decisions.
However, there are special cases such as platooning that can be safely excluded.

In the framework of semiotic triangles, a concept C(s) of some s ∈ S is vague
if a referent r ∈ R exists for which the truth value of the statement r ∈ C(s) can
not be exactly identified even if all necessary information is perfectly present.
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Uncertainty If we assume a crisp membership function C(s), we could, in theory,
clearly label referents by their symbols, yielding an evaluation of a scenario with
absolute certainty. Although, for this to hold, we have to assume that we

1. considered all parts of the vehicle’s environment needed for concept evaluation
during its design and built a perception system able to recognize them,

2. knew every legal detail and the perception is perfectly certain, and
3. created a non-probabilistic environment model based on a certain perception.

Those assumptions correspond to ontological, epistemic, and aleatoric uncertain-
ties [8]. In the development process of Fig. 6, we find ontological and aleatoric
uncertainty arising mostly during system design and implementation. Epistemic
uncertainty can be located in both the early design phase – a lack of knowledge
of the designer – or the operation phase – a lack of knowledge of the system.
In practice, these assumptions are unrealistic due to physical and economical
limitations; thus, to achieve congruence, we have to consider such uncertainties.

Example 4 For the distance rule, ontological uncertainty is the neglect of weather
conditions when formalizing the stopping distance. Subsequently, epistemic uncer-
tainty is the reception of uncertain information about the weather condition from
a rain sensor of the ADS. Aleatoric uncertainty exists if we estimate a probability
distribution of the current coefficient of friction based on this data.

Ontological uncertainty requires a relevant symbol s to be not considered when
collecting the legal symbols S, and subsequently developing the perception system.
Epistemic uncertainty exists if there is some r ∈ R for which the truth value of
the statement r ∈ C(s) can not be exactly identified due to some theoretically
crisp information not being known at design- or runtime. Aleatoric uncertainty
can be seen as a concept function C(s) that answers r ∈ C(s) only with a certainty
p ∈ [0, 1] due to unmeasurable random factors influencing the evaluation.

Interrelations Terminologically, we encounter synonyms, different symbols with
the same meaning, and polysemy, similar symbols with different meanings.

Example 5 Note that distance is a homograph. It may refer to a spatial, tem-
poral, or even social distance. A legal analysis clarifies that it is to be interpreted
spatially. Here, a synonym for spatial distance, e.g. gap, can be helpful.

For some symbols s ̸= s′, C(s) = C(s′) indicates a synonym. Polysemy can be
seen as C(s) ̸= C(s′) for some s ≈ s′, where ≈ denotes linguistic similarity.

Interrelations of concepts – including rules – are often present in traffic
rules. Traffic rules are especially affected by priorities and exceptions as well as
inconsistencies. Even different rule sets can interact, e.g. by lex specialis. First
of all, the challenge arises how to identify those interrelations inherent to traffic
rules. The subsequent handling of priorities is then necessary to congruently
reflect their semantics. Assume, e.g., the rules φ1 := a =⇒ b and φ2 := c =⇒ d,
not necessarily taken from the same rule set. A thorough legal analysis delivers
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us with the fact that these rules interrelate by a ∧ c being satisfiable but b ∧ d
being unsatisfiable. If a ∧ c holds, the implied behavior is unclear, as the system
can not be compliant with both b and d. Prioritization can resolve this ambiguity
by e.g. assigning φ1 a higher precedence, therefore implying that b should follow
in case a∧ c holds. Exceptions arise when the constraint of the higher prioritized
rule (e.g. φ1) is implied by the general case, i.e. if a =⇒ c.

Inconsistencies arise due to incompatible concepts. For the above sketch,
without prioritization, it would have followed that φ1 and φ2 are contradictory
and thus unsatisfiable. This is undesired during formalization and implementation
– it indicates formalization errors and can lead to unspecified behavior.

Example 6 We gave a necessary and sufficient version for the distance rule us-
ing generallyn(f1, f2) := f1, f2 ̸∈ Convoy_Vehicle and generallys(f1, f2) :=
f1, f2 ̸∈ Convoy_Vehicle∧f1.speed > 10m/s. For these to be valid, generallys
=⇒ generallyn has to hold. Imagine we made a modeling error by means of
generallys(f1, f2) := f1.speed > 10m/s. Then, generallys ∧ ¬generallyn is
satisfiable but inconsistent with generallys =⇒ generallyn.

Generally, a priority is an arbitration mechanism that, for some r ∈ R
satisfying two (contradictory) concepts, decides which concept r is assigned to.
Inconsistency, on the other hand, is often based on the reduction to unsatisfiability.
This arises when there is some s ∈ S with C(s) = ∅. This may be due to a
contradiction with another concept or a contradiction within its own concept
function. It can also arise from more subtle forms of contradictions such as
sufficient and necessary conditions conflicting with the first implying the latter.

Traceability We are concerned with traceability of the symbols and their concept
functions arising during the congruence procedure. As our practical experience
shows, this allows to iteratively detect and resolve reasons for misinterpretations
during alignment, hence facilitating congruence. Without traceability support,
keeping track of the large amount of traffic rules and their artifacts is almost
impossible. Traceability thus affects the entire process of Fig. 6.

Example 7 A definition of vehicle was used for labeling training data of a
machine learning component. During testing, we find that the ADS does not hold
enough distance around rail vehicles. Traceability allows to pinpoint the mismatch
between the machine learning engineer’s and legal expert’s concept. We can now
align the semiotic triangles of the engineer and legal expert.

Traceability is formally concerned with the storage and accessibility of all
artifacts C and S of all semiotic triangles involved in the system life cycle.

4.3 Solutions to be Developed in Future Work

We close the discussion by sketching open or partially examined ends, as to
identify future research directions. To that effect, we propose investigations of
the following topics, some of which the related work of Sect. 2 has touched on:
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– Methods for alignment and uncertainty reduction in development processes.
– Suitable formalisms to express concepts as validly as possible, e.g. ternary,

fuzzy, temporal, probabilistic, defeasible, and deontic logics.
– Tools for the formal specification of traffic rules within these formalisms,

including the handling of complex interrelations, such as priorities.
– Verification technology demonstrating the system’s adherence to traffic rules,

which is suitable for the usage in a rigorous, ISO-compliant safety case.
– Means of ontology mapping for e.g. mapping simulator on legal ontologies.
– Traceability tooling that overarches all processes, where all artifacts concern-

ing traffic rule compliance are represented and interlinked.

5 Conclusion

We presented a report of experience collected during the formalization of a
non-trivial subset of the StVO. Based on this experience, we extrapolated the
congruence problem and connected it to a typical development process. The
formal framework of semiotic triangles was utilized to delineate which challenges
arise when addressing congruence. Their practical relevancy was highlighted using
the exemplary distance rule taken from the StVO. We finally sketched how some
of these challenges may be addressed in future research and industrial efforts.
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Abstract. This study devised and implemented a Defeasible Deontic Logic 

(DDL)-based formalization approach for translating traffic rules into a machine-

computable (M/C) format and thus solving rule issues: rule vagueness (open tex-

ture expressions) and exceptions in rules. The resulting M/C format of traffic 

rules can be utilized for automatic traffic rule reasoning to assist the Autonomous 

Vehicle (AV) in making legal decisions. The method incorporates the compo-

nents and behaviour of regulations based on the rule's obligation, prohibition, and 

permission activities. 

The need for the encoding methodology is motivated by the desire for auto-

mated reasoning over Autonomous Vehicle information involving traffic rules. 

A Queensland (QLD) overtaking traffic rule is used as a use case to illustrate this 

proposed encoding methodology’s mechanism and usefulness.  

 

Keywords: Traffic Rules, Norms, Defeasible Deontic Logic. 

1 Introduction 

Over the last few decades, intelligent systems have been a widely accepted technology 

with various degrees of interaction. However, despite the constructive and promising 

impact, this advancement of technology has some negative impacts. For example, while 

we know that the technological advancement of vehicles is necessary and advantageous 

for society, it is also known that road crashes are one of the major concerns of global 

public health due to the growth of road fatalities and human disabilities. Every day, 

more than 3,7001 people die due to road crashes, and it was found that the driver’s 

behaviour is solely responsible for 90% of these crashes. From January 2011 to January 

2020, in Australia, 122742 people died in road crashes. From 2013-20173, in Queens-

land, the average number of deaths due to high speed was 58 per year. Therefore, it can 

be assumed that if drivers drive according to traffic rules, there might be less chance of 

fatalities and injuries. 

 
1 https://www.who.int/violence_injury_prevention/road_traffic/en/ 
2 https://www.bitre.gov.au/statistics/safety 
3 https://streetsmarts.initiatives.qld.gov.au/speeding/factsheet 
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An Autonomous Vehicle (AV) can be introduced to automatically make the driving 

decision according to road rules [1]. As AVs are designed and programmed to follow 

traffic rules [2], therefore, it is suggested that AVs would be the immediate solution to 

traffic violations [3].  
However, it is still unclear how AVs will fit into the existing regulatory frame-

work. There is no separate and comprehensive regulatory framework for Avs [4]. 
Leenes and Lucivero [2] mentioned that the current traffic rule model for the AV 
might be incomplete for some scenarios of the road. For example, in the current traf-
fic rules, there are some vague expressions (e.g. “can safely overtake”, “over- take 
when there is a clear view”, etc.), which are almost impossible for an AV to follow 
[5]. Also, it may not be possible for AVs to properly follow the rules related to excep-
tions [5, 6]. Therefore, it seems conceivable to formalize traffic rules into the machine-
computable format by resolving the above-mentioned issues to make them followable 
for AVs. This formalization can bridge the gap between traffic rules and further 
knowledge processing for AVs. 

In this paper, we intend to discuss the methodology for making the legal decision 
for AVs according to Queensland overtaking traffic rules. We choose overtaking traf-
fic rules as it is one of the most challenging traffic rules, which has several complicated 
and varied conditions. The formalization is designed using DDL to successfully handle 
the exceptions and resolve the vague terms in rules. Our contributions to this work are: 

• We have formalized the Queensland overtaking traffic rules using Defeasible De-
ontic Logic (DDL). 

• We evaluate this formalization through a comprehensive experiment. 

2 Related Work 

Rule formalization (i.e., the representation of legal rules in a machine-computable for-

mat) is a crucial requirement for compliance checking, automatic reasoning, and legal 

validation [7]. However, it is a difficult task because of the domain-specific sentence 

length, clause embedding, and structure. Rules contain thousands of provisions and 

norms, making formalizing work even more challenging . Several studies have been 

conducted to address the issues of rule formalization. In addition, several languages and 

products have been proposed to formally represent them. For example, LegalRuleML 

is a novel XML standard for the representation of norms [8]. Several commercial prod-

ucts, such as Oracle Policy Automation , offer services to translate rules into executable 

language and give a user-friendly natural language online interface.  

Traffic rules are primarily written in natural language. Due to the complex and var-

ying nature of traffic rules, it is a challenging task to formalize them. Any incorrect rule 

formalization might have a negative impact on the reasoning process. Despite chal-

lenges, several studies focused on formalizing traffic rules for different purposes. Some 

significant recent studies regarding traffic rule formalization are: 

Zhao, et al. [9] introduced an ontology model for making a fast decision according 

to traffic rules at the intersection. Ontologies in this proposed method represent 

knowledge of the sensory data. Traffic rules were represented through SWRL rules. 

However, the methodology was limited to working only on specific traffic rules. Hence, 

to include new regulations, further work was needed. 

23



Zhang, et al. [10] proposed an expert system to formalize traffic rules to develop 

the driving knowledge base, which can play a significant role in making intelligent 

driving decisions for AV. A knowledge acquisition method was applied to build traffic 

rules knowledge base. This method defined traffic rules concepts, quantitatively ex-

plained rule characteristics, and created a logical relation between rule terms. 

Rizaldi and Althoff [11] formalized traffic rules to identify which vehicle was liable 

for the collision. This work aimed to prove that the AV always obeys the traffic rules, 

and therefore, there was no chance for the AV to become responsible for the collision. 

The overall process was conducted mainly in three steps. First, a subset of Vienna traf-

fic rules was formalized and concretized in the Higher-Order-Logic (HOL). Second, a 

black box recorded the behaviour of the AV. Later, the author extended the work and 

tried to solve the rule vagueness issue [5]. 

Censi et al. (2019) proposed a rulebook, a formalism methodology for UK & Singa-

pore rules, to make self-driving vehicle behaviour compatible with the current traffic 

regulations. Rulebooks define driving behaviour by defining rules precisely and estab-

lishing a hierarchy of rules. The author experimented with this rulebook on three spe-

cific traffic scenarios: unavoidable collision, lane change near intersection and clear-

ance and lane-keeping based on 15 rules. However, the rulebook was domain-specific, 

and for a different nation, the priorities of the rules needed to be changed. 

McLachlan, et al. [12] proposed a method for deconstructing the traffic rule and 

representing it with the necessary needs and flow for the decision making of autono-

mous driving. Using legal vocabulary, the technique deconstructs road regulations, 

which were then specified in structured English logic, Boolean Logic. The key points: 

the chronology of operation and processes of rules were represented through the bool-

ean logic. The evaluation of this rule representation was conducted on 23 UK road rules. 

However, this methodology of deconstructing traffic rules works only for simple traffic 

laws, such as traffic lights, seat belt wearing, speed limit etc. 

None of these studies addresses the combination of vague (open texture) terms and 

exceptions in rules, which might create problems for AV’s driving decision-making. 

Comparing these works in terms of handling and resolving vague terms and exceptions 

in rules, a Defeasible Deontic Logic (DDL) based formalization mechanism is proposed 

that can effectively handle and resolve these issues. DDL is a formalism that provides 

a conceptually approach to the formalize of the norm and, at the same time, exhibits a 

computationally feasible environment to reason about them. DDL has been successfully 

used in legal reasoning to handle norms and exceptions, and it does not undergo prob-

lems affecting other logic used for reasoning about compliance and norms [13, 14]. 

3 Traffic Rule Formalization 

This paper introduces a novel formalization methodology to translate the traffic rules 

into the machine-computable (M/C) format. This proposed methodology works in four 

steps (Figure 1).  
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Figure 1. Traffic Rule Formalization Workflow 

These steps are done manually. The methodology’s input is a set of traffic rules in nat-

ural language. In the first step, atoms are defined from the rules. In the second step, 

norms are determined. Then, the if-then structure is identified from the rules in the third 

step. Finally, DDL is applied to the atoms, deontic modalities, and if-then structure to 

make the machine-computable (M/C) rules format. The steps are explained below.  

3.1 Define Atom 

This section briefly outlines how atoms are defined from rules. An atom is a predicate 

symbol including constants or variables that contain no logical connectives [15]. Here, 

the atoms are extracted based on the occurrences of terms/expressions in the sentences 

or textual provision of the relevant traffic rules. A term is a variable or an (individual) 

constant in the textual provision . This work deals with expressions (predicates, varia-

bles, and constants) that refer to subject (s), predicate (p), property (pr), object (o), and 

qualifier (q) in a rule sentence. 

In natural language, a subject (or entity) refers to the term about which something 

is said in the sentence. The something which is said about something is the predicate of 

the sentence. The predicate of a subject-predicate sentence indicates a relation or a 

property. The object is what that subject does something to. In other words, the object 

is the result of the action. Qualifiers are terms that usually enhance or limit another 

word's meaning. In one sense, a qualifier can be thought of as an adverb of the sentence. 

Before generating terms, some article pre-processing is done on the text. For example, 

verbs (auxiliary, principal, modal, etc.) are not considered as terms. In logic, subjects 

and objects are variable or constant in the rule sentence correspondence to the entity 

[16]. A predicate is a constant in the rule sentence that always refers to the properties 

or actions of entities. Properties indicate the relationship between subject and predicate. 

Object refers to the properties of the entities. Qualifiers refer to the variables that en-

hance or limit entities. 
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An atom is a combination of these terms/expressions that form a (primitive) Bool-

ean expression. For example, “the bus breaks the traffic rule”. According to the lin-

guistic perspective, the term “bus” is the subject of the sentence as this sentence is about 

this bus. The term “traffic rule” is the object of the sentence as the subject is doing 

something to it. The term “breaks” is the predicate of the sentence as it expresses the 

relation between the subject (bus) and object (traffic rule). In the logical approach, 

“bus” is that variable which is referring to the entity (subject) of the sentence. “breaks” 

is the predicate constant which is referring the action of the entity. “traffic rule” is a 

(individual) constant of the sentence which is referring to the properties of the entity. 

So logically, the above example can be represented as a predicate (subject, object): 

B(b,t) ≡ Breaks (bus, truck): Subject-Predicate-Object: thebus_Breaks_theTrafficRule. 

Another example is Queensland Overtaking Traffic Rule 140, states “the driver can 

safely overtake the vehicle”. In this rule, “driver” is the variable corresponding to the 

subject (entity) of the sentence. “overtake” is the predicate that refers to the action of 

the subject (entity). “can safely” is the qualifier that defines the predicate of this rule. 

“vehicle” is an individual variable that refers to the object of the rule. Integrating these 

four terms, an atom is defined as: 

Predicate (subject, qualifier, object) ≡ Overtake (driver, CanSafely, vehicle): 

driver_CanSafelyOvertake_vehicle. 

The current traffic rules use natural language to define the cases (events and facts) 

they are meant to regulate (terms, conditions, and legal provisions). Depending on the 

events, the description of these cases varies. There is no general structure in how traffic 

rules are written. Due to this heterogeneity of the rule information, the atom structure 

varies. Throughout the empirical study of the Queensland Overtaking Traffic Rules, 

atoms are defined in five patterns: Subject-Predicate-Object, Subject-Predicate-Quali-

fier-Object, Subject-Property, Subject-Predicate-Object-Object, and Subject-Qualifier- 

Predicate-Object. Based on these patterns, examples of atoms are shown in Table 1. 

Table 1. Examples of defining atom from QLD traffic rules 

Example 1: Part 11, Division 3 rule 151: 1 (a) ⎯ driver must not overtake a vehicle 

Subject Predicate Object 

driver Overtake vehicle 

Defined Atom: NEG (driver_Overtake_vehicle). Pattern: Subject-Predicate-Object 

Example 2: Part 11, Division 3 rule 140: b ⎯ “the driver can safely overtake the vehicle”. 

Subject Predicate Qualifier Object 

the driver overtake safely the vehicle 

Defined Atom: driver_CanSafelyOvertake_vehicle. 

Example 3: part 2, division 2, Rule 15 ⎯ “A vehicle includes a bicycle”. 

Subject Property 

vehicle is a bicycle 

Defined Atom: vehicle_Isabicycle. Pattern: Subject-Property. 
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Example 4: Part 11 Division 3 rule 151A-1: a ⎯ “motorbike between two adjacent lines”. 

Subject Predicate Object Object 

motorbike between adjacentLine1 adjacentLine2 

Defined Atom: motorbike_InBetween_adjacentLine1_adjacentLine2. 

Example 5: part 19 rule 305 ⎯ “A police vehicle is allowed not to display the light”. 

Subject Qualifier Predicate Object 

A police vehicle is allowed not to display the 

light 

Defined Atom: police_vehicle_allowed_NotToDisplayTheLight. 

These patterns are sufficient to cover the cases of Queensland overtaking traffic 

rules we considered for this reserach. While more patterns are possible, the patterns 

presented also offer guidance to capture more complex cases if needed. 

The proposed methodology aims at improving the uniformity, consistency and re-

peatability of formalization efforts. Witt, et al. [17] report very high (syntactic) varia-

bility of formalization when they are done by a team of coders; moreover, they report 

that adopting a common naming convention and sharing a formalization methodology 

greatly increase the agreement among the formalizations by the different coders. Also, 

fitting textual provisions in the patterns allows us to identify expressions that could 

have different syntactic structures but the same semantic meaning; such expressions 

will be formalized by the same atoms.  

3.2 Identify Deontic Modalities 

Deontic modalities are expressions in the traffic rule that (legally) qualify terms and 

actions. They help us determine the types of norms we are going to formalize. Each 

norm is represented by one or more constitutive or prescriptive rules. Constitutive rules 

define terms specific to legal documents. Prescriptive rules prescribe the "mode" of the 

behaviour using deontic modalities: obligation, permission, and prohibition. Here we 

follow the definition given by LegalRuleML for obligation, prohibitions and permis-

sion [8]. An obligation is an action or course that the subject must perform, whereas 

prohibition is an action or course that the subject must not perform. Permission is the 

state of an action that is not subject to a prohibition or an obligation.   

The prescriptive rules are determined based on conceptual semantic understanding 

and some special keywords, which are “must”, “must not”, “should”, “ought”, etc. Con-

stitutive rules are identified through the semantic and syntactic mapping of descriptive 

notions in the sentences. Some examples of descriptive notions in Queensland overtak-

ing traffic rules are “is”, “means”, “does not”, etc.  

This research identifies norms based on both constitutive and prescriptive forms of 

rules. For example (Figure 2), in the Queensland Traffic Rules, part 11, division 3, rule 

141 states that “a driver must not overtake a vehicle to the left of the vehicle unless 

….”. Here “must not” (prohibition) is identified as a prescriptive norm within this state-

ment. Another example in the Queensland traffic rule part 3, section 23, states, “A 
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school zone is ⎯”. Here, this phrase is meant to define the school zone, which is a 

constitutive norm (Count-As) within this statement. 

 

Figure 2. Examples of identifying deontic modalities (norms). 

3.3 Define the If-then structure 

Traffic rules specify the actions of the subject (or the conditions the subject must ensure 

hold). They consist of deontic modalities and conditions that control the subject's be-

haviour. A rule comprises two parts: if (antecedent or premise) and then (consequent 

or conclusion).  

If the premise becomes true, then the consequent part of the rule triggers. A rule 

may have multiple antecedents joined by logical operators: OR, AND, and XOR. From 

a legal perspective, rules use conditions on some actions to achieve/mandate specific 

behaviours. Therefore, the if-then structure is identified from rules using atoms and 

deontic modalities (norms) for formalizing rules. For example, in the Queensland traffic 

rules, Part 11, Division 3, Rule 140 states:  

A driver must not overtake a vehicle unless—  

(a) the driver has a clear view of any approaching traffic, and  

(b) the driver can safely overtake the vehicle”.  

The rule expresses an obligation norm for the driver to overtake. In this rule, there 

are two components. The first (r_{140}) is the obligation of not overtaking, and the 

second (r_{140-exception}) is the exception of the first rule, which is giving permission 

(negation of obligation) to overtake. By defining atoms and identifying norms, the if-

then structure of this rule can be defined as: 

r_{140}:  

// the driver is not allowed to overtake 

IF 

  \emptyset 

THEN[F] // norm / deontic modality 

  %% must not overtake a vehicle %% 

  NEG (driver_Overtake_vehicle) 
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r_{140-exception}:  

// the exception (unless) of the rule is that the driver is allowed to overtake if he/she meet 

the following conditions.// 

IF 

    %% the driver has a clear view of any approaching traffic %% 

    driver_HasClearViewOf_approachingTraffic // atom 

AND 

    %% the driver can safely overtake the vehicle %% 

    driver_CanSafelyOvertake_vehicle // atom 

THEN [P] // norm / deontic modality 

    %% A driver must not overtake a vehicle unless %% 

    driver_Overtake_vehicle // atom 

r_{140- exception} ≫ r_{140} // Superiority relation 

3.4 Rule Formalization 

After defining and identifying atoms, deontic modalities and if-then structures for rules, 

the expressions are converted into a Defeasible Deontic Logic (DDL). DDL is an ex-

tension of Defeasible Logic (DL) with Deontic Operators and compensatory obligation 

operators introduced [18]. DDL is a formalism that provides a conceptually approach 

to the formalizing of norm and, at the same time, exhibits a computationally feasible 

environment to reason about them. DDL has been successfully used in legal reasoning 

to handle norms and exceptions, and it does not undergo problems affecting other logic 

used for reasoning about compliance and norms [13, 14]. Below is a brief overview of 

Defeasible Logic and Deontic modalities and how we used them to represent traffic 

rules. 

Defeasible Logic: Defeasible Logic (DL) is a non-monotonic, sceptical logic that pre-

vents the derivation of contradictory conclusions. For example, suppose there is a piece 

of information that supports the conclusion A, but also there is a second piece of infor-

mation that supports not A, preventing thus concluding A.  DL recognized the opposite 

conclusions and does not derive them. However, if A’s support has priority over ¬ A, 

then it might be possible to conclude A. 

Defeasible Logic is made up of five separate knowledge foundations: strict rules, 

facts, defeasible rules, defeaters, and superiority relations. [19].  Knowledge is orga-

nized in a theories, where a theory D is a triple (F, R, ≫) where F is a set of facts, R is 

a set of rules, and ≫ is a superiority relation in R.  

Expressions in Defeasible Logic are built from a finite set of literals, where a literal 

can be either an atomic statement or its negation. Given a literal A, ~A denotes its 

complement. That is, if A=B, then ~ A= ¬ B and if A = ¬ B, then ~ A = B. Facts (F) 

are unequivocal and conclusive statements. A fact represents a state of affairs (literal) 

or an act that has been performed and are believed to be true.  

A rule (an element of R) specifies the relationship between premises and conclusion 

and can be characterized as its strength. Strict rules, defeasible rules and defeaters can 
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be distinguished based on the relationship strength of the rules [20]. The following ex-

pressions describe these rules:  

A1,…, An → B (Strict Rules),  

A1,…, An ⇒ Y (Defeasible Rules) and  

A1,…, An ⇝ (Defeaters) B,  

where A1,…, An is the antecedent or premises (clauses), and Y is the consequent or 

conclusion (effect) of the rule.  

Strict rules are rules in the classical sense: if the premises are unarguable (for ex-

ample, a fact), then is the conclusion. For example, “a motorbike is a vehicle,” formally:  

Motorbike → Vehicle;  

Defeasible rules are rules that can be defeated by contrary evidence. For example, 

“a motorbike can edge filter”, formally, can be written as:  

Motorbike ⇒ Edge_Filtering_Vehicle. 

Defeaters are rules that cannot be used to derive any conclusions on their own. Their 

purpose is to preclude some conclusions, i.e., to undermine some defeasible rules by 

supplying opposite evidence. For example, suppose a rule state that: “if a rider does not 

hold O type license, then the rider cannot edge filter”. 

¬ rider_HoldOTypeLicence ⇝ ¬ Edge_Filtering_Vehicle. 

From this statement (and the previous one), it can be stated that a motorbike is an 

edge filtering vehicle, but if the rider of motorbike does not hold an O type licence, then 

it cannot edge filter on the road. This statement can prevent the conclusion of edge 

filtering. This is not also supporting the ‘no edge filtering’.  

The superiority relation (≫) used the priority set among the rules, where one rule 

may override the other rule’s conclusion. No conclusion can be made in such scenarios 

unless the rules are prioritized. For example, based on the following defeasible rules: 

r1: Motorbike ⇒ Edge_Filtering_Vehicle. 

r2: Vehicle ⇒ ¬ Edge_Filtering_Vehicle 

No conclusive decision can be made about whether a vehicle can edge filter. How-

ever, if we establish a superiority relation ≫ with r1 ≫ r2, then we can state that the 

vehicle cannot edge filter. A complete definition of defeasible logic reasoning mecha-

nism can be found in [13]. 

Deontic Operators: In addition to defeasibility, traffic rules contain extensive occur-

rences of deontic concepts. This research considered Obligation [O], Prohibition [F] 

and Permission [P] deontic operators to formalize traffic rules. The deontic operators 

are modal operators. A modal operator applies to a proposition to create a new propo-

sition where the modal operator qualifies the "truth" of the proposition to which the 

operator is applied. For instance, a proposition from QLD Overtaking Traffic Rule 141: 

driver_OvertakeToTheLeftOf_vehicle means that the "driver is overtaking the front ve-

hicle from its left side". We can distinguish this proposition based on the above deontic 

operators: 
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⎯ OvertakeLeft: this is a factual statement that is true if the vehicle overtakes from the 

vehicle's left and false otherwise (¬ OvertakeLeft is true). 

⎯ [O]OvertakeLeft: this is a deontic statement meaning that the vehicle must overtake 

the left of the vehicle. The statement is true if the obligation to overtake is in force 

in the particular case. 

⎯ [F]OvertakeLeft: this is a deontic statement meaning that the vehicle is prohibited 

from overtaking the vehicle on the left-hand side. The statement is true if the prohi-

bition to overtake is in force in the particular case. 

⎯ [P]OvertakeLeft: this is a deontic statement meaning that the vehicle has permission 

to overtake the left of the vehicle. The statement can be evaluated as true if the 

permission to overtake is in force in a particular case. 

Moreover, to formalize traffic rules using DDL, we consider the traffic system as a 

normative system, which has a set of clauses (norms), where the causes/norms are rep-

resented as if...then rules. Every clause/norm is represented by one (or more) rule(s) 

with the following form: where, X1, …, Xn are the conditions of applicability of the 

norm, and Y is the "effect" of the norm.  

X1, …, Xn ⇒ Y 

The above-mentioned ([O], [P], [F]) deontic modalities modelled the normative ef-

fects. We take the standard deontic logic relationships between these deontic modali-

ties. These are described below (taking the concept of overtake, atom: overtake). 

[F] Overtake ≡ [O] ¬ Overtake 

[O] Overtake ≡ [F] ¬ Overtake 

[P] Overtake ≡ ¬ [O] ¬ Overtake 

Now, a complete example of traffic rule (QLD rule 141 – Table 2) formalization 

using DDL is shown in below Figure 3. 

Table 2. Queensland Traffic Rule 141 

Rule 141: No overtaking etc. to the left of a vehicle 

(1) A driver (except the rider of a bicycle) must not overtake a vehicle to the left of the vehicle 

unless— 

(a) the driver is driving on a multi-lane road and the vehicle can be safely overtaken in a 

marked lane to the left of the vehicle; or 

(b) the vehicle is turning right, or making a U-turn from the centre of the road, and is giving 

a right change of direction signal and it is safe to overtake to the left of the vehicle; or 

(c) the vehicle is stationary and can be safely overtaken to the left of the vehicle; or 

(d) the driver is lane filtering in compliance with section 151A or edge filtering in compliance 

with section 151B. 
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Figure 3. Formalization of  Queensland traffic rule 141 

4 Experiment & Evaluation 

A large-scale experiment is carried out to evaluate the proposed traffic rule formaliza-

tion. Forty cases of overtaking maneuvers are evaluated based on eight realistic 

Queensland overtaking traffic scenarios. Every case is a specific overtaking maneuver. 

First, a compliance checking framework (ATRCCF) is built based using this formali-

zation methodology. For details about the framework, please see [21]. Then this frame-

work was applied to these overtaking maneuvers to validate AV behaviour. Then par-

ticipants (general drivers and domain experts) were asked to assess these maneuvers. 

After that, the proposed framework's performance (effectiveness) was determined 

based on how many participants agreed with the framework’s evaluation. This perfor-

mance essentially shows the performance of the proposed formalization. From this 

analysis, it can be identified how well the formalization is. If the performance is prom-

ising, then it can be stated that the proposed formalization methodology effectively for-

malizes traffic rules for AVs. The evaluation was conducted based on two aspects: 

1) legal/illegal validation of every maneuver, and 

2) reason identification if the maneuver is illegal.  

Five different overtaking maneuvers are designed for each traffic scenario. Two of 

these maneuvers are examples of explicit legal and illegal driving actions. The other 

three are borderline maneuvers, which may not be directly classified as traffic viola-

tions. One of the main reasons to make these three different types of maneuvers is that 
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traffic rules contain vague terms (e.g., safe distance, approaching vehicle, clear view, 

etc.) requiring judgment by the drivers. Clearly, AVs need a deterministic and algorith-

mic approach. For example, determine whether the distance between two vehicles is 

safe. The parameters for the borderline situations are placed near the calculated thresh-

old, whilst the values for the clear cases are considerably away.  

 

Figure 4. Performance of the compliance checking framework (ATRCCF). 

Figure 4 shows the performance of the ATRCCF. In clear overtaking maneuver 

cases, on average, there is 84% legal/illegal and 86% reason identification agreement 

between participants and the framework. In borderline overtaking maneuver cases, par-

ticipant average agreement rates with the framework’s legal/illegal decision and reason 

identification are almost identical, which is 59%. The borderline cases are designed to 

test the human perception of the maneuvers with a very close threshold between legal 

and illegal in terms of a maneuver. According to the 50% outcome is truly indicative 

that the borderline cases are really borderline. Based on these agreement rates of clear 

and borderline cases, it can be stated that the compliance checking framework 

(ATRCCF) is promising. Essentially this indicates that the proposed formalization 

methodology is a promising approach to formalizing traffic rules for AVs. 

5 Conclusion 

This formalization methodology uses defeasible deontic logic to make the machine-

computable (M/C) representation of traffic rules; however, there are some issues re-

garding the accuracy and completeness of the representation. Given the sophisticated 
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and varied nature of traffic rules, identifying all the terms, norms, rule types, and con-

ditions is challenging as these components are found in explicit or implicit linguistic 

forms. Also, traffic rule is written in natural language, which is more expressive than 

any other formal language. As noted, atoms are defined semantically in terms of five 

patterns. These patterns are sufficient to cover most cases of Queensland overtaking 

traffic rules. While more patterns are possible, the patterns presented also offer guid-

ance to capture more complex cases if needed. However, there might be some subtle 

issues. In terms of the norm (deontic modality) determination from rules, only explicit 

types of norms (obligation, permission, and prohibition) are considered, although there 

might be different types of permission and other normative effects . A question may 

arise regarding the use of DDL in this work⎯that the formalizing methodology is not 

evaluated with any gold standard or other approaches. According to the Australian con-

stitution, only the judiciary have the authority to provide the interpretation (gold stand-

ard) of the rules. Here, it is our best effort to do the formalization. When we look at the 

rule, and apparently, our formalization seems meaningful, and it is evaluated through 

the experiment. Due to the authoritative interpretative role of the courts within Austral-

ia's constitutional system, we are unable to draw a final decision about the degree to 

which formalized rules coincide with the legislative language . This is a limitation that 

applies to any effort to formalize legislation. Despite these limitations, the proposed 

formalization methodology's significant advantages are domain independence and 

scope of applicability. This methodology can be used in other domains such as anti-

money laundering, university, etc. This formalization research also gives significant 

insights into the origins of legal formalization, its concerns, and possible remedies 

which could be useful for the rac (rules as code⎯ representation of the rules so that 

computers can understand) movement. 
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Abstract. There has been much work to formalise legal sources, mostly claim-
ing to maintain isomorphism with the original texts and sometimes to automate
the translation from natural language to logic. However, the diversity of purposes,
goals, and results make them difficult to compare. In modeling legal sources, we
must appreciate the diversity so as to make informed decisions about methodolo-
gies and their rationale. This paper compares and contrasts two approaches that
have been applied to the GDPR, which controls the input. The discussion high-
lights methodological issues, concrete ways towards formalisation of legal text,
and notions of formalisation continuum and stepwise refinement.

Keywords: legal modelling, semantic annotation, isomorphism

1 Introduction

While legal texts are written in natural language, there has been increasing interest and
proposals to model legal textual provisions in some machine-readable form suitable to
the goals of the Semantic Web. These efforts aim to address a range of problems related
to the volume and complexity of the Law and contribute novel approaches to aid the
economy and public services (e.g., compliance management and checking, legal aid,
consistency assessment, and legal research). Legal service providers and government
have a stake in these problems and approaches, which are core issues in AI and Law.

While there has been progress, it would appear to be slow, incremental, and dis-
persed, particularly about semantic content rather than document structure. Some of
the pace is due to the scale and diversity of legal sources (e.g., legislation, regulation,
case law, legal practice areas); some is related to the well-known range of conceptual
matters in the analysis of legal text such as open-textured terms, references, alternative
expressions, liability, tacit concepts, jurisdictions, and functional roles of statements.

The main issues addressed in this paper bear on the challenging methodological is-
sues related to translating legal language to some formal representation, where the lack
of shared methodology and target formalism are key issues. It is difficult to gain per-
spective given the diversity of sources, use cases, conceptual matters, and approaches.

To gain perspective on modeling methodologies, this paper examines two compa-
rable experiments of significant size on the same text, the results of which are public.
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The text is the General Data Protection Regulation (GDPR)3, and the approaches are
DAPRECO [1] (from the DAta Protection REgulation COmpliance project) and CLAL
[2] (Core Legal Annotation Language).

The comparison of these two experiments makes it possible to situate the underlying
models on distant positions on the formalisation continuum [3] from source text to full
logical formalisation, with complementary objectives, strengths and limitations. This
leads us to propose an incremental approach to formalisation, each stage correspond-
ing to a step of formalisation starting from the previous stage and based on its own
methodology. This provides a roadmap for the overall task of enriching legal sources
with machine-readable and processable representations.

Section 2 points to a range of approaches and markup languages used for modeling
legal provisions. We outline the GDPR models produced by the CLAL and DAPRECO
experiments in Section 3 and discuss the two approaches in more detail in the following
sections. Section 4 shows how different the objectives of the two experiments are, even
though they deal with the same text. Section 5 focuses on the common constructs and
principles of the two models. Section 6 considers methodological convergences and
divergences. Last, section 7 takes stock of the comparison.

2 Background
2.1 A variety of modelling approaches

Much effort has been devoted to the management of legal sources since the 1990s,
with significant progress in several areas [4], especially regarding document standardi-
sation [5] and vocabularies or ontologies [6,7,8]. The modelling of provision rules has
been identified as a major challenge, issues being the target logical formalism [9,10]
and the methods to derive rules from texts, some of which focusing on rule acquisition
methodology [11], others relying on natural language processing and information ex-
traction techniques [12,13]. Following the well-agreed “isomorphism” principle [14],
most approaches emphasise the necessity of anchoring models in authoritative textual
legal provisions. Legal professionals must be able to retrieve the source text, which
encompasses a broader reality and is more open to interpretation than a formalisation.
Isomorphism also facilitates update of a model when the source text changes.

However, approaches are difficult to compare and evaluate when they are tested on
different use cases, different goals (drafting, search, compliance analysis, etc.), different
types of texts (legal cases, contracts, provisions, etc.), and at various scales. Also highly
relevant is public release of the detailed methodology followed to produce the formali-
sation, along with a discussion on methodological issues as in [15]. In most cases, the
approaches are illustrated on examples, and large models are rarely made public. On the
whole, this makes it difficult to capitalize on these experiences, hindering deployment
of those modeling methodologies towards large-scale formalisation of legal provisions.

2.2 Different types of markup languages
Many approaches, including that of CLAL and DAPRECO, rely on markup languages
such as the following:

3 The GDPR has been adopted in 2016 and it entered into force the 25th May 2018. As the
GDPR is well-known, it is not reviewed.
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Table 1. Mark-up languages

XML AkomaNtoso CLAL RuleML LegalRuleML
Domain neutral legal legal neutral legal

Annotation focus generic
text text

rules rules
structure semantics

Annotation format wrt. text any inline inline standoff standoff

XML 4 is designed for storing and transporting any sort of data, including but not
limited to texts. Through the definition of domain specific languages, it enables
interoperability, interchange, and extensibility. XML Schemas specify the tags (el-
ements and attributes) that can be used along with their combination rules.

AkomaNtoso 5 is an international standard XML language designed for representing
legislative and judiciary documents in a structured manner. It is mainly composed
of an XML vocabulary that describes the structure of legal documents and of an
XML schema that specifies how the structural elements are organised in legal doc-
uments. The standard ensures the interoperability at the document level.

Legal semantic annotation languages are also XML languages tailored to the legal
domain but focusing on semantics and content description rather than structure.
CLAL is such a language with a vocabulary, schema, and guidelines. It differs from
AkomaNtoso in that it is not a standard and focuses on content.

RuleML 6 is an XML language designed as an interchange format for rules. It is com-
patible to various types of logical formalisms and inference systems.

LegalRuleML 7 is an XML sublanguage of RuleML, which defines a rule interchange
language for the legal domain along with auxiliary elements. It is designed to enable
the development of tools for creating, evaluating, and comparing legal rules as well
as relating rules to text. The DAPRECO logical rules are encoded in LegalRuleML.

These languages differ in terms of domain dependency, focus, and format (Table 1).
XML and RuleML are domain independent whereas the others are specific to the legal
domain. AkomaNtoso and CLAL annotate text (inline annotation); RuleML and Legal-
RuleML encode rules referring to text (standoff annotation). AkomaNtoso and CLAL
respectively focus on the document structure and the semantics of provisions.

2.3 Introduction of CLAL and DAPRECO

CLAL The aim of [16] is to enrich legal sources with a “coarse-grained, interpretation-
neutral, semantic annotation layer” in order, primarily, to improve access and retrieval
of legal provisions as a whole. The language is used to annotate the text, making ex-
plicit its role in the construction of legal knowledge. “Interpretationally neutral” means

4 eXtended Markup Language https://www.w3.org/standards/xml/core
5 http://docs.oasis-open.org/legaldocml/akn-core/v1.0/cos01/

part1-vocabulary/akn-core-v1.0-cos01-part1-vocabulary.html and
http://docs.oasis-open.org/legaldocml/akn-core/v1.0/cos01/part2-specs/

akn-core-v1.0-cos01-part2-specs.html
6 Rule Markup Language https://en.wikipedia.org/wiki/RuleML
7 Legal Rule Markup Language https://docs.oasis-open.org/legalruleml/

legalruleml-core-spec/v1.0/legalruleml-core-spec-v1.0.html
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Table 2. CLAL vocabulary: elements used for the semantic annotation of legal sources. Statements
with an asterisk have subtypes (type attribute) enumerated under them. Roles connect entities to
statements. Relations hold between statements.

Entity mentions
Statements

Roles
Prescriptive Constitutive Dependant

concept obligation definition exception bearer

person prohibition attribution* complement* target

legal entity permission competency procedure obj

power* responsibility text-specification
Relations

executive quality precision

ruling impact except

right validity rel

that there is a consensus on how to annotate a passage, even if it remains open to inter-
pretation. For instance, there is generally consensus about annotating exceptions.

Three kinds of information are annotated: 1) occurrences of important concepts or
actors, 2) categories of statements, and 3) relations between statements and concepts or
other statements. The annotation vocabulary is modest in size so that annotation remains
manageable and the language is easy for annotators to master.

CLAL main components are in Table 2. The language is formalised in XML and de-
scribed in an XSD schema. An annotation guide defines the terms and how to annotate
with them. The language and the GDPR annotations are publicly available8.

DAPRECO In the DAPRECO knowledge base (D-KB) [1,17] output by the project,
the provisions are formalised in reified Input/Ouput logic (RIO), then represented in
RuleML along with portions of LegalRuleML. We simplify.

D-KB contains 3 sets of formulae: facts, obligations and permissions, marked as
Fact, Obl or Perm. A formula can belong to any set, and its prescriptive status is de-
termined by the set to which it belongs. Rules are pairs [I,O] of input and output state-
ments. Each rule is marked with a class (Fact, Obl or Perm). When the input I matches
Fact, the output O is added to the set of formulae corresponding to the rule class.

Reification in RIO enables nested predicates to be stated in First-order Logic us-
ing a naming mechanism: e.g., the fact that the predicate p applies to an argument a
can be named ep and used as an argument by another predicate q9. The RIO formal-
isations are then represented in RuleML along with a selection of elements of Legal-
RuleML (LegalReference, Association, Context, Statement, Constitutive-
Statement) [18]. A RIO rule is represented as a ConstitutiveStatement and its
class is specified in the Context element. The model is public.10 To determine if given
cases conform to the law, DAPRECO relies on the distinction between institutional and
input facts, and on a two-layer architecture: 1) constitutive norms are used to transform
input facts into institutional facts; 2) regulative norms are used to determine if institu-

8 https://lipn.univ-paris13.fr/~fl/CLAL/
9 q(ep,b) therefore holds for q(p(a),b). The prime sign (’) is the naming operator: the for-

mula p’(ep, a) gives ep as a name for p(a).
10 https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml
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Table 3. Coverage

GDPR CLAL DAPRECO
Articles 99 99 50

Paragraphs 372 372 159
Result Elements 612 statements 846 formulae

tional facts are conformant [1, p. 10]. On the vocabulary side, D-KB makes use of three
ontologies (PrOnto [19], RioOnto and DAPRECO), which are not public.

3 Experimental setup

To take stock of the methods for formalising legal provisions, we compare the CLAL
and DAPRECO models of the GDPR.

3.1 Two contrasting models of GDPR

Both approaches have been applied to the GDPR (Table 3). The source text contains
99 articles and 372 paragraphs composed of sentences or list items (612 sentences,
involving 66 lists which themselves involve 389 items).

A small example helps to contrast these approaches:

In exercising his or her right to data portability pursuant to paragraph 1, the
data subject shall have the right to have the personal data transmitted directly
from one controller to another, where technically feasible. (Art. 20, Par. 2).

CLAL annotates this paragraph as a single right statement (Fig. 1), which implies a
beneficiary (bearer) and a counterpart (target) responsible for enforcing the bearer’s
right. Those roles are filled by two actors: the data subject (bearer="p DS") and the
controller (target="p CONT"), respectively.

Fig. 1. CLAL annotation of Art. 20, Par. 2

<leg:RIGHT IDENTIFIER="020.002.001" bearer="p_DS" target="p_CONT">In
exercising his or her right to data portability pursuant to paragraph 1,
the data subject shall have the right to have the personal data
transmitted directly from one controller to another , where technically
feasible.</leg:RIGHT >

DAPRECO formalises the paragraph as an obligation. In Figure 2, an obligation
marker scopes over a premise (input) and a conclusion (output), separated by a comma.
The premise has 3 parts indicated by indentation. The first states that there is a data
subject (:w) owning personal data (:z) and a controller (:y) for these data, who nomi-
nates a processor (:x) who processes them. The second part states that the data subject
requests (:er) that the processor transmit (:etr) the data to the controller :k. The last
part encodes exceptions. Given the underlying Input/Output logic and mark up, if the
premises hold, the conclusion belongs to the obligations; that is, the transmission :etr

must be realized at some time :t2 after the request was realised at :t1.
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Fig. 2. DEPRECO obligation rule associated with Art. 20, Par. 2 represented in RIO.

Obligation (
(rioOnto:RexistAtTime :a1 :t1) & (rioOnto:and ’ :a1 :etr :er :edp) & (

prOnto:DataSubject :w) & (prOnto:PersonalData :z :w) & (prOnto:
Controller :y :z) & (prOnto:Processor :x) & (prOnto:nominates ’ :edp :
y :x) & (prOnto:PersonalDataProcessing ’ :ep :x :z)

& (prOnto:Controller :k :z) & (prOnto:Transmit ’ :etr :x :z :k) & (dapreco
:Request ’ :er :w :etr)

& Naf(( rioOnto:exceptionCha3Sec1Art12Par2 :ep)) & Naf(( rioOnto:
exceptionCha2Art11Par2 :ep)),

(rioOnto:RexistAtTime :etr :t2) & (After :t2 :t1) )

3.2 Comparison methodology

This paper draws on a systematic, thorough, and detailed comparison of DAPRECO and
CLAL models, which is summarized here.

We aligned the two models to the reference text to assess their coverage and gran-
ularity in relation with their respective requirements (Section 4). We analysed in detail
the paragraphs as they are modelled in CLAL and DAPRECO. From this, we identified
and contrasted common elements and core legal notions (e.g. constitutive statements,
permissions) or modelling principles (e.g. isomorphism) (Section 5). We left aside the
statements of the GDPR that are analysed in CLAL but not in D-KB, the technical issues
of DAPRECO modelling, and the details of RIO rules that have no counterpart in CLAL.

The aim of this comparison is not to evaluate the models produced,11 but to analyse
the underlying formalisation methods in the light of the objectives pursued. This helps
to assess how far we still have to go to formalise large sections of legal texts (Section 6).

4 Requirements Analysis

While common practice in software engineering, there appear to be few statements of
requirements in projects about the formalisation of legal texts. That is, it would appear
that modelling choices are often made intuitively, without going through an explicit
stage of specifying the objectives to be achieved, the means to achieve them, and an
analysis of the resultant model against requirements. In order to clarify and motivate
modelling choices, key features of requirements ought to be addressed.
Target application Models may be developed for a specific usage or as a generic con-
tribution to the legal semantic web. DAPRECO and CLAL illustrate this contrast. D-KB is
designed for compliance analysis with respect to controllers’ and processors’ behaviour,
i.e. to support inference. CLAL is open to a wider range of uses. Initially designed to
help people search for provisions and navigate legal sources, it may serve more widely
as a platform for legal work (e.g., drafting and text management) or, with further refine-
ment, reasoning (e.g., consistency checking).
Target context of use It is essential to specify in advance how specific or generic the
model should be in relation with the target context of use. In general, legal provisions

11 Given the unpublished ontologies related to D-KB, it is not feasible to analyse the formalisation
of DAPRECO in detail.
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are written to apply to a wide range of situations, while applications are more focused,
which restricts the space of discourse and interpretation (i.e. the entities, predicates and
courses of action to be considered are specific). CLAL models the text itself, which
is generic. The DAPRECO rule base, which is designed for inference and compliance,
needs to be further specified and include additional knowledge, related in particular to
input facts, domain knowledge, and any context relevant regulation.12

Level of formalisation In relation to operationalisation, one should specify the ex-
pected level of formalisation. As it is designed for automatic legal reasoning, DAPRECO
requires a logical formalism. To support human legal analysis, CLAL needs a lesser
degree of formalisation, but it must be understandable to legal practitioners.
Text selection The textual parts that serve as a basis for the model should be selected
in accordance with the project goals, and the selection should be documented. Table 3
shows that CLAL and DAPRECO models do not have the same coverage of the GDPR.
Even if it is not explicit, DAPRECO selects provisions for compliance, leaving aside e.g.,
the roles of “supervisory authorities” or the powers of legal bodies.
Cost assessment Modelling is resource intensive and requires expertise. The cost should
be factored into the level of requirement, i.e., the scope and granularity of the model.
RIO modelling is obviously more demanding than CLAL annotation. [1] reports that
building D-KB took 4 months of work by the designer of the approach, an expert in I/O
logic. [2] estimated that it takes approximately 50 hours to annotate the entire GDPR
for annotators familiar with the reading of legal sources; a more recent experiment [20]
suggests that trained Law students might annotate the GDPR in less than half that time.
Maintenance and evolution If the model will be maintained and evolve, it must be de-
cided how and why. These points are particularly important in the legal domain. Main-
tenance is addressed in the same manner by DAPRECO and CLAL approaches. Thanks to
the isomorphim mechanism, one can identify the parts of the model to be revised when
the source text is modified. Extending a model is more complex. A CLAL model can be
extended with new vocabulary terms and the annotation of new texts. For DAPRECO,
there is no guarantee of monotonicity, and specific mechanisms need to be developed
to check and maintain the consistency of a rule base after new rules have been added.
Plurality of interpretations If the target model has to account for multiple interpreta-
tions, which reflects that different lawyers may have different context-dependant read-
ings, then an interpretation neutral language like CLAL is not appropriate. A more ex-
pressive language is needed, such as LegalRuleML with its “association” mechanism
that allows multiple interpretations to be associated with a rule.

These various requirement features are inter-related. Automatic reasoning requires
a high level of formalisation and the incorporation of domain-specific knowledge. For
document management, on the other hand, genericity and broad coverage should be
favoured over precision of description. DAPRECO and CLAL embody two different vi-
sions of the legal text semantics. The goal and context oriented approach of DAPRECO
is more formal, and it focuses on the provisions relevant to the intended use case. The
text-based and shallower CLAL approach takes all textual provisions into account, re-
maining open to what is used in applications and agnostic with regard to interpretations.

12 In this respect, the published D-KB is incomplete, as acknowledged by the authors of [1].
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5 Modelling issues

DAPRECO and CLAL share some modelling principles and legal concepts, but imple-
ment them in different ways. Out of scope are other features which are not comparable
due to the differences in coverage and granularity.
Isomorphism As recommended [14], both models are isomorphic to the text.13 The
isomorphism is not at the same level in the two models. In CLAL, annotation is done
at the sentence level, whereas the basic textual element in DAPRECO is the paragraph,
except for some paragraphs which are broken down into list items. The text to model
correspondence is also much simpler in CLAL than in DAPRECO. In CLAL, each GDPR
sentence is annotated with exactly one type, even if statements can be related to each
other. In DAPRECO, several rules are often associated to a given textual element, e.g.,
Art. 35, Par. 3, Item 2 is associated with 10 obligation rules, accounting for a reference
to another article14 which does not enter into an isomorphic relationship with Art. 35,
Par. 3, Item 2. Such a complex text-rule correspondence cannot be explored manually.
Prescriptive statements Deontic modalities are at the heart of most legal formalisms.
DAPRECO and CLAL use the categories of obligation and permission. CLAL accounts
for fewer permissions than DAPRECO (less than 20 vs. 76 permission rules correspond-
ing to 50 paragraphs). This is partly due to the difference in the granularity (where some
expressions were not annotated as statements in CLAL) and to the fact that CLAL often
annotates strong permissions as prohibitions with exceptions, following the wording of
the text. Both models take prohibitions into account but in different ways. In DAPRECO,
prohibitions are not represented per se, but as an obligation with respect to a negated
predicate. In CLAL, there is no analysis of predicates or their negations, so obligations
and prohibitions are considered as distinct categories. CLAL has two additional deontic
categories – rights and powers. In D-KB, rights are modelled as permissions or obli-
gations, depending on whether the focus is on the bearer or the target. For instance,
sentences annotated as rights of the data subject that bind the controller in CLAL are
modelled as permission15 or obligation 16 rules in D-KB. Powers, which concern legal
bodies rather than controllers or processors, appear to be out of the scope of D-KB.
Constitutive statements The distinction between constitutive and prescriptive state-
ments is acknowledged as important in most legal theories. It accounts for the difference
between establishing and qualifying facts on the one side, and applying legal prescrip-
tions on the other. DAPRECO encodes constitutive statements as constitutiveRule.17

CLAL has two main types of constitutive statements, definition and attribution

(for attributing a quality, a competence, or a responsibility to an actor). There is little
correspondence between the two models (Table 4). This is largely due to differences
in coverage and granularity of description (D-KB leaves out Art. 4 ”Definitions” of the

13 Technically, DAPRECO exploits the LegalRuleML model of references, using Association

and LegalReference elements to link a given statement to a textual identifier. CLAL relies on
the annotation mechanism and XML tags surrounding the annotated piece of text.

14 “Categories of data referred to in Article 9(1)”.
15 Art. 7, Par. 3 ”The data subject shall have the right to withdraw his or her consent at any time.”
16 Art. 15, Par. 1 ”The data subject shall have the right to obtain from the controller [...]”
17 We consider the semantically motivated rules and not those introduced for technical reasons.

43



GDPR), but there are also points of disagreement. For instance, two constitutive state-
ments of D-KB are analysed as prohibitions rather than definitions, as in CLAL.18

Table 4. Constitutive statements: correspondence between DAPRECO and CLAL models

DAPRECO model Agreed CLAL model

16 constitutive statements
1 21 definition statements
2 15 attribution statements

Exceptions and relations between statements Interactions between provisions is an
important issue to account accurately for the law. CLAL and DAPRECO both account for
exceptions, but in different ways. In CLAL, an exception statement is annotated with an
except relation referring to all passages to which it makes exception. In DAPRECO, an
exception is encoded as a constitutiveRule, which concludes on a specific exception
predicate (D-KB contains 48 of these) which supports a negation as failure mechanism.
It follows that CLAL simply points out statements that describe or mention exception
cases whereas DAPRECO explicitly and exhaustively characterises the exception cases
in order to draw inferences.

In addition, CLAL encodes a number of semantic relations between statements
where one complements the other. For instance, the demonstration of consent state-
ment19 is related to the paragraph that links the lawfulness of processing to the explicit
consent of the data subject20. As DAPRECO encodes them as two unrelated rules (resp.
obligation and constitutive), it misses the fact that a consent that cannot be demonstrated
does not really constitute a consent and does not make the processing lawful.

Entities, roles, and predicates There are obvious correspondences between DAPRECO
and CLAL vocabularies –e.g., permission, controllers, data subject, lawfulness, personal
data, processing, personal data breach – but it is not possible to compare the fined-
grained formalisation of statement internal content of DAPRECO with the coarse-grained
statement types of CLAL. Analysing the rich vocabulary of DAPRECO21 goes beyond
the scope of this paper, since the underlying definitions and axioms are not part of
the accessible D-KB. CLAL vocabulary is more restricted22 as it is designed to be easy
for lawyers to understand and for annotators to use. It is augmented by dictionaries of
GDPR concepts and actors.

18 Art. 6, Par. 1 and Art.-8, Par.-1 ”Processing shall be lawful only if and to the extent that [...]”.
19 Art. 7, Par. 1 ”Where processing is based on consent, the controller shall be able to demonstrate

that the data subject has consented to processing of his or her personal data”
20 Art. 6, Par. 1(a) ”Processing shall be lawful only if and to the extent that at least one of the

following applies: (a) the data subject has given consent to the processing of his or her personal
data for one or more specific purposes;”

21 D-KB relies on 170 predicates, 24 functions and 15 logical concepts, respectively imported
from PrOnto, DAPRECO and LKIF, from DAPRECO and from rioOnto.

22 The GDPR annotation refers to 31 actors, 27 legal concepts, 16 statement categories and one
sub-statement category (except).
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6 Methodological Issues

Methodological issues condition the quality and relevance of the proposed models.

6.1 Model development methodology

We know from software engineering how necessary it is to develop large knowledge
bases with the help of intermediate checks and cross-checking, or otherwise risk error
and functional failure. Modelling legal sources on a significant scale calls for a sound
and practical methodology. It is difficult to create and maintain hundreds of rules or
annotations by relying on intuition and without assistance. One also needs to distribute
the work of formalisation, provide guarantees of traceability and reproducibility, control
costs, maintain the resulting knowledge base, and ensure the quality of formalisation in
general. Yet, many formalisms do not have a well-tested methodology or are not applied
to full-scale provisions. The scale of DAPRECO and CLAL experiments is a merit.

The CLAL approach benefits from the methodology developed over the years in
corpus annotation [21]. The CLAL annotation guides23 explain to newcomers how to
annotate. After familiarising themselves with the annotation environment and vocab-
ulary, annotators annotate the text separately following the recommendations and an
adjudication process is set up to resolve the annotators’ potential disagreements. That
methodology has been tested in the SPIN annotation campaign [20] and proved to be
efficient although it can still be improved. The resultant annotated corpus can be queried
online to extract relevant information, thus serving the aim of the analysis.

Formalising the content of statements in detail as in DAPRECO is more complex and
the underlying methodology is not documented. [1] reports on a tool that “guides and
monitor the building of [I/O logic] formulae” which ensures the well-formedness of the
output formulae, not their adequacy to the source text. It seems that the modeller con-
siders one paragraph after the other, selects the pieces of information that are relevant
for the target application, and translates these elements into I/O logic formulae which
are finally encoded in LegalRuleML. There are no explicit criteria for why a sentence
or paragraph should be modelled, and how to evaluate the adequacy of the model. [22]
proposes a methodology “to validate a formal representation of the GDPR” but does
not report any significant experiment. The lack of methodology affects the quality of
the resultant model and makes it problematic for ongoing development or application.

6.2 Quality criteria

The quality of a model is critical for its adoption and its operationalisation within any
legal IT system. It should be considered at different levels.

The syntactic quality – the well-formedness of the output model – is easy to control.
XML validation ensures that the XML output conforms to XML rules and relevant
schemas (here, CLAL and LegalRuleML schemas). In DAPRECO, a specific tool was
used to control the well-formedness of I/O logic formulae and checks that predicates

23 https://lipn.univ-paris13.fr/~fl/CLAL/
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appear in an ontology [1]. In CLAL project [20], the Oxygen XML editor was used to
support and control the annotation work and proved to be both accessible and useful.

Semantic quality reflects the degree to which the model “captures” the meaning
of the source texts, but it is difficult to measure. In annotation projects, it is generally
approached through measures of consistency and stability. Is the model reproducible?
Do two modellers give the same model for the same source text? Are similar passages
modelled in a similar way? These questions are the core of any annotation project.
CLAL utilised inter- and intra-annotator agreement measures and an adjudication pro-
cess to detect and correct possible drifts in the annotation. In effect, such measures
and processes attempt to “objectify” the judgements about sentence meaning that is en-
coded in the formalisation. Logical formalisms come with their own formal verification
mechanisms but there is a lack of testing methodology for controlling the quality of
formalisation process itself, as noted in Section 6.1.

A third level of model quality concerns its usefulness. It is based on users and spe-
cific use cases and can only be measured a posteriori even if the assessment protocol
should be defined a priori. Neither the DAPRECO nor the CLAL project have yet reached
this level of maturity. The authors of [1] acknowledge that much remains to be done be-
fore a truly operational compliance system is in place. Integrating CLAL annotations
into a search engine is an easier goal to achieve. [2] reports initial tests but the system
still has to be evaluated under real conditions.

There is a long tradition of quality control in code writing and software engineer-
ing, using tests of varying complexity. This is a prerequisite for the development and
deployment of safe and maintainable software. It is essential that legal formalisation
projects reach this level of maturity, if legal informatics is to take off.

6.3 Towards a method - modular, stepwise refinement

To this point, we have compared and contrasted two approaches, DAPRECO and CLAL,
in representing and formalising the semantic content of the GDPR, noting some of the
issues with fine-grained analysis which are not encountered with coarse-grained analy-
sis. In this section, we take a more general perspective and propose a formalisation ap-
proach. The method is essentially an application of concepts and techniques from soft-
ware engineering in Computer Science to the analysis and formalisation of legal texts,
where textual semantic information is “programmed” into a formal, markup language.
What makes the method novel is how it addresses the complexity of legal structure and
information. Aside from the requirements aspects in Section 4, the method relies on
modularity and stepwise refinement along the lines of formalisation continuum.

Thanks to modularity, the whole (system or legal text) is decomposed into subcom-
ponents, which then can be recomposed into a more complete representation. As such,
the complexity of the whole is reduced to (presumably) simpler, more manageable sub-
components, especially if not all modules are useful for all applications. Between the
subcomponents, there may be dependencies to identify and shared information. Each
module may have its own data structures and operations, making one module distinct
from the others. Stepwise refinement is a related activity, where steps refer to sequences
of representations from one (more abstract and coarse grained) representation to the
next (more specific and finer grained) representation. At each step, requirements are
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defined within the scope of that module; the resulting representations are evaluated,
identifying and tracing errors. Modularity and stepwise refinement contrast with the un-
systematic development of an unstructured, monolithic program. It also contrasts with
top-down approach, wherein a logic is first defined, followed by experiments to backfit
language of the text to the logic, which may omit expressions that do not fit the logic.

Turning to a methodology for the analysis and formalisation of legal text, CLAL
and DAPRECO appear to complement each other. Whereas CLAL essentially classifies
all provisions along with some selection of elements within and between provisions
(e.g., bearers or exceptions), DAPRECO translates a selection of provisions into reified
First-Order Logic. CLAL may be further enriched with more detailed analyses, e.g.,
named entities, properties of entities, relations amongst entities, temporal expressions,
and open-textured concepts. In contrast, DAPRECO might be extended by including ad-
ditional parts of the provisions, such as powers or text specifications.

If the challenge is to convert natural language expressions into reified expressions of
the logic, CLAL representations may be incrementally refined into DAPRECO-like rep-
resentations, albeit with some necessary translations such as making CLAL annotations
for prescription into corresponding DAPRECO I/O Logic representations. At each step
of analysis, particular challenges could be deferred to be treated by some subsequent
module (treatment of alternative expressions of the same semantic content, assignment
of liability, open textured or vague terms, presuppositions, technical relations amongst
provisions, powers and contexts, and so on) in line with the identified requirements.

7 Conclusion and discussion

The comparison of the two models of GDPR provisions highlights the contrast of the
approaches that underlie them. CLAL is text-centric (sentence segmentation, full cover-
age, fidelity to wording), relies on the simple mechanism of text annotation, should be
manipulable by any lawyer (through annotation and query language), is designed to be
generic and to be deployed at web scale. DAPRECO is focused on the rules involved in
compliance analysis; it is based on a logical formalism and a system of reference to the
text; it is expressive but highly technical and demanding on resources; the output model
is to be integrated into an inference system designed for a specific context of use.

We can draw two simple but fundamental and useful lessons from this study. The
first is that it is essential before any modelling work to define the goals, the targeted type
of application and use case, which implies asking oneself about the level of competence
of the users, the textual scope and the knowledge to be integrated. There are trade-
offs between accessibility, automatic reasoning, and very large-scale deployment. It is
also essential to anticipate the costs and evolution needs. All the design and modelling
choices stem from that requirements analysis and can be explained in this light. The
second is that the modelling work must be based on a methodology which secures the
running of a formalisation project (deadlines, costs, risk management) and guarantees
the quality of the resulting model (well-formedness, coherence, and exploitation). This
methodology must be thought thorough upstream and adjusted to the objectives.

This comparison also invites us to explore the compatibility and interoperability of
the various models that can be produced from a text and associated with it. It seems pos-
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sible to organise them in a hierarchy – from coarse to fine grain in description, from the
most generic to the most focused, from the simplest to the most expressive – with po-
tentially important benefits in terms of methodology, costs and quality. CLAL language
stands in an intermediate position in the formalisation continuum, between the natural
language and logic-based formalisms. It can serve as a first generic modelling step that
paves the way for finer-grained, more domain and context specific interpretations to be
formalised in more formal languages.

The comparison and contrast between the CLAL and DAPRECO models of the GDPR
finally points out a range of issues remaining to be explored and that relate to the role of
some textual elements that are often neglected in formalisation projects, e.g. the powers,
relations between provisions, open textured terms, or the reference to complementary
legal texts. Indeterminacy or semantic openness are characteristic of natural languages
but difficult to account for in formal models, which have to fix a precise interpretation
and ensure logical consistency. These textual elements nevertheless have their role in
the construction of legal meaning and reasoning: they often point to additional pieces
of information that are not part of the provision itself but enter into legal decisions (e.g.,
other laws and regulations, additional court rules, legal precedents).

The detailed analysis of the GDPR shows the value of a generic and coarse-grained
approach such as CLAL, which takes into account the whole text without restricting its
interpretation. From this level of analysis, more formal models for specific applications
and contexts can be built. In that perspective, it is no longer a question of designing a
methodology to move directly from text to a formal language, but an incremental, mod-
ular one that allows progress to be made in stages along the formalisation continuum,
with each stage relying on a specific methodology and its own quality criteria.
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Abstract. The formalization of legal texts is an important step in order
to be able to improve law’s consistency, or to automate several legal
tasks such as reasoning or answering legal questions. In this paper, we
present a new approach for legal texts’ formalization, based on a two-
step method, and explain why it meets several requirements that existing
approaches cannot satisfy, such as bi-directionality or isomorphism. We
use an excerpt of the GDPR as an example, translate it into a logical
formula, and then translate it back in order to evaluate, successfully, the
accuracy of the process.

Keywords: Legal formalization · Knowledge representation · Domain
specific languages

1 Introduction

A main aspect of the law is to govern the normative behavior of the population.
As such, it is of high interest that the understanding of the law is not only
available to a selected number of people, such as lawyers, but is widely accessible.
At the same time, we would like its application to be fair and objective.

An interesting approach for attaining both these goals is by making the law
understandable to computers. The ability of a computer to reason over the law
will allow it both to explain it to people, via for example expert systems, and to
reason over it in an objective way.

In this paper, we are considering one of the biggest problems of legal for-
malization, which is the ability of legal experts to participate in the process and
their ability to confirm the quality and faithfulness of the formalization.

The need for legal experts when formalizing legal text stems from the need
to have a translation which preserves the legal meaning of the text. Since the
process requires two different formats - the legal text on the one side and the
formal representation on the other - it traditionally required two domain experts,
one for each format. Among the various approaches to this problem, one should
mention Bertolini et al approach [3], where an agile methodology is introduced
which involves both domain experts via short sprints. The goal of this approach
is to allow iterations between the two experts and in this way, to increase the
confidence in the translation.
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The approach taken in this paper proposes to have a language close to the
original text, therefore allowing an easier way to validate. At the same time,
the chosen language enjoys properties which make it easily computable (second
contribution). This is achieved by defining two target languages, one close to the
original text and one denoted in first-order logic, which is a highly computable
format. We then define a translation between the two levels which allows the
automatic translation from the high level to the technical one. Moreover, we
require that this translation is isomorphic, which allows the translation back
from the formal to the legal levels (third contribution), those allowing the legal
expert to validate the result. Our claim is that this approach enjoys the good
properties of both categories, without any of the undesired ones.

The paper is organized as follows. In Section 2, we present our main contribu-
tion, the LLTs. After a short introduction, we survey the current state-of-the-art
and continue to the presentation of the various elements of LLTs. In Section 3,
which demonstrates one of the main advantages of the approach, which is the
ability to get back the legal text from the translations in order to allow the legal
expert to easily validate their translations. We conclude in Section 4.

2 LLTs

LLT stands for “Legal Logical Template”. It is a formal grammar, that helps de-
scribing the structure of a legal text. Informally, LLTs are formal representations
of legal concepts and capture the way a legal expert interprets the law.

Let us first note that the LLTs we present later were created for a specific
legal context, and are not necessarily universal, it is the method that matters
more. And we do not claim that we objectify legal interpretation, since the in-
terpretation of a legal text cannot be absolute, but we do give lawyers all the
necessary tools to formalize the law themselves, the way they think is the best.

LLTs allow us to dodge the necessity to translate directly legal texts into
pure logical formulae, and gives us an intermediate step in the process, which is
fortunate for several reasons :

Firstly, we want law formalization to become an accessible tool for lawyers,
and we cannot expect from them to be experts in pure logic, so we must not rely
on direct translation from legal text to logical formula as a methodology.

Secondly, it allows us to be more accurate through this intermediate process.
Since there is a big gap between a legal text and its computable formalization,
it would be too ambitious to do it all in one go, like many other attempts. The
smaller the steps are, the easier it is to check and evaluate them, so with the
two-step translation, we can check the correctness of each one and then compose
them at the end.

Another key-point will be to create a step-by-step isomorphism between the
legal text and the code, the relevancy of isomorphisms for knowledge based
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systems has already been highlighted in the past, for example by T.J.M.Bench-
Capon & F.P.Coenen in 1992, in their paper [5]. Their relevancy still holds today
as it has been reconfirmed almost 20 years later by Trevor J. M. Bench-Capon
and Thomas F. Gordon. in 2009 [6].

In this paper, we are trying to go the closest possible to an ideal isomorphism
by separating the process into two steps : creating LLTs from the legal texts,
then creating logical formulae from the LLTs. Indeed, with an intermediate step,
it will be easier to make the correspondence between the items.

The need for an intermediate step for a legal formalization has already been
considered, for example by the authors of “An Interdisciplinary Methodology to
Validate Formal Representations of Legal Text Applied to the GDPR”[4], saying
that “A key element in the methodology is an intermediate representation”.

Many attempts at formalizing law already exist, we could cite as exam-
ples “Logical english”[10], Akoma-Ntoso [18], DAPRECO [19], PENGASP [21],
Catala [17] etc.

These existing tools fall within two categories. The first category, syntax-
based languages, contains those approaches which aim to be as close as possible
to the legal text, the language used there is normally very general and less struc-
tured, which results in translations which are not easily computable. Since the
main goal of legal formalization is to allow computers to reason over the text,
this is undesirable. There is the advantage though that the correctness and faith-
fulness of the translation are easier to validate. The second category, semantics-
based languages, contains those approaches which aim to be computable, as close
as possible to the machine. These approaches require a translation which is much
farther than the original text and therefore, its correctness is harder to validate.

We want the formalization to be both high-level and formal, in two steps,
compatible and faithful, understandable and computable.

Indeed, we need it high-level enough for lawyers to use it without any scien-
tific background, we need it also bidirectionally isomorphic so we can both check
it and update it. And the existing formalizations we cited do not seem to meet
this duality we seek.

The scope of our paper here is not to do a full and detailed comparison of
the existing languages, but let us just express some requirements we think are
essential, and most of our criteria are not new.

In “The Grammar of PENGASP Explained”[21], the author comes up with
requirements for a controlled language : “a controlled language specification
should be translatable into an executable answer set program”, “the grammar for
this language should be highly configurable for different application scenarios”,
“the grammar should be bi-directional”.

We could also cite the overlapping criteria of Routen and Bench-Capon in
“Hierarchical formalizations”[20] : “a formalization should not only (1) be a
faithful representation of what is expressed by the legislation; (2) be compu-
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tationally adequate, i.e. should permit us to make all relevant derivations by
machine; but also (3) be easy to validate and maintain”.

Our approach satisfies the previous demands as we will see through this pa-
per, since it is usable by the lawyers without a scientific background, it is based
on an isomorphic (and bi-directional) methodology, it is computable, and allows
a faithful translation of the legal texts’ structure and content, finally the isomor-
phic characteristic allows us to validate and maintain it.

In order to formally denote the LLTs, we will use a Context Free Grammar
[2].

Our goal here will therefore be to create two isomorphic functions, one be-
tween the grammar and the law, and another between the grammar and the
semantics.

To reach it, we need the grammar’s syntax to be both abstract enough to
include as much legal situations as possible, and precise enough to avoid any con-
fusion regarding its relevancy when used. An example of a user-friendly interface
for such a language is described in [12].

Definition 1. LLTs The following is the CFG of the LLTs. The terminals set
Σ contains ATOM and all lower case words. An ATOM is a group of words.
The starting symbol S is LLT.

LLT := EXCEPTION | REF | CONDITION | LIST | PROHIBITION
EXCEPTION := {LLT | REF} + CONDITION
CONDITION := LIST | ATOM
LIST := ATOM | LIST + ATOM
REF := LABEL + LLT
LABEL := ATOM
PROHIBITION := LLT

In order to help our purpose, we can add as an even higher level a lawyer-
friendly interface supporting both the accessibility, the annotations and the val-
idation of our method : the LegAi tool presented in [15]. You can see an anno-
tation example of articles 44 and 45 of the GDPR in the top image below.

We want at the end to establish an isomorphic correspondence between legal
texts and logical formulae, in two steps. Now that we have the syntax of the
grammar, let’s build some corresponding formal semantics. These will not be
used on their own, but will be automatically generated from the LLTs syntax
established at the previous level.

We base our semantics on the First Order Logic, to which we add the classic
deontic Obligation operator, and a second negation “∼ ”the negation as failure
(the first order negation is noted “-”).

The adding of the obligation operator is necessary and sufficient to capture
every deontic prescription. As for the negation as failure [7], it is very needed for
the exceptions or the conditioned modalities, that are frequent in law. Indeed,
the negation as failure (NAF) consists in deriving not A if you cannot derive A,
and it is important to consider that by default, exceptions do not apply in law,
unless provable. The most general case in law is generally the default one.
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Our semantics are computable, thanks to existing methods that already han-
dle First Order Logic, First Order Modal Logics and the addition of Negation-
as-failure ; various theorem provers like SPINdle[11] can handle our semantics,
finalizing the step-by-step path from law to code. We can already automate trees
creation as you see in the last image. Rolf Schwitter, in [21], recommends the
use of syntax trees as both a strategy, and a way of checking if the requirements
are met.

Definition 2. Semantics We define ϕ : {LLTs} → {FOL ∨ {∼} ∨ {Ob}} ,
associating to each LLT its semantics :

ϕ(EXCEPTION) := ∼ ϕ(CONDITION) ⇒ -ϕ(LLT/REF)
ϕ(REF) := ϕ(LABEL), ϕ(LLT)
ϕ(CONDITION) := ϕ(LIST | ATOM)
ϕ(LABEL) := ϕ(ATOM)
ϕ(LIST) := ϕ(ATOM | LIST) , ϕ(ATOM)
ϕ(PROHIBITION) := Ob(-ϕ(LLT))
ϕ(ATOM) := ATOM

54



3 Functional evaluation

A an important property of legal formalization is the ability of the legal expert
to validate its quality [14] ; that is thanks to our intermediate step. The evalu-
ation we use is a functional one, consisting of a reverse translation of LLTs. If
we automate this reverse translation, we just have to check then if the new legal
text has the same meaning and the same legal substance (modulo synonyms).
And the closer the new text is, the finer is the LLTs system.

We could cite T.J.M.Bench-Capon & F.P.Coenen’s paper [5], in which they
mention several advantages of isomorphism-based knowledge representations,
among which is validation. With the reverse translations, we are going even
closer to the creation of and “ideal”isomorphism, by making it bijective.

Indeed, in his paper [21], Schwitter supports this idea, using the bidirec-
tionality of the grammar as an argument of its executability, unlike the other
attempts of controlled languages back then.

Definition 3. Reverse translation In order to translate the LLTs back, we must
think of a standard translation regardless of the LLT’s terminals, which is recur-
sive and begins at the treetop. Here is an attempt of doing so :

EXCEPTION := LLT/REF is allowed if CONDITION
PROHIBITION := LLT is prohibited

Now we do have a method for validation via reverse translation, we can
observe an example of it (modulo synonyms) in the middle image above.

4 Conclusion

In this paper, we have introduced two languages. One of them is novel and can
be used by legal experts. The second can be used for computation. We have
introduced an algorithm to automatically translate between the two languages.
In addition, we have given an algorithm for the automatic translation of one
language back into legal text. The resulted approach helped by the LegAi tool
allows a legal expert to use the methodology and validate the quality of the
translation without the need for a second domain expert (a programmer or a
logician). The formalization can be used for computation, and we argue that our
multi-layered approach solves some of the issues with the state-of-the-art.
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Abstract. The survey at hand offers a brief overview of the interdisciplinary (Phi-

losophy, Law, Computer Science) discussion concerning logic-based approaches 

to the formalisation of legal norms, while particularly discussing the advantages 

and challenges offered and posed by them with respect to the formalisation of 

traffic rules. Four main archetypes of logic of norms are identified, depending on 

whether the formalism is based on (1) propositional, (2) modal, (3) predicate or 

(4) many-valued-logic. 
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1 Introduction 

I see no reason, why that Law and Logike should not bee 
The nearest and the dearest freends, and therfore best agree. 

(Abraham Fraunce, 1588 [25]) 

Literature offers countless examples for attempts at using logic-based methods for the 

formalisation of legal or moral norms. Historically, these attempts can be traced back 

to medieval logic, and arguably even to Greek antiquity, particularly to Aristotelian or 

to stoic logic.1 Following the remarkable developments in the fields of mathematical 

logic and computability theory in the first half of the 20th century, as well as the more 

recent achievements in Artificial Intelligence, especially in the area of Natural Lan-

guage Processing (NLP), logic-based approaches to the formalisation of normativity 

have been enjoying new bursts of popularity, leading to the development and the pro-

posal of several logic systems and models for the formalisation of (legal) norms. The 

survey at hand briefly discusses the main archetypes for the development of a logic of 

 
1  For historical aspects cf. particularly [1-5]; for practical syllogisms in Aristotelian logic cf. 

[6]; for the practical dimension of stoic logic, cf. [7], p. 6 and particularly [8], pp. 144 and 

150-151. Unfortunately, the history of deontic logic and related approaches is often ignored 

by current research. The authors of [9] claim, e.g., that so far there have not been many at-

tempts of translating law into a formal, logic-based language. Similarly [10] claims that [11] 

“could be considered as the first to propose a serious effort in formalising law”. 
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norms, while particularly focussing on the advantages and challenges offered and posed 

by each of them with respect to the task of formalising traffic rules. It attempts to pro-

vide a reasonable overview of the discussion within Philosophy, Law and Computer 

Science. 

Based on the fundamental structure of the formal language respectively employed, 

it is possible to group most approaches to the development of a logic of norms in four 

main archetypes: (1) models based on propositional logic (PL); (2) models based on 

modal logic (ML) – including so-called deontic logic proper –; (3) models based on 

first or higher order predicate logic (FOL/HOL); (4) models based on many-valued-

logic (MVL). These approaches are discussed in more detail in the following sections. 

2 PL-based Logic of Norms 

2.1 Outline 

The use of PL and closely related systems to formalise (legal) norms has been proposed 

by many scholars (for direct examples cf., e.g., [12-16]; other systems, like the ones 

proposed in [17] and [18] have been shown to be reducible to classic PL [19]; another 

equivalent approach is the so-called “satisfaction-logic” [18, 20-22]). Semantically, 

PL-systems introduce a simple Boolean truth-assignment function βPL which leads to 

the assignment of one of the values “true” (T) or “false” (F) to each PL-formula. In a 

PL-based logic of norms, norms are usually represented as being (reducible or equiva-

lent to) atomic apophantic propositions. Sometimes, the classic truth-values T and F are 

replaced by values such as “valid” and “not-valid” or “satisfied” and “not-satisfied”. 

This replacement, however, although often motivated by fundamental logical-philo-

sophical problems, e.g., the so called Jørgensen’s Dilemma [22-23], generally has no 

practical consequences for the logical structure of the respective system [95]. 

In order to distinguish between normative and descriptive propositions, one often 

introduces, as it is done below in Table 1, a unary normative operator, usually repre-

sented by the exclamation sign ! (cf., e.g., [17-18, 24-26]). However, due to the seman-

tic limitations of PL, this normative operator is equivalent to the so-called empty mo-

dality, i.e., the normative proposition !Φ is always equivalent to the descriptive propo-

sition Φ. In other words, !Φ~Φ is a tautology. 

Table 1 shows how the rule 1. a), accompanying the traffic sign 295 of the second 

annex to the German Road Traffic Regulation (StVO) could be formalised in PL: 

Table 1. PL-formalisation of sign 295. 

Legal text (raw) Norm (in conditional form) Possible formalisation in PL 

1.a) A person operat-

ing a vehicle must 

not cross or straddle 

the continuous line 

[103] 

If a person is operating a vehi-

cle in a street with a continuous 

line, this person must not cross 

or straddle this line. 

Φ→!Ψ 

Φ: a Person is operating a vehicle in 

a street with a continuous line. 

!Ψ: this person must not cross or 

straddle this line 
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2.2 Advantages and Challenges 

PL has the advantages of being decidable and relatively intuitive: It offers a basic for-

malisation framework that is both human- and machine-friendly. PL also provides a 

simple structure for the detachment of a norm’s condition or context of application and 

the actual concrete command. In the formalisation provided above in Table 1, one can 

easily infer the concrete command !Ψ from the general conditional norm Φ→!Ψ, and 

from the normative condition Φ. 

However, PL-based formalisations offer no suitable means for inferring concrete 

commands for situations which, although related, are still slightly different from the 

one described in the application context (condition) of a norm. Consider, e.g., the pro-

cess of overtaking. It follows from the norm accompanying sign 295, that one may only 

overtake another vehicle if it is possible to do so without crossing or straddling the 

continuous line. Intuitively, this inference relies on the fact that overtaking requires 

space; in case there is not enough space to the right of the continuous line, overtaking 

will result in the line being crossed or straddled, which violates the above-mentioned 

norm. Since PL’s atomic propositions are truth-functionally independent from one an-

other, if the act of overtaking is simply formalised as Ω, it will not be possible to infer 

any conclusions concerning Ω from Φ→!Ψ. What the formalisation is lacking is a 

means of grasping the logical relationship between the concepts of “overtaking” and 

“crossing” or “straddling” the line with respect to the available space on the street. 

While PL-based approximations are possible – e.g., one could introduce a sentence Γ 

meaning “there is enough space on the street” and set Ω∧¬Γ→¬Ψ, so that Φ∧(Ω∧¬Γ), 

i.e., overtaking in a street with a continuous line when there is not enough space, would 

violate the norm Φ→!Ψ –, a proper formalisation of these relations requires, especially 

in more complex contexts, a framework based on predicate logic, e.g., first-order pred-

icate logic (FOL). 

Since !Φ~Φ is a tautology, formalisation methods based on single PL-systems offer 

no reasonable way of checking whether a norm was satisfied or not. Particularly, neither 

the conflict between two norms nor the violation of a norm can be properly formalised 

within such frameworks. Put briefly, this is due to the fact that the formalisation of 

these situations would culminate in a logical contradiction, which in turn, due to the 

monotonic, two-valued, conflict-intolerant nature of classic PL, would enable the in-

ference of any arbitrary proposition, rendering the whole formalisation useless. The 

literature offers a wide scope of proposed solutions to this issue, most of which involve 

replacing the basic PL-framework with more expressive paradigms, such as the ones 

offered by non-monotonic [51], paraconsistent [97], or many-valued logics [84-87]. A 

somewhat simpler solution to the problem of checking violations in a PL-based formal-

isation consists in using two distinct PL-systems for respectively representing norms 

and facts. One can then verify whether a set of PL-formulae corresponding to a descrip-

tion of a factual situation is satisfiable with respect to the set of PL-formulae corre-

sponding to norms. In its essence, this task is nothing but a satisfiability modulo theo-

ries (SMT) problem, which can be solved, e.g., by employing an adapted SAT-solver 

or an SMT-solver [27]. Although verifying Boolean satisfiability is generally a compu-

tationally expensive problem, new SAT-algorithms such as conflict-driven clause 
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learning (CDCL) and its further developments, which make clever use of human un-

derstanding of the properties of PL, have enabled an effective employment of SAT-

solvers to several real-world applications. Since (at least) two distinct PL-valuations 

are employed, this approach is, from a semantical point of view, closely related to ap-

proaches based on modal logic (ML), which shall be discussed in more detail in Sec. 3.  

Finally, PL can only represent the truth-functional dimension of semantics; it cannot 

differ between sentences that, albeit of different meaning in natural language, are true 

(or false) under the same conditions. The classic example is the distinction between 

adversative and conjunctive copulas. Consider the sentences A: “It is sunny and cold”, 

B: “It is sunny, but cold”. These sentences are both true if and only if it is in fact sunny, 

and, at the same time, also cold. In natural language, however, sentence B also implies 

a kind of opposition between “being sunny” and “being cold”, which goes beyond the 

mere extensional, truth-functional dimension of semantics.  

3 ML-Based Logic of Norms 

3.1 Outline 

Historically, the development of modern modal logic (ML), was closely connected to 

the research in the field of logic of norms [28]. Proponents of an ML-approach to logic 

of norms can be found as early as 1939 [29], and similar ideas were already proposed 

by Leibniz in his logic of love [30-31]. After the Second World War, and following the 

publication of works from G. Kalinowski (1953) [32], O. Becker (1952) [33] and espe-

cially of G. H. v. Wright’s seminal paper Deontic Logic (1951) [34], which introduced 

the now widely used term deontic logic, the discussion surrounding the development of 

a logic of norms gained new momentum. Since then, ML-based approaches have be-

come mainstream in the field. 

Syntactically, ML-systems usually expand PL’s alphabet by introducing the signs □ 

and ◇. In alethic modal logic, □Φ is intended to correspond to “Φ is necessary”, ◇Φ to 

“Φ is possible”. In an analogous way, one can define a normative interpretation of these 

signs in which □Φ is taken to mean “Φ is obligatory”, and ◇Φ is read as “Φ is permit-

ted”. Semantically, the most usual ML systems can be described as consisting in the 

structure <βML, R, U>. Following this so-called possible world semantics or Kripke-

semantics, ML expands PL by introducing a set of sets of formulae (or universe) U and 

a dyadic, so-called accessibility relation R, defined among the elements of U. Intui-

tively, each set of formulae Wx corresponds to a description of a possible world; hence 

the introduced set of sets of formulae U corresponds to the set of possible worlds. 

Through the accessibility relation R, each possible world Wx is assigned to a set Ux⊆U 

containing those possible worlds Wy for which R(Wx, Wy) holds. These worlds Wy 

represent the worlds which are accessible or conceivable for Wx. Finally, like in PL, 

βML is a function that assigns to each formula Φ in a world Wx a value T or F according 

to the usual Boolean definitions and with the added truth-condition concerning the op-

erator □: βML(□Φ, Wx)=T if and only if, for all Wy for which R(Wx, Wy) holds, βML(Φ, 

Wy)=T. In other words: □Φ is true in a world Wx if and only if Φ is true in all worlds 

Wy accessible to Wx. 
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The intuitive motivation for this semantical framework is the idea that one can con-

ceive many different possible worlds. The notion of alethic necessity is then represented 

by a formula that is true in all conceivable worlds; the notion of possibility, in its turn, 

is represented by a formula that is true in at least one conceivable world. For the repre-

sentation of normative notions such as obligation, prohibition and permission as deontic 

modalities, one must further introduce the idea of deontically perfect worlds, i.e., 

roughly speaking, of worlds in which no norms are violated. Hence, something is ob-

ligatory if it is true in all deontically perfect worlds; it is permitted if it is true in at least 

one of these worlds.2 

To guarantee that deontic modalities only depend on the truth-values of formulae in 

deontically perfect worlds, one has to introduce further restrictions on the properties of 

the accessibility relation R. The goal is to define R so that it connects a world Wx to 

only (and all) its deontically perfect alternatives Wy. By altering the properties of R, 

different logical models can be generated. For instance, if R is reflexive, i.e., if R(Wx, 

Wx) holds for all worlds Wx, then the formula □Φ→Φ, which is often called (axiom) T, 

is logically valid. Under an alethic interpretation, this formula corresponds to the intu-

itively valid notion that “if Φ is necessary, then Φ is true”. If, however, the formula is 

interpreted normatively, it corresponds to “if Φ is obligatory, then Φ is true”. This 

would imply that all commands are logically always fulfilled, which is forbiddingly 

counterintuitive. Moreover, if one assumes that R only connects a world Wx to its de-

ontically perfect alternatives Wy, the reflexivity of R would imply that every world is a 

deontically perfect alternative to itself, which is also counterintuitive. Thus, the acces-

sibility relation R of an ML-based system of logic of norms cannot be reflexive.3 On 

the other hand, the formula □Φ→◇Φ, often called (axiom) D, is usually considered to 

be a valid principle of logic of norms. Under normative interpretation, it corresponds 

to “if Φ is obligatory, then Φ is permitted”. The property of the accessibility relation R 

associated with the validity of D is called seriality: R is serial if for all worlds Wx there 

is a Wy such that R(Wx, Wy). Since reflexivity implies seriality, D is implied by T, but 

not the other way around. The term deontic logic is usually employed to denote ML-

based systems of logic of norms that contain D, but not T, i.e., systems with serial, but 

irreflexive R. In particular, so-called standard deontic logic (SDL) is the smallest ML-

system containing, besides the axioms of classic PL, the axiom D, the distribution ax-

iom K: □(Φ→Φ)→(□Φ→□Φ), as well as the inference rules modus ponens and the so-

 
2  The main structure of the truth-definition in possible worlds semantics is usually associated 

with the philosophy of G. W. Leibniz (cf. [33], p. 18). In fact, Leibniz uses the idea of con-

ceivable possible worlds to explain the nature of logical truth as being a kind of truth valid 

with respect to possible worlds [35]. Interestingly, in his famous Theodizee, Leibniz claims 

that our world was created by god as the best of all possible worlds. Hence, the idea of a 

deontically perfect alternative to our world seems to contradict Leibniz’ own ideas (cf. [36]). 
3  This was already noticed by Kripke in [37], p. 95. In his normative-legal interpretation of ML, 

O. Becker tried to interpret T as meaning that if Φ is obligatory, then it factually happens in a 

legal way ([33], p. 44). Somewhat similarly, [10] proposes to address the problem of clarifying 

liabilities in a collision involving autonomous vehicles by “ensuring that autonomous vehicles 

always comply with the traffic rules so that they cannot be held liable for a collision”. Both 

attempts ignore the fact that it is generally always possible to violate norms.  
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called necessitation rule. Extensions of SDL that include the axiom SH: □(□Φ→Φ) are 

sometimes called SDL+. SH is a somewhat weaker alternative to T. Normatively, it is 

usually interpreted as stating that it is obligatory that obligations are fulfilled. The prop-

erty of R related to SH is the so-called quasi-reflexiveness: R(Wx, Wx) holds if, for all 

Wy, R(Wy, Wx) also holds, i.e., worlds that are deontically perfect alternatives to all 

other worlds are deontically perfect alternatives to themselves (for a detailed account 

of such systems, cf. [38-42]). 

T is not the only problematic ML-formula under normative interpretation. Formulae 

such as □Φ→□(Φ∨Ψ) or □Φ→((Φ→Ψ)→□(Ψ)), which are valid in common ML-

systems, are also counterintuitive when interpreted normatively. If, e.g., in the first for-

mula, □Φ is read as “it is obligatory to deliver the letter” and □Ψ as “it is obligatory to 

burn the letter”, then the complete formula states “if it is obligatory to deliver the letter, 

then it is also obligatory to either deliver it or burn it”. Hence, if one does not fulfil the 

obligation □Φ, the only way to fulfil the obligation □(Φ∨Ψ), which is logically implied 

by □Φ, is by doing Ψ, i.e., by burning the letter. This is the so-called Ross’ Para-

dox [43]. This and other problematic formulae are known in the literature as the para-

doxes of deontic logic [44].4 From a model-theoretical perspective, one strategy to over-

come such paradoxes is to modify the accessibility relation R so as to avoid the validity 

of the respective formulae. The search for a paradox-free system has motivated the de-

velopment of countless different systems of deontic logic. 

Several paradoxes (particularly the so-called Chisholm’s paradox [48]) seem to be 

avoidable by dropping monotonicity with respect to deontic modalities. Intuitively, this 

allows for the assumption of new premises to alter the derivability of a conclusion, i.e., 

for the defeasibility of normative inferences through counterarguments. Defeasibility 

seems particularly important for the formalisation of so-called contrary-to-duty obliga-

tions and of normative conflicts. These situations cannot be properly represented with 

the framework described above, because they presuppose or imply the violation of a 

norm, which is not possible in a deontically perfect world. 

Defeasibility can be achieved, e.g., by replacing the accessibility relation R by a 

partial ordering of the universe set U of all possible worlds. Thus, a model for defeasible 

deontic logic can be described as consisting in the structure <β, ≥, U>, where β and U 

are defined as above, and ≥ is a transitive relation over the elements of U. Intuitively, 

≥(Wx, Wy) represents the idea that the world Wx is better than the world Wy. Hence, 

instead of conditioning the truth-value of an obligation □Φ in a world Wx on the truth-

value of Φ in its deontically perfect alternatives, the value of □Φ in Wx is defined as 

depending on the value of Φ in the worlds which are better (or at least not worse) than 

Wx according to ≥. For systems based on this approach, see [49-51] 

Another approach is based on so-called neighbourhood frames [52]. While in classic 

Kripke frames each world Wx in U is assigned to a set of alternatives worlds Wy for 

 
4  A similar problem is raised in the AI-discussion by [46], p. 24: “Take the two sentences: 

‘Helmets must be worn’ and ‘Dogs must be carried’. They are identical in form, yet they mean 

totally different things. The would-be traveller on the London Underground needs to know 

several unspoken things about the way the world works to be confident that he does not have 

to acquire a dog before boarding the escalator.” Related problems also seem to appear in con-

nection with Reinforcement Learning [47]. 
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which R(Wx, Wy) holds, neighbourhood frames introduce a relation Rn to assign to each 

world Wx a set of sets Ni (which are subsets of U) of alternatives worlds Wy, for which 

Rn(Wx, Ni) holds. Intuitively, Ni is the neighbourhood of Wx. Through this approach, 

the truth-value of a norm □Φ in a world Wx depends on the truth-value of Φ in the 

worlds Wy∈Ni. Neighbourhood frames are particularly suitable for the representation 

of (relevant) similarities, analogy, and exceptions, because a neighbourhood Ni can be 

seen as a set of situations sufficiently similar (according to some predetermined criteria) 

to the situation contained in Wx. By introducing a transitive relation ≥ to the model, one 

can also determine that the validity of □Φ in Wx is only influenced by the ‘better’ worlds 

in Wx’s neighbourhood. For systems based on this and closely related approaches, see 

[53-56], for an automation approach with a HOL-based theorem prover, see [57]. 

Sometimes, instead of using a monadic (unary) operator such as □, systems of so-

called dyadic deontic logic, introduce a dyadic normative operator, which in classic 

systems of modal logic is usually represented by the so-called fish tail operator ⥽. An 

expression such as Φ⥽Ψ is to be interpreted as “Ψ is obligatory under the condition of 

Φ”. Usually, □Φ is defined as being equivalent to ⊤⥽Φ, with ⊤ being the logical verum, 

i.e., basically any logical tautology. 

Table 2 provides some examples of possible ML-formalisations of sign 295. 

Table 2. ML-Formalisation of sign 295 

Norm (in conditional form) Possible formalisations in ML 

If a person is operating a vehicle in a 

street with a continuous line, this per-

son must not cross or straddle this line. 

Φ→□Ψ □(Φ→Ψ) Φ⥽Ψ 

Φ: a Person is operating a vehicle in a street with a 

continuous line. 

Ψ: this person neither crosses nor straddles this line 

3.2 Advantages and Challenges 

Due to its ability to express intensionality, ML-based systems have been employed, 

with varying degree of success, for the formalisation of various linguistic structures. 

Several implementation frameworks have been developed for ML-based deontic logic: 

LegalRuleML [64-65] is a markup language based on RuleML [66] designed to be able 

to represent many particularities of normativity and deontic logic. There are also several 

reasoning engines and theorem provers available, e.g., Turnip [67], NAI [68], Leo-III 

[69] and MleanCoP [70], HOL-based theorem-solvers, e.g., [80], can also be employed. 

Classic ML-based systems of logic of norms are simple and intuitive, but also prone 

to paradoxes. Furthermore, they fail to provide a solid formalisation framework for 

contrary-to-duty situations. On the other hand, more complex systems, e.g., those based 

on preference logic or on neighbourhood frames, usually lack a clear or intuitive justi-

fication for their semantical structure. Finally, while ML is more expressive than PL, it 

is still not as semantically rich as predicate logic. While technically feasible, introduc-

ing quantification to ML, might lead to semantical problems [98]. 
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4 FOL/HOL-Based Logic of Norms 

4.1 Outline 

The use of predicate logic to formalise norms is commonly found in the tradition of so-

called legal logic (cf., e.g., [12-16, 23, 45, 58-62]). Legal logic emerged independently 

from its philosophical cousin deontic logic in the early post-war period. Instead of try-

ing to develop a new kind of logic to specifically represent norms, adepts of legal logic 

propose the use of established logical systems, especially FOL, to formalise norms. The 

modern field of legal informatics originated from legal logic. 

Predicate logic expands PL by adding quantifiers such as the universal quantifier ∀ 

and the existential quantifier ∃. Semantically, predicate logic formulae have to be in-

terpreted on the basis of a domain D, i.e., a (usually non-empty, countably infinite) set 

of objects. FOL can be further extended by adding specific predicates (e.g., equality) 

and, e.g., temporal operators. Second and higher-order predicate logic (HOL) expands 

FOL by allowing for the predication and quantification of predicates. 

More recently proposed formalisations of norms based on predicate logic usually 

expand classic FOL to introduce so-called temporal operators. The result is a system 

of temporal logic (TL), such as, e.g., linear temporal logic (LTL) [71-72], metric tem-

poral logic (MTL) [73-74] and signal temporal logic (STL) [75-77]; see also [78]. This 

expansion is trivial in the sense that these operators are usually defined as being equiv-

alent to classic FOL-formulae, so that they can be dropped from any TL-formula to 

obtain an equivalent FOL-formula. 

Formalisations based on predicate logic can be implemented by using programming 

languages such as PROLOG or PROLEG [79] or HOL-based theorem-solvers such as 

Isabelle [80]. In models with restricted semantics, adapted SAT-solvers can also be 

employed to verify fulfilment or violation of norms [27, 81]. Table 3 provides an ex-

ample for a FOL-formalisation of sign 295. 

Table 3. FOL-formalisation of sign 295. 

Norm Possible formalisation in simple FOL 

If a person is operating 

a vehicle in a street 

with a continuous line, 

this person must not 

cross or straddle this 

line. 

∀x∀y∀z((P(x)∧V(y)∧S(z)∧C(z)∧(Cr(x, y, z)∨St(x, y, z)))→Vio(x)) 

P(x): x is a person. 

V(x): x is a vehicle 

C(x): x has a cont. line 

S(x): x is a street 

Cr(x, y, z): x crosses z while operating y 

St(x, y, z): x straddles z while operating y 

Vio(x): x violated the law 

4.2 Advantages and Challenges 

Thanks to their higher expressivity, systems based on FOL/HOL can deliver more ac-

curate formal theories and so-called ontologies [99], which also consider logical prop-

erties concerning relations among individual objects, as well as their properties. HOL-
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formalisations can also represent second and higher-order properties, i.e., properties of 

properties. From a practical perspective, FOL is a well-studied formal language – it has 

been used as the logical-philosophical lingua-franca for about a century. Furthermore, 

FOL-deductions also bare structural similarities to legal subsumption (cf. [82], pp. 71-

72 and 176-183). Hence, FOL-based approaches tend to be more accessible to both 

legal practitioners and technicians.  

On the other hand, their higher expressivity leads to undesired metalogical proper-

ties. As mentioned above, FOL does not allow for decision procedures concerning the 

semantic status of its formulae. HOL, in its turn, is not even complete: no algorithm can 

be employed to generate all HOL-truths. From a practical point of view, these problems 

can be dealt with in two ways: One either (1) introduces (severe) semantic limitations 

to the models in order to achieve decidability or completeness, e.g., by employing so-

called Henkin-semantics; or one (2) develops heuristically driven programs (possibly 

while also employing machine learning) that seem to work ‘well enough’ in a ‘suffi-

cient’ number of cases. How to define when a program works ‘well enough’ for a ‘suf-

ficient’ number of cases is a particular challenge, for there will necessarily always be 

infinitely many cases for which the program will not deliver the correct result. 

5 MVL-Based Logic of Norms 

5.1 Outline 

A somewhat rarer approach to formalising legal norms consists in employing systems 

of so-called many-valued logic (MVL). Systems of classic two-valued logic, like the 

systems discussed above, assign to each formula a value from a set containing two 

members, e.g., {T, F} or {0, 1}. MVL breaks with this paradigm, replacing this set with 

a set containing three or more elements. Particularly, systems that adopt a set containing 

infinitely many truth-values are often called systems of fuzzy logic. Historically, mod-

ern MVL can be traced back to the works of J. Łukasiewicz [83-84]. More recently, 

due to the many applications of MVL, particularly of fuzzy logic, in AI and machine 

learning, this type of logic has been enjoying increasing popularity. 

Overall, any of the above discussed logic archetypes can be transformed into an 

MVL-system by altering the range of the respective truth-assignment function βx, i.e., 

by replacing this range with a set containing three or more elements. Since this modi-

fication is purely semantic, MVL-systems can be built on the same syntax as classic 

two-valued ones; hence, there is no need to introduce, in this section, a specific table 

containing examples of possible MVL-formalisations of sign 295. Semantically, the 

introduction of new values leads to an exponential increase in the number of possible 

operations. For instance, while classic two-valued systems of extensional logic only 

allow for 22=4 distinct unary operations, a three-valued system contains 33=27 different 

unary operations. 

The use of MVL to formalise normativity can be traced back to the very origins of 

modern logic of norms in the late 1920s and early 1930s. Karl Menger, who also worked 

on the related field of fuzzy set theory, was likely the first to propose a three-valued 
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system of logic to serve as basis for the representation of norms [85-86]. In fact, Menger 

argued that the problems with E. Mally’s Deontik originated from it being a system of 

two-valued logic (cf. [85], p. 59). For Menger, the object of a norm can be neither 

necessary nor impossible, but only contingent, or, as he puts it, doubtful. That is why 

he tries to develop a logic of the doubtful, which would serve as a proper formalism to 

represent normativity. Another attempt at using MVL to develop a logic of norms was 

undertaken in 1946 by T. Storer [87]. Storer develops a system with a total of five 

values: besides the usual apophantic values true and false, he introduces the values 

moral, amoral and immoral (for which he uses the values 0, 1 and 2). Analogously to 

how MVL can be used to build alethic logic, Kalinowski proposed, in 1952, the use of 

a three-valued system as a basis for the development of his system K1 [32]. M. Fisher’s 

system from 1961 can be considered an expansion of Kalinowski’s original ideas [88-

89]. More recent attempts at employing MVL for the development of a logic of norms 

usually build on previously established systems based on ML or on FOL/TL [90-92]. 

5.2 Advantages and Challenges 

Due to their higher expressivity, MVL-systems have also been proposed as a basis for 

the development of alethic logic (cf. [93], p 254; [94], pp. 469-472; [83]). Furthermore, 

the addition of extra truth values allows for a better representation of probabilities, de-

grees of satisfaction, thresholds etc. While semantically richer than two-valued sys-

tems, it is trivially possible to develop decision procedures for MVL systems with fi-

nitely many values, e.g., by building the respective truth-tables. More complex systems 

of MVL only allow for decision procedures under specific conditions [95]. 

The main weakness of MVL-formalisations is the fact that MVL has not been nearly 

as well studied as classic two-valued logic. Besides, MVL breaks with – or at least 

strongly relativises – fundamental principles of classic logic, e.g., the law of the ex-

cluded middle (tertium non datur) or even the principle of non-contradiction. 

6 Conclusions 

The various approaches to the formalisation of norms are connected to different ad-

vantages and challenges. In general, the less expressive systems enable a more intuitive 

justification and are easier to understand and to implement. However, they are prone to 

paradoxes, and lack the ability to formalise more complex normative (e.g., contrary-to-

duty) situations. To properly formalise such situations, more complex systems are 

needed, which in their turn are less intuitive and more difficult to implement. Hence, 

determining the best logical formalism to employ in a concrete case will generally de-

pend on the specific requirements involved. After choosing a basic formalism to repre-

sent norms, one can further fine-tune the model by employing a kind of meta-formalism 

for representing the relations between the various norms in a system, such as rulebooks 

[102], I/O-logic [95, 96], normative systems [100] and imperative semantics [101].  

Almost a century has passed since E. Mally’s Grundgesetze des Sollens [17], argua-

bly the first modern attempt at developing a system of symbolic logic of norms. While 
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substantial progress has been made, many challenges – perhaps the most fundamental 

ones – are yet to be solved. 
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Abstract. General Data Protection Regulation (GDPR) is an impor-
tant framework for data protection that applies to all European Union
countries. Recently, DAPRECO knowledge base (KB) which is a repos-
itory of if-then rules written in LegalRuleML as a formal logic repre-
sentation of GDPR has been introduced to assist compliance checking.
DAPRECO KB is, however, constructed manually and the current ver-
sion does not cover all the articles in GDPR. Looking for an automated
method, we present our machine translation approach to obtain a se-
mantic parser translating the regulations in GDPR to their logic repre-
sentation on DAPRECO KB. We also propose a new version of GDPR
Semantic Parsing data by splitting each complex regulation into simple
subparagraph-like units and re-annotating them based on published data
from DAPRECO project. Besides, to improve the performance of our
semantic parser, we propose two mechanisms: Sub-expression intersec-
tion and PRESEG. The former deals with the problem of duplicate sub-
expressions while the latter distills knowledge from pre-trained language
model BERT. Using these mechanisms, our semantic parser obtained a
performance of 60.49% F1 in sub-expression level, which outperforms the
baseline model by 5.68%.
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Abstract. In this paper we summarise the key features of Logical En-
glish (LE) as syntactic sugar for logic programming languages such as
pure Prolog, ASP and s(CASP); and we illustrate LE with examples
from the Italian citizenship legislation and the US Tax Code.
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1 Introduction

Logical English (LE) exploits the unique feature of Prolog-like logic programming
(LP), that LP is the only programming paradigm based on the use of logic for
human thinking and communication. By exploiting this feature, LE becomes a
general-purpose programming language, which can be understood with only a
reading knowledge of English and without any technical training in computing,
mathematics or logic.

LE is not only a Turing-complete computer programming language. It has
the potential to represent and reason with a broad range of human knowledge,
as shown by its ability to codify the language of law.

Consider the following example, written in LE, and its translation into Pro-
log.
Ordinary English:

All meetings with unvaccinated people are prohibited unless they are ex-
cused.

Logical English:[6]

A meeting is prohibited
if a person attends the meeting
and the person is unvaccinated
and it is not the case that the meeting is excused.

Prolog:

72



is_prohibited(A) :-
attends(B, A), is_unvaccinated(B), not is_excused(A).

The implementation of LE in SWISH[8] translates LE programs and queries into
Prolog, uses Prolog to answer queries, and translates answers and explanations
into LE English syntax.

The example illustrates some of the following characteristics of LE:

– LE avoids pronouns, which are a major source of ambiguity, as in the case
of “they”, which in this example could refer either to meetings or to people.

– LE represents variables by common nouns prefixed by a determiner such
as “a”, “an” or “the”. The indefinite determiner, “a” or “an”, introduces the
first occurrence of a variable in a rule. The definite determiner, “the” is used
for all later occurrences of the same variable in the same rule. As in Prolog
(with some exceptions), all variables are implicitly universally quantified
with scope being the rule in which they occur. This means that variables in
different rules have no relationship with one another.

– Sentences in LE are either facts, or rules, as in Prolog. Rules have the Prolog-
like conditional form conclusion if conditions, where the conclusion is an
atomic sentence and the conditions are a combination of atomic sentences,
typically connected by and. But conditions can also be connected by or and
negation, written in the form it is not the case that. The relative precedence
of the logical connectives is indicated by indentation (not illustrated in this
example).

– As a matter of style and in the interests of greater precision, common nouns
are preferably expressed in the singular, and verbs are expressed in the
present tense. The temporal relationship between events and time-varying
facts can be expressed, if necessary, by referring to time explicitly.

LE inherits the feature of Prolog that propositions can occur as arguments of
higher-order or meta-level predicates. LE uses this to represent deontic modali-
ties (obligation, prohibition, permission) and other propositional attitudes (no-
tification, belief, desire, dislike). For example, here the keyword that introduces
the proposition a meeting is prohibited at a time T1 as an argument of the
meta-predicate the person is notified :

a person violates the rules at a time T2
if the person is notified that a meeting is prohibited at a time T1
and the person attends the meeting at T2
and T1 is before or at the same time as T2.

As this rule also shows, a variable can be given a symbolic name.
Atomic sentences, which are facts, the conclusions of rules, or constituents

of the conditions of rules, are instances of predicates declared by means of tem-
plates, such as:

73



*a person* violates the rules at *a time*,
*a person* is notified that * message*,
*an eventuality* is prohibited at *a time*.

where the asterisks identify the arguments of the predicates.
We have used the implementation of LE in SWISH to represent a wide range

of legal texts, helping to identify ambiguities, to explore modifications and alter-
native representations of the same text, and to compare the logical consequences
of the alternatives.

2 The Italian Citizenship Example

We are also developing analogues of LE for other natural languages, such as
Spanish and Italian. Figure 1 shows both an LE representation and a corre-
sponding LI representation of Article 1 of Act No. 91 of 5 February 1992:

1. E’ cittadino per nascita: a) il figlio di padre o di madre cittadini; b)
chi e’ nato nel territorio della Repubblica se entrambi i genitori sono
ignoti o apolidi, ovvero se il figlio non segue la cittadinanza dei genitori
secondo la legge dello Stato al quale questi appartengono.

Google translate gives the following translation into English:

Citizen by birth: a) the child of a citizen father or mother; b) who was
born in the territory of the Republic if both parents are unknown or
stateless, or if the child does not follow the citizenship of the parents
according to the law of the state to which these belong.

Here both the English condition "the child does not follow the citizenship of the
parents according to the law of the state to which these belong" and its Italian
counterpart, taken literally, seem to cover only the case where both parents have
the same citizenship. Moreover, both the Italian "ovvero se" and the correspond-
ing English "or if" seem to relate to a separate alternative from the alternatives
that precede it. These readings of the natural language texts leave uncovered
such deserving cases as the child having one parent who is stateless or unknown,
and another parent who cannot pass on its citizenship(s) to its child. It seems
doubtful that this would have been the intention of the law.

The LE and LI representations in figure 1 1.1 6 incorporate one intended
interpretation of Article 1.1. Of course, other interpretations are possible, and
they could also be represented in LE.

Figure 1 also illustrates two further features of LE: the use of indentation to
represent the relative strength of binding of the logical connectives, and the LE
construction "for all cases in which . . . it is the case that . . . ", which translates
into "forall" in Prolog.
6 https://logicalenglish.logicalcontracts.com/p/italian_citizen_new.pl

https://logicalenglish.logicalcontracts.com/p/cittadinanza_italiana.pl
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Fig. 1. The Italian Citizenship Example

In this representation of Italian citizenship, the possibility that a parent is un-
known is left explicit, to more closely reflect the wording of the original legal
source. This possibility could also be expressed implicitly, using negation as fail-
ure, to conclude that a parent of a person is unknown if information about that
parent is missing from the knowledge base or from the scenario. It is in fact
possible, with the current representation, to say that a person is born in italy,
and not to give any information about the parents at all. The "forall" condi-
tion would be satisfied (vacuously), and the person would be granted Italian
citizenship.

The presence or absence of a fact that a person A is the parent of a person
B may depend on such circumstances of the birth as whether the parent A
(mother) decides to be recognized as a parent if B, or instead decides to abandon
the child B. Both possibilities, that a parent is unknown (implicitly through
negation as failure or explicitly by means of an fact that the parent is unknown),
are compatible with the legal source. Moreover, the ability to represent both
possibilities in LE may help to remove the ambiguity of the rule and it assist in
its automation.

3 A Tax Law Example

LE and its counterparts for other natural languages can be used to codify legal
rules to support their complete or partial automation. But they can also be used
to assist with the drafting of legal rules, to help ensure that the rules actually
express their intended interpretation. Used in this way, for both purposes, LE can
provide powerful support for both drafting and applying the law, as envisaged
in the campaign to represent Rules as Code (RAC) [11].
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Within this RAC context, we have investigated §121 of the US Internal Rev-
enue Code, following the lead of the Catala project [9]. Figure 2 shows an LE
representation of a portion of §121, which deals with the exclusion of gain from
the sale of a principal residence:

(Subsection a) Exclusion
Gross income shall not include gain from the sale or exchange of property
if, during the 5-year period ending on the date of the sale or exchange,
such property has been owned and used by the taxpayer as the taxpayer’s
principal residence for periods aggregating 2 years or more.

Notice that the condition of the sentence is ambiguous.

– It could mean that the periods during which the taypayer both owns and
uses the property within the 5-year period aggregate to 2 years.

– Or it could mean that the periods during which the taypayer owns the prop-
erty within the 5-year period aggregate to 2 years, and the periods during
which the taypayer uses the property within the 5-year period aggregate to
2 years.

The authors of [9] do not mention that the sentence is ambiguous. However, the
LE representation in figure 2 follows the Catala implementation of §121, which
assumes that the drafters of the Tax Code intended the second interpretation7.
Of course, the alternative interpretation could also be represented in both LE
and Catala.

Subsection (b)1 of §121 defines a cap of $ 250,000 on the amount of gain that
can be excluded from a sale or exchange of property. But the Code itself does
not express the common sense understanding of the cap as limiting the amount
that can be excluded. The Caltala implementation builds this understanding
into the representation of subsection (a) itself. However, the LE implementation
expresses this understanding separately in lines 126-132 of figure 2.

As is well-documented in the field of AI and law, a typical legal document
consists of rules and exceptions, as well as exceptions to exceptions, etc. In this
regard, the US Tax Code is not exceptional. In particular, subsection (a) is
subject to the exception:

(3) Application to only 1 sale or exchange every 2 years
(A) In general
Subsection (a) shall not apply to any sale or exchange by the taxpayer
if, during the 2- year period ending on the date of such sale or exchange,
there was any other sale or exchange by the taxpayer to which subsection
(a) applied.

To represent this exception, we add an extra, explicit condition (in lines 45-46
of figure 2) to the rule for subsection (a), expressing that it is not the case that
7 https://catala-lang.org/en/examples/us-tax-code
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the exception holds. We also interpose an intermediate conclusion (on line 42)
and an intermediate condition (on line 40) in the representation of subsection
(a), expressing explicitly that subsection (a) applies. The exception itself is on
lines 118-124.

In general, rules and exceptions are represented in Prolog and most other
logic programming languages by adding such otherwise implicit conditions (that
the contrary of the conclusion does not hold) explicitly. However, Satoh [10] has
argued that rules written in this Prolog form are hard for lawyers to understand.
It is easier for lawyers to understand rules written more simply with unwritten
implicit conditions, as in the Prolog-based Legal reasoning support system, Pro-
leg [10]. We agree with this approach, and plan to incorporate such implicit
conditions in a future version of LE.

Figure 3 shows an example scenario and query, both written in LE syntax.
The SWISH implementation of LE allows several such scenarios and several such
queries in the same document. Figure 4 shows the answer and proof tree obtained
by combining scenario one with query one. The proof tree is an explanation of
the answer to the query, given the scenario and the more general rules in the
knowledge base. The last part of the proof, highlighted in red, displays the
conditions that could not be proved, justifying the conclusion that the exception
does not hold in the given scenario.

4 Conclusions

Our experience with using LE for many practical, proof-of-concept applications
suggests that LE has many valuable applications, which are not restricted to
the automation of legal rules. These applications include the disambiguation of
legal rules written in natural language, as well as the exploration of the logical
consequences of the rules, in the context of different scenarios.

These applications are facilitated by the fact that users can read, understand
and use LE without any technical training in logic, computing or mathematics.
But, although LE may be easy to read, at this stage in its development, it is
not easy to write. The fact that the drafters of the Italian citizenship law and of
the US Tax Code did not identify the ambiguities in their legal texts proves how
difficult it can be to express information clearly and unambiguously in natural
language.

Even if LE were never used to help automate the application of legal rules,
it would serve a useful purpose as a discipline in training writers to express
themselves in terms that readers can more readily understand.
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Fig. 2. §121 of the US Internal Revenue Code subsection (a)
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Fig. 3. A scenario and query for subsection (a)

Fig. 4. Explanation of the answer of a query in LE
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Abstract. Representing legal norms through a logical formalism is not only one 

of the most traditional subjects of legal informatics, but also an essential pre-

requisite for the development of law-compliant autonomous systems, e.g., auton-

omous vehicles (AVs). Formalizing legal norms adequately requires more than 

merely choosing or defining a logical system by the means of which the norms 

are to be represented. Instead, as a first step, it is essential to assess the entire set 

of legal norms relevant for the legal question at hand. In addition to norms ex-

pressly laid down by statutory law, implicit (‘unwritten’) norms, which are re-

vealed by courts and other authorities, have to be taken into account. In the paper 

at hand, we present a method for systematically identifying and compiling appli-

cable implicit legal norms, thus significantly adding to the set of norms explicitly 

put into statute and applicable to a concrete case. We illustrate the method, which 

was designed as a first step towards formalizing legal norms applicable to a con-

crete case, by applying it to the written legal rules defining Zeichen 295 [traffic 

sign 295] of the Deutsche Straßenverkehrsordnung (StVO) [German Road Traf-

fic Regulation]. It is shown that this method can significantly increase the corpus 

of applicable legal norms. Particularly, it leads to closing eventual legal gaps and 

solving legal antinomies, thus providing clarity to many difficult cases. 

Keywords: Systematic Compilation of Implicit Norms, Autonomous Driving, 

Formalization of Legal Norms, Legal Logic, Traffic Law. 

1 Introduction – Reviving an Old Dream of Legal Informatics 

Using logical methods to represent legal norms in a mathematically precise way is an 

old dream of legal informatics, or rather of legal cybernetics, as the field was originally 

known. As a research discipline, legal logic emerged independently from its philosoph-

ical counterpart, i.e., so-called deontic logic, in the early post-war period. It is closely 

related to German legal theory; among its founders are names such as Julius Stone [1], 

Ulrich Klug [2], Eduardo García Máynez [3] and Ilmar Tammelo [4]. Over the follow-

ing decades, however, as the true extent of the arduous task of formalizing legal systems 

became clearer, and following the so-called AI-Winters, the interest in this original goal 

of legal informatics and, a fortiori, in legal (and deontic) logic steadily dwindled.  
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Today, following groundbreaking results in the field of AI-research, especially with 

respect to neural networks and machine learning, approaches to formally represent 

norms and legal knowledge are slowly regaining the attention of legal scholars and 

computer scientists.  

Recently, research on autonomous driving seems to revitalize the idea of legal logic, 

and with it of legal informatics in its original form. The success of autonomous driving 

as a mobility concept requires developing algorithms that not only steer a car on real-

world streets in a safe and efficient manner, but are also able to comply with traffic 

rules. This becomes particularly obvious where autonomous vehicles (AVs) and human 

drivers, as well as pedestrians share the same streets and also have to comply with the 

same traffic rules. Incidentally, in Germany, which, in 2019, pioneered amending its 

Straßenverkehrsgesetz (StVG) [Road Traffic Act] to include regulations on autonomous 

driving, explicitly requires AVs to be able to autonomously comply with traffic rules 

(§ 1e para. 2 s. 2 German Road Traffic Act).  

For a computer to be able to comply with traffic rules, it is necessary to reduce all 

the tasks involved herein – e.g., recognizing the rules applicable to a given case, iden-

tifying violations and evaluating exceptions – to a purely syntactic method. This syn-

tactic reduction, which can also be called a formalization for computational purposes, 

consists of three main phases: (1) determining the object of the formalization, i.e., in 

the case at hand, traffic regulations; (2) determining the formalization framework, e.g., 

a logic system to serve as base for the formalization of traffic rules; (3) determining the 

implementation framework, i.e., the concrete form by which a computer is supposed to 

represent and process the respective formalization of traffic rules (e.g., a machine-read-

able formal language). 

So far, research on formalizing traffic rules for autonomous driving has focused al-

most exclusively on the last two phases, leaving phase (1), i.e., determining the very 

object of the formalization, largely untouched.  

With respect to phase (2), current research on formalizing traffic rules for autono-

mous driving is focusing either on frameworks based on modal logic (ML), particularly 

so-called deontic logic [5], or on frameworks based on first-order predicate logic 

(FOL), including different types of temporal logic (TL) [6, 7, 8]. 

Concerning phase (3), depending on which of the formalization approaches dis-

cussed above is being used, several different implementation frameworks can be ap-

plied. ML-based formalizations can be represented, e.g., by using LegalRuleML [9], 

[10], a markup language based on RuleML  designed to be able to grasp the particular-

ities of legal rules. Furthermore, arguments and inferences built on ML-formalizations 

can be represented and verified by using normative reasoning engines or frameworks 

capable of encoding systems of deontic logic, such as Turnip1 and NAI [11, 12]. FOL-

based formalizations, in turn, can be easily implemented in programming languages 

such as PROLOG [13] or PROLEG [14]. One can also use theorem provers based on 

higher-order-logic (HOL), such as Isabelle [15], to verify arguments based on FOL-

formalizations [16, 17]. To verify whether a rule has been fulfilled or violated, adapted 

SAT-solvers can be employed to both ML- and FOL-based systems [18, 19, 20].  

 
1 https://turnipbox.netlify.app/ (accessed 10.11.2022). 
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Evidently, the decision of which implementation framework to employ in phase (3) 

depends on the formalization framework used in phase (2). Similarly, determining 

which formalization framework should be employed depends on the nature of the object 

of the formalization, which is determined in phase (1). In other words: before a proper 

formalization of traffic regulations can be implemented, it is necessary to clarify what 

exactly these regulations are and what semantic particularities traffic rules might have.  

Hence, the disregard for phase (1) can be considered as a fatal flaw of current re-

search on the formalization of traffic rules for autonomous driving. To fill this gap, we 

propose a method for systematically identifying and compiling implicit legal norms, 

thus significantly expanding the corpus of explicitly stipulated norms applicable to a 

concrete case. We illustrate this method by applying it to the written legal rules defining 

traffic sign 295 of the German Road Traffic Regulation. 

2 Systematic Compilation of Implicit Norms – Overview 

With respect to formalizing legal norms, the main issue concerning the determination 

of the object of the formalization (phase (1) in the model above) arises from the fact 

that law can be regarded as a corpus of valid legal norms which is considerably larger 

than the set of written norms explicitly stipulated in statutes and other legal texts prom-

ulgated by the legislator, such as regulations etc.  

Hence, before one can properly formalize the set of norms applicable to a case, one 

must first determine the corpus of valid legal norms. The corpus of valid legal norms 

consists out of the set of explicit norms derived from legislation and the set of implicit 

norms derived from case law and legal dogmatics. By compiling the implicit norms as 

well, it is possible to considerably add to the set of explicitly formulated norms. More-

over, implicit norms are particularly valuable, for they often contain clarifications for 

solving borderline cases and solutions for legal gaps and normative conflicts. As a re-

sult, by adding to the set of explicitly formulated norms, difficult cases can be addressed 

and solved more efficiently. 

While the method proposed here largely builds on classic legal hermeneutics and 

legal methodology, this systematic compilation of implicit norms is intended to be a 

preliminary stage for logical formalization. Hence, it has a particular focus on the way 

in which its results are compiled. Particularly, it aims at revealing compact, unambigu-

ous, and consistent sets of implicit norms applicable to a case.  

The method proposed here is based on the concept that legal norms can be extracted 

from explicitly formulated statutes as well as from court decisions and even from legal 

literature. Although different approaches to and concepts of sources of law have been 

discussed for centuries, there is a consensus that legal norms are not only put down in 

black and white in statutory law by the legislator, but also in decisions by courts, in so-

called case law. Even the opinions of legal scholars interpreting statutory or case law 

can be considered as part of the lawmaking process as such opinions may enjoy the 

rank of an authority and be followed by applying the law. For this reason, we consider 

written (statutory) and ‘unwritten’ norms formulated and applied by courts and by ex-

perts as potential sources of traffic rules. 
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However, for a (explicit or implicit) legal norm to be binding, it is necessary for it 

to be recognized. In this sense, legal experts recognize statutory law once it has become 

effective and as long as it has not been repealed by statute or, in some jurisdictions, 

such as Germany, by a competent court (e.g., in Germany, the Federal Constitutional 

Court (Bundesverfassungsgericht)). In the case of case law, legal experts consider a 

norm as recognized if it has been put down by the highest court or a majority of courts. 

In the same way, norms put down by legal scholars can be considered as recognized if 

a strong majority of experts agrees on the existence of such a norm. 

Generally, within the method proposed here, legal experts identify ‘unwritten’, im-

plicit norms connected with ‘written’, explicit norms in three steps: 

(1) Finding relevant court decisions and/or expert literature 

(2) Extracting the relevant norm therein 

(3) Verifying whether that norm is recognized. A norm is recognized in this sense if 

a court of highest authority, or a majority of courts has formulated that norm down with 

the same normative content. In the absence of an opposing view, a norm can be consid-

ered as recognized if one source has suggested this norm and another has confirmed it. 

3 Illustrating the Method – The Solid Line 

In this section, we illustrate the method proposed here by applying it to the solid line, a 

well-known example from the field of autonomous driving. 

3.1 The Solid Line 

From a purely syntactical perspective, road signs and markings constitute a system of 

symbols and can therefore be considered as a type of (formal) language [21]. Neverthe-

less, programming an AV to comply with the law requires more than just encoding 

these signs as mere symbols. Rather, the information which has to be formalized and 

encoded (i.e., the object of formalization (phase (1))) are the traffic rules contained in 

the meanings of these signs and markings. To properly understand these meanings, it is 

necessary to also consider their historical development.  

The need to create rules and signs governing motorized traffic went hand in hand 

with the flourishing development of the automotive industry at the beginning of the 

20th century. The induced change in mobility resulted in a need for new safety require-

ments. To meet these, in 1909, the Convention with Respect to the International Circu-

lation of Motor Vehicles attempted, for the first time, to establish and standardize traffic 

regulations at an international level. Further international agreements followed: the 

1926 International Convention Relative to Motor Traffic already included six road 

signs. The Geneva Convention on Road Traffic, prepared by the United Nations Con-

ference on Road and Motor Transport in 1949, included a Protocol on Road Signs and 

Signals with an extensively developed system of road signs. Finally, the Vienna Con-

vention on the Signs and Signals and the Vienna Convention on Road Traffic, signed in 

October 1968, replaced the Geneva Convention. Notwithstanding, some countries, 
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including the United States, China and Japan, are yet to sign or ratify the aforemen-

tioned conventions.  

At the national level, however, such rules had existed even before the first interna-

tional convention on traffic regulations came into force. In Germany, e.g., the first reg-

ulation concerning motorized traffic dates back to 1906.   

Traffic signs and road markings had already been used in railway and shipping traffic 

in the 19th century. The marking of the solid line can be traced back to Edward N. 

Hines (1870-1938) and was the very first road marking.  It spread quickly since it was 

useful for providing a clear marking of the roadway. In Germany, the solid line was 

established as a standard marking in the 1930s, during the expansion of the motorway 

(Reichsautobahn) [21].  

Being a convention under international law, the Vienna Convention has to be trans-

formed by the contracting parties into their national law. In Germany, these rules were 

transformed in the German Road Traffic Act [Straßenverkehrsgesetz (StVG)]. The 

StVG is a federal law granting the Federal Government the competence to issue regu-

lations. On this legal basis, the Federal Government enacted the Road Traffic Regula-

tion [Straßenverkehrsordnung (StVO)] containing a set of precise rules on traffic reg-

ulations and road signs. 

In an annex to § 41 StVO, this regulation introduces the sign 295, which contains a 

picture of the solid line and the explicit legal text stating the legal norms indicated by 

the sign. 

3.2 Identification of the Implicit, ‘Unwritten’ Norms 

Search for the relevant court decisions. German courts are not bound by any strict 

rule on whether they have to publish their decisions. The Federal Constitutional Court 

[Bundesverfassungsgericht (BVerfG)] and the Federal Supreme Court [Bun-

desgerichtshof BGH)] publish most of their decisions, yet judges at other courts publish 

their decisions only on a case-to-case basis, according to their discretion. In many cases, 

the parties themselves publish decisions on data bases or in law journals. 

For our research, qualified legal experts2 searched through the relevant case law in 

the leading databases on German law, juris and beck-online, and in an extensive col-

lection of traffic law, the so-called Traffic Law Collection [Verkehrsrechtsammlung 

(VRS)], comprising 141 volumes and dating back to the year 1949. The legal experts 

searched by using the keywords “Zeichen 295” [sign 295] and “durchgezogene Linie” 

[solid line]. The researchers supplemented their search with relevant decisions gained 

by following cross-references from expert literature. Altogether, 173 decisions on sign 

295 could be collected and examined. This first research step could likely be greatly 

optimized by the employment of methods based on Natural Language Processing 

(NPL). 

 
2 All legal experts working on this project have at least a master’s degree in law (LL.M.) or the German First 

State Examination, the latter of which equals the first. 
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The legal experts screened the court decisions manually and extracted the relevant 

sections. When doing so, they identified those parts of the decisions formulating a legal 

norm (i.e., those parts with normative content) flowing from sign 295. 

Out of the 173 decisions examined, 35 relevant decisions with normative content 

have been found from the on sign 295. 

Extraction of Legal Norms. The normative content, or the legal rule formulated in a 

court decision can come in various ways, and the wording used by the courts may often 

differ even if the normative content is the same. Therefore, the most demanding task in 

the method discussed here is to decide, by way of interpretation of the court decision, 

what the exact normative content of that decision is and whether different wordings 

stipulate different rules. This task is nothing less than one of the most traditional tasks 

of legal experts who are trained to interpret court decisions and other legal texts in order 

to reveal the legal norm stipulated therein. In order to create a unified wording and to 

prepare the logic representation of the norms, the identified norms in the court decisions 

have been rephrased as a conditional sentence using an “if..., then” structure. 

Each of the relevant sections in the court decisions has been examined by three to 

five legal experts. In each case, one of the experts suggested a rephrased wording of the 

norm found in a section of a relevant court decision, and the other experts, who had 

interpreted the same section independently from each other, either agreed or suggested 

a different wording. In case of divergence, all of the experts discussed the interpretation 

of the section and the suggested wordings together. Then, they voted for one of the 

wordings. In almost every case, after having discussed the wordings, the experts could 

unanimously agree on one version. By this method, 21 rules could be identified on the 

basis of 35 decisions with normative content. 

Verification Whether the Norm is Being Recognized. At last, the recognition of the 

identified legal norms had to be verified. To be recognized, at least two court decisions 

or one court of highest rank had to put that norm down in black and white. A further 

condition in both cases was that there were no opposite/differing decisions. 

The legal experts came to the conclusion that all of the identified legal norms had to 

be classified as being recognized, mainly due to the fact, that almost all of the published 

decisions were rulings of a Court of Appeal or of the Federal Supreme Court (BGH). 

3.3 Legal Dogmatics 

The main particularities of the method discussed here with respect to the analysis of 

secondary materials containing legal dogmatics are presented in this section. As in the 

case of case law, any secondary materials are to be assessed with regard to their nor-

mative content; the first step is to collect the relevant sources. The analysis of sign 295 

is limited to classic legal literature; with the main source being commentaries on the 

StVO. Legal commentaries are a specific type of literature in the DACH region. 

Amongst others, they contain explanations on how to interpret and apply the law. 
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Only a few commentaries explicitly address sign 295. This might be due to the fact 

that signs and road markings are not part of the StVO itself, but are only contained in 

the annex to § 41 StVO, along with with a written explanation by the legislator.  

The team of legal experts evaluated a total of eleven commentaries. As a result, eight 

norms could be extracted from literature. Whereas four norms were identical with the 

ones derived from court decisions, legal scholars put down four norms which are dif-

ferent from those formulated by courts. 

4 Evaluation of the Results on Sign 295 

The use of the method presented here on the solid line (sign 295) led to considerable 

results: From two explicitly stipulated norms in the statutory provision, the analysis of 

court decisions led to the deduction of a total of 16 legal norms.  

The most important ‘unwritten’ norms certainly concern exceptions to the general 

prohibition not to cross the solid line. Such an exception applies if there is an obstacle 

on the roadway which makes it impossible to go on without crossing the line. In this 

case, courts exceptionally allowed to cross the solid line, if further specifications ap-

plied. One of these is that crossing the line in such a situation is only permissible if this 

does not create any additional risk to road traffic. 

Also, the courts recognized some additional norms deduced from sign 295. For ex-

ample, the German Federal Supreme Court (BGH) deduced the norm that a driver trav-

elling on a roadway with a solid line may rely on not being overtaken, if the carriageway 

is so narrow that the driver behind him can overtake only by crossing the solid line and 

driving on the opposite roadway.  

To illustrate the results of the method, Table 1 below shows two legal norms explic-

itly laid down in the annex to § 41 StVO (1.), an exception to the rule (2.) and an addi-

tional rule (3.) recognized by the courts. With regard to the latter, first, the table shows 

the norm as our researcher team formulated it to prepare its representation in logic (a). 

Second, it shows the original section of a court decision which recognized the norm (b). 

Finally, the table shows the court decision from which the section named at (c) was 

quoted. 

5 Result – Potential of Systematic Norm Collection 

In conclusion, as it was shown through the example of sign 295, it becomes apparent 

that the method proposed here considerably expands the corpus of applicable legal 

norms by extracting implicit, ‘unwritten’ norms from case law as well as from legal 

dogmatics.  

This expansion is remarkable both in quantity and quality: in addition to one norm 

laid down in the statutory text, the researcher team identified 21 norms recognized in 

court decisions and literature. 
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Table 1. Basic rule, exceptions of and addition to sign 295. 

1. Legal Norm ext. of sign 295        a) a person operating a vehicle must not cross or straddle the solid line.  

 

b) if the solid line separates the portion of the roadway for traffic travel-

ling in the opposite direction, traffic must keep to the right of it. 

 

2. a) Norm recognized by courts     If a vehicle driver is driving on a roadway with a solid line, then he may 

cross the line in order to drive past a parked vehicle or a vehicle that is 

not only stopping for a short time, provided that there is no danger to 

other traffic.        

 

b) Normative text passage from 

the given case 

“In principle, the prohibition to cross the solid line established by the law 

must be strictly followed. It cannot be left to the discretion of the indi-

vidual road user whether or not a traffic law requirement or prohibition 

is to be followed in an individual case. Notwithstanding this principle, 

crossing the solid line may be permissible in exceptional cases if there is 

a compelling reason for doing so and a hazard to other traffic is ruled 

out. Thus, case law has permitted crossing the solid line in exceptional 

cases for the purpose of passing a stopped or parked vehicle if this does 

not cause any danger (OLG Hamm in JMBI NRW 1957, 209 and Verk-

Mitt 1960, 62 No. 93). The AG is to be agreed that such an exceptional 

case justifying non-observance of the prohibition is not already given if 

the obstacle arises only for a short moment.” 

 

c) Source (court decision) of the 

quoted section 

OLG Hamm, Urt. v. 14.10.60 – Az. 1 Ss 1207/60                                       

 

 

3. a) Norm recognized by courts        If a driver is driving on a roadway with a solid line and this roadway is 

so narrow that the driver behind him can overtake only by driving on the 

opposite roadway, then he may rely on not being overtaken. 

 

b) Normative text passage from 

the given case 

“On the contrary, such a marking, where it has the effect of a de facto 

prohibition of overtaking due to the narrowness of the roadway (cf. Sen-

ate judgment of 26.11.1974 - VI ZR 10/74 - VersR 75, 331, 332), also 

protects the trust of the person driving in front that he does not have to 

expect to be overtaken at this point. Similar to a natural narrowing of the 

road, the driver may rely on a following driver to act in accordance with 

traffic regulations, i.e. not to overtake, if this is only possible by driving 

over the solid line or the restricted area. This could be the decisive cause 

of the accident, namely that the plaintiff did not expect to be overtaken 

by the bus when she turned into the – as she puts it – permitted space 

between the barrier and therefore did not prepare herself for this either.” 

 

c) The source (court decision) of 

the quoted section 

BGH, Urt. v. 28.04.1987 – Az.: VI ZR 66/86, Rnmn. 249                          
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Above all, courts recognized essential implicit exceptions to the basic rule as well as 

the implicit complementary rules. The enlarged corpus of traffic rules can serve as a 

basis for logic representation and programming of the rules. 

We assume that the use of this or similar methods to identify and compile implicit 

traffic rules will be an essential element of any approach to formalizing traffic rules for 

automated driving. 
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Abstract. As AI products continue to evolve, increasingly legal problems are
emerging for the engineers that design them. For example, if the aim is to build
an autonomous vehicle (AV) that adheres to current laws, should we give it the
ability to ignore a red traffic light in an emergency, or is this merely an excuse
we permit humans to male? The paper argues that some of the changes brought
by AVs are best understood as necessitating a revision of law’s ontology. Current
laws are often ambiguous, inconsistent or undefined when it comes to technolo-
gies that make use of AI. Engineers would benefit from decision support tools
that provide engineer’s with legal advice and guidance on their design decisions.
This research aims at exploring a new representation of legal ontology by import-
ing argumentation theory and constructing a trustworthy legal decision system.
While the ideas are generally applicable to AI products, our initial focus has been
on Autonomous Vehicles (AVs).

Keywords: Legal ontology · Autonomous vehicle · Legal detection · Argumen-
tation theory · Explainable AI.

1 Introduction

Advances in artificial intelligence (AI) and the automated systems that they enable pose
significant challenges to the legal system. In this paper, we will use autonomous vehi-
cles (AVs) as a case study to show how the challenges to the law can also be translated
into a challenge (and opportunity) for legal AI.4

Concerns about the safety of AVs, and a recognition that widespread lack of trust in
them will impede their uptake, have resulted in a plethora of legislative and regulatory

⋆ Corresponding Author.
4 The current paper is an extended version of [26]. Work on this paper was supported by Trust-

worthy Autonomous Systems EP/V026607/1 and AISEC EP/T026952/1As per University of
Edinburgh policy, for the purpose of open access, the authors have applied a ‘Creative Com-
mons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from
this submission.
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activity such as the EU AI Act [2], or, specifically for AVs, the proposal by the Law So-
cieties of England and Wales. They regularly share two key strategies: on the one hand,
they ask for engineering solutions that can provably demonstrate that the product will
be law compliant. This extends the concept of “privacy by design” from data protection
law to other fields of engineering. Secondly, they create new obligations for developers
and manufacturers to document and justify the design choices that they made to achieve
this goal. Taken together, this creates significant compliance burdens that require that
engineers, who are not trained in the law, to consider nonetheless legal issues at every
step of the development and design stage, and to provide suitable documentation to
demonstrate this compliance.

Our contention is that legal AI, and more specifically a combination of legal on-
tologies and argumentation systems, can help support discharging these compliance
burdens by providing intelligent design environments that help the engineer to reason
through the legal implications of their design choices, and in a second step can help
with creating the type of documentation that the law requires.

A similar approach has been developed as part of the Smarter Privacy project that
aims at assisting developers of smart grids to comply with data protection law [29].
Their approach modelled the subject domain using the Sumo ontology, enriched with
concepts from data protection law, and combined it with a rule-based reasoner about
the relevant legal domain. While sympathetic to this approach, our proposal differs in
a crucial jurisprudential assumption for them: there the law and its categories are taken
as a given, and the reasoner then merely subsumes new facts under the old categories.
The result is a “Dworkinian one-right-answer”[33]. By contrast, we argue that the legal
analysis of new technologies takes place under uncertainty not just of the facts but also
the law, whose categories can become unstable in response to external change, contested
and open to revision.

Our approach, in a nutshell, is this: the introduction of AVs and other autonomous
systems creates fundamental challenges to the legal system that can’t any longer be
resolved by mere analogous application of existing categories to these new objects.
Rather, they potentially “break” the underlying ontology and conceptual divisions of the
law, creating systematic inconsistencies and gaps, which are then in need of “ontology
repair”. Because law, like language, is self-reflective, this process of ontology repair in
turn uses legal arguments – in one and the same decision, the judge may e.g. propose
an interpretation that subsumes the facts under an existing legal category, while also
making an argument that some higher-order legal principle requires to amend, delete or
add to the existing categories. This ability of lawyers to reason about legal categories
in addition to using them is particularly visible when more fundamental changes in the
external world create problems when old categories are applied to new realities. These
exercises in ontology repair and ontology evolution inevitably create legal uncertainty.
As we will see in the examples below, this can create an unmet need for engineers
(or other members of society) to make legally informed decisions under uncertainty.
We hope to show how building on existing approaches to legal ontologies and legal
reasoning that make ontology repair explicit can help to address this.

A simple example may help to explain this more abstract notion. The United King-
dom Department of Transport 2015 report The Pathway to Driverless Cars stated that -
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testing of automated technologies is legally possible, provided that the vehicle can be
used compatibly with road traffic law. In other words, the AV must observe the same
rules originally addressed to human drivers. How can a developer of an AV make sense
of this requirement? A starting point would be to consult the relevant road traffic rules,
and treats the AV as the new norm addressee that “inherits” the legal obligations of the
human driver. For some of these, this change is unproblematic and merely reinterprets
the old category of “driver” as including “autonomous vehicles”. An example would
be “the driver has to stop the car at a red traffic light”. For other rules, however, this
strategy is less convincing. A candidate could be the rule that “the driver must not be
drunk”, or “if the driver is drunk, they must not operate the vehicle”. Here the engi-
neer has a number of possible interpretations available. They can continue to treat the
AV as “the driver”, and as cars are never drunk, the conditional norm: “If drunk, don’t
drive” is trivially true all the time, and the car is trivially compliant with this provision.
Alternatively, “the driver” in this context may refer to some human inside the car who
may have been assigned specific legal duties, for instance the duty to take over from the
AV under certain conditions. This means the concept of “driver” has now been subdi-
vided to “heal” the counterintuitive outcome. If this interpretation is taken, a number of
follow-up questions need to be answered. In one interpretation, this human “non-driver”
is responsible for being sober and faces sanctions when drunk – but this is not a concern
of the car developer. However, another interpretation is also possible: here, the duty to
ensure that the vehicle is operated lawfully transfers more fully to the AV, which now
has to monitor if there is at least one sober passenger available, e.g. [41].

The underlying problem that leads to these three different interpretations is that
AVs share some properties with the category “driver” and some properties with the
disjoint category “car”, creating systematic ambiguities when interpreting laws whose
semantics reflect the old ontology. Even more fundamentally, the reason AI regulation
is difficult is that they seem to violate some of the most basic ontological distinctions
that structure the law, in particular the distinction between persons and objects.

This was a central point made by the joint report of the Law Commissions of Eng-
land and Scotland. They note that “Existing law reflects a division between rules gov-
erning vehicle design on the one hand and the behaviour of drivers on the other.” What
the Commissions ask for in response is a new conceptual scheme that bridges these two
regulatory spheres: the automated driving system is at the same time equipment fitted in
a vehicle (and object) but it also determines the behaviour of the vehicle (an agent). If
we think of this suggestion as a form of “repair work” to deal with emerging inconsis-
tencies, we can repurpose research in ontology repair to model not only the reasoning of
the Commission, but also how that document can in turn be made into a legal argument
that informs design decisions. Ideally, at every decision that they have to document,

Fig. 1. Overview of the process of legal support system
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the engineers need a system that (1) Gives feedback about whether a de- sign draft is in
compliance with current or possible future laws, depending on which of several compet-
ing interpretations is chosen, (2) Answers what happens to the legal analysis if a single
functionality is added, deleted or modified in the draft design; (3) Sup-ports reasoning
based on how conflicting preferences and values have been resolved; (4) Gives an under-
standable explanation of the legal results for auditing purposes. Here, we present a legal
support system for autonomous vehicles (LeSAC ), as shown in Figure 1. It is built on
top of legal ontology and a legal argumentation framework adapted from ASPIC+ [31]
based on legal reasoning, which we name L-ASPIC [40]. In LeSAC we extract neces-
sary elements for legal content and add relevant designs such as legal principle based
preference order.

The rest of this paper is organized as follows. Related work is discussed in §2.
§3 introduce a running example and its encoding in legal ontology, as well as the
background for description logic (DL) and the argumentation framework we built. §4
presents LeSAC and its functionality to assist AV design from the legal aspect. §5 con-
cludes this paper.

2 Related Work

The most direct interaction between AV cars and the law are road traffic rules,. Because
they are more detailed and precise than “top level” legal regimes such as the general
law of delict, they are also a good candidate for representation in a logic framework
[27]. To meet the requirements like “understandable explanation “discussed above, we
choose a classical logic-based format:, legal ontologies, as the foundation, as they have
proved themselves as powerful tools for legal KR in applications such as search in legal
databases or documents management:

In the literature, many legal ontologies for different functions have been proposed
such as the Legal Knowledge Interchange Format (LKIF) Core ontology builds on
the Web Ontology Language (OWL) and LKIF rules [24,3]; the Core Legal Ontol-
ogy (CLO) based on the extension of the DOLCE (DOLCE+) foundational ontology
[18]; the LRI-Core ontology aimed at the legal domain grounded in common-sense [8],
UOL[23] and the Functional Ontology for Law (FOLaw) [37,38]. These legal ontogies
mainly focus on capturing core concepts and framework of the abstract legal theory.
And there are also many legal ontology models constructed for specific legal domains
like Ukraine legal ontology[21], MCO[30] and JUR-IWN[10]. In a word, legal ontol-
ogy has proved itself a very strong tool for law as legal expert systems, legal database,
documents manager and so on.

However, legal ontology alone is insufficient for legal reasoning. as pointed out by
van Engers et al. [39]. Law is based on a dialectical process, This is the consequence
of the inevitable introduction of ambiguity )Hart’s “open texture” and inconsistencies
that are typically resoved through an adversarial debate. However, the main description
language of the current legal ontology is the Web Ontology Language (OWL) or OWL2,
whose semantics are based on DL [4] and they cannot support inconsistent reasoning
as a subset of first-order logic. This is also an important reason that most of the existing
legal ontology focuses more on capturing abstract legal concepts, playing the role of
document management or legal dictionary. To address this problem, there are works
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focused on detecting and repairing inconsistent parts [34,17] or extending classical logic
by adding true values [42]. However, these works weaken the reasoning strength of DL
[42] and require guidance outside the ontology [34,17]. Also, they lack explainability
which is a desirable feature when inconsistency happens.

As discussed above, legal ontology needs a method to analyze and reason in an
environment full of uncertainties, something not available inside description logic se-
mantics. So a new formal tool supporting handling conflicts and uncertainty while ex-
pressing incomplete information in legal ontology is needed, which points to formal
argumentation theory.

In [14], formal argumentation has been noticed as an approach to dealing with rea-
soning under inconsistent and uncertain contexts [15,19,22,28]. Formal argumentation
has the merits of computational efficiency and explainability. There have been works
combining argumentation theories and ontology for argument mining [36] and quanti-
fied reasoning [9] but they didn’t solve inconsistent reasoning. For handling reasoning
with inconsistent ontologies, several previous studies have considered applying struc-
tured argumentation systems in this field, e.g. [22,27], DL ontology is expressed as
Defeasible Logic Programs (DeLP) [19], while paper [7] present argumentation frame-
works based on the Deductive Argumentation [5] framework for dealing with incon-
sistent DL ontologies. These works support inconsistent reasoning but they cannot de-
scribe more complicated interactions or agents’ different attitudes. They also do not
connect the explanation of reasoning results with the underlying design choices of the
legal semantics. However, in legal applications, explainability is even more important
than in other AI tasks. The reasoning and process of how a legal result was obtained
is often as important as getting the result right. Formal argumentation is capable of
handling this problem. Paper [12] performed a comprehensive literature survey among
explainable AI from an argumentation perspective. Research [6] constructed a flexible
framework to provide explanations about why a claim is finally accepted or rejected
under various extension-based semantics in argumentation frameworks. Therefore, this
paper will explore how to give a formal explanation based on argumentation theory
within this legal support system.

3 Legal ontology and argumentation & a case study

We start by introducing a scenario as a case study. Encoding of this case study is avail-
able in [1].

Consider the following scenario that engineers may face if their task is to design AV
that behaves in a law-compliant way:

Example 1. Currently, the law stipulates a number of behaviours that a human driver
has to observe after an accident has happened. This includes a duty to stay at the scene
of an accident and to provide first aid if necessary and feasible. The design question
now is, does a driverless car “inherit” this obligation in the same way it “inherits” from
the human driver the duty to stop at a traffic light? A recent proposal by the Scottish
and English Law Commissions differentiates between functions that are core to the
safe operation of an AV and those that are auxiliary. As a complication, let’s assume
there is one passenger in the car, but he is (illegally) too drunk to do anything. In such
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a “contrary to duty” scenario, how should the AV car react now when somebody is
hit? Should it just report to the police and keep doing its original job: Sending the
passenger to destination as soon as possible? If the injured party is likely to die if
not receiving medical aid in time, is it a legal requirement that the AV stops the only
passenger from leaving and asks him to take the responsibility as a driver to give some
help? Especially considering the passenger is drunk, what if he does second harm to the
injury or put himself in danger? Here road traffic law interacts with other, more general
legal provisions about duty of care.

To handle this possible situation, we refer to current and relevant legal rules. We
extract and select some most relevant information from traffic law and criminal law:

(1) It is illegal to drive a motor vehicle while intoxicated. People who drive while
intoxicated shall lose their driving license and may be prosecuted in criminal law.

(2) A person who commits a hit-and-run accident will be criminal responsibility,
especially when the escape causes the death or the driver is intoxicated.

(3) When an accident happens, the driver should take the responsibility to transfer
the injured party to a safe place and provide aid if the situation is urgent.

Obviously, current rules will cause uncertainty and inconsistency if directly applied
in this situation if the vehicle is an AV, such as how to define the concept ‘driver’ and
how will the obligation be allocated. If engineers base their designs on a given possible
development, potential conflicts will also arise. For example, if we assume any future
law still counts the only human in the car as driver who should take responsibility in an
accident, the AI car should ask the drunk passenger to get out of the car and try to help
the injury. However, what will the law say about the passenger’s intoxication? On one
hand, a second harm is possible to occur from a drunk person, which will lead to new
legal responsibility. On the other hand, what about the passenger’s safety?

If we assume it should be the AI car’s job to make sure no more risk will occur to
the drunk passenger, which is highly possible. It means encouraging the passenger to
offer help could be against the law. To reflect how will LeSAC handle this problem, we
import one more legal rule into this example:

(4) It’s illegal to let a drunk passenger leave the car alone during the trip.

As mentioned above, DL is the basic semantic of OWL or OWL2, which are the
main logic languages of current legal ontologies. DLs are a family of knowledge rep-
resentation formalisms. The basic notions of DL systems are concepts and roles. A DL
system contains two disjoint parts: the TBox and the ABox. TBox introduces the termi-
nology, while ABox contains facts about individuals in the application domain. There
are many DLs and the legal ontology in this paper is built upon the ALC expression
[35,4].

In a legal ontology, legally reasoning rules such as traffic rules will be allocated into
Tbox, while explicit legal designs, e.g. AVs will stop or not, will be in ABox. As for the
situation in Example 1, a legal ontology’s TBox will be:

96



Example 2 (DL encoding of Example 1, TBox).

T =



Driver ⊑ Sober; Sober⊓ Intoxicated ⊑ /0; Intoxicated ⊓LeaveCar ⊑ /0;
Driver⊓ Intoxicated ⊑ BeRevokedDrivingLicense⊓TakeCriminalResposibility;
∃hitAndRun.In jury ⊑ TakeCriminalResposibility;
∃hitAndRun.causeDeath ⊑ AggravatedPunishment;
∃hitAndRun.In jury⊓Driver⊓ Intoxicated ⊑ AggravatingPunishment;
CauseAccident ⊓ In jury ⊑ ∃trans f erToSa f ePlace.In jury;
CauseAccident ⊓NeedEmergencyAid.In jury ⊑ doNecessaryAid;
(trans f erToSa f ePlace⊔doNecessaryAid)⊓¬LeaveCar ⊑ /0


Assuming an AV design named “AC1”, we consider the driver should take the re-

sponsibility as the current legal concept “driver”. When an AV hits somebody named
“Injury1” on the road, it will ask the only passenger named “PS1” to leave the car and
help the injured party, no matter if he is drunk or not. The corresponding ABox is:

Example (Example 2 cont. DL encoding of ABox).

A =

{
Driver(PS1); Intoxicated(PS1); hitAndRun(PS1, In jury1); In jury(In jury1);
causeDeath(PS1, In jury1); CauseAccident(PS1); NeedEmergencyAid(In jury1)

}

3.1 Argumentation Framework for Legal Reasoning: L-ASPIC

L-ASPIC is an argumentation system for legal reasoning based on ASPIC+ framework
[31]. It associates with a set of legal principles for argument preference extraction.
Due to space limitations, this section focuses on the settings specially adapted to the
application of legal ontology. A detailed account of L-ASPIC can be found in [40].

Definition 1 (Argumentation system for legal reasoning). An L-ASPIC argumentation
system (L-AS) is a tuple (L ,R,n,P, prin), where

– L is a set of formal language closed under negation (¬), where ψ = −ϕ means
ψ = ¬ϕ or ϕ = ¬ψ;

– R = Rs ∪N is a set of strict inference rules (Rs) of the form ϕ1, . . . ,ϕn → ϕ , and
legal norms (N ) based on defeasible inference rules, of the form ϕ1, . . . ,ϕn ⇒ ϕ

(ϕi,ϕ ∈ L ); Rs ∩N = /0; n is a naming function such that n : N → L .
– P is a set of legal principles, and prin is a total function from elements of N →P .

ASPIC+ framework [31] defines the set of rules (R) as consisting of two disjoint
sets, i.e. a set of strict rules and a set defeasible rules. In the current paper we intend
to use the argumentation theory as a tool only for dealing with normative reasoning in
legal contexts, so defeasible rules for epistemic reasoning are not considered.

The argumentation system of L-ASPIC defines defeasible inferences as legal norms
(N ), and we assume that each legal norm is associated with a legal principle in P
(whereas one legal principle may be associated with multiple norms), which is the pri-
mary legal principle on which the norm is based. In other words, for any legal norm,
N ∈N , prin(N)∈P is the basic legal principle upon which N is constructed, whereby
conflicts between arguments may be resolved based on priorities on P . The reason we
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import the set P is twofold: 1) giving more legal semantics for reasoning results, mak-
ing them more explainable; 2) supplying methods to solve complicated situations when
different conflicting legal suggestions occur. Since all norms in this paper are defeasi-
ble, a very strong (but not as strict as some self-evident facts) norm can be given higher
priority based on the legal principle associated with it.

Given an L-AS, we can construct arguments by rules starting from a set of premises
(knowledge base), denoted as K . Let ∆ = (T,A) be a legal ontology for AV based on
description logic, (L-AS,K A) is an argumentation theory about ∆ (denoted as L-AT∆ ),
where L-AS = (L ,RT ,n,P, prin), such that RT is the set of rules corresponding to T
(a mapping table can be found in [25,40]), and K A is the set of premises based on A.

We denote all the formulas in K that are used to build an argument as Prem, all its
sub-arguments as Sub, all the applied rules as Rules, and the consequent of the last
rule as Conc. Formally, arguments constructed based on L-AT∆ are defined as follows.

Definition 2 (Argument). An argument α constructed based on L-AT∆ has one of the
following forms:

1. ϕ , if ϕ ∈K A, s.t. Prem(α)= {ϕ}, Conc(α)=ϕ , Sub(α)= {ϕ}, and Rules(α)=
/0;

2. α1, . . ., αn → /⇒ ψ if α1, . . ., αn are arguments, s.t. there exists a rule Conc(α1),
. . ., Conc(αn) → / ⇒ ψ in RT , and Prem(α) = Prem(α1)∪ . . .∪ Prem(αn),
Conc(α)=ψ , Sub(α)= Sub(α1)∪. . .∪ Sub(αn)∪{α}, Rules(α)= Rules(α1)
∪ . . .∪ Rules(αn)∪{ Conc(α1), . . ., Conc(αn)→ /⇒ ψ}.

In addition, for any argument α constructed based on an L-AT∆ , let LastNorms(α)=
/0 if Rules(α)∩N = /0, or LastNorms(α) = {Conc(α1), . . . ,Conc(αn)⇒ ψ} if α =
α1, . . . ,αn ⇒ ψ , otherwise LastNorms(α) = LastNorms(α1)∪ . . .∪LastNorms(αn).
And we denote the set {prin(N)|N ∈ LastNorms(α)} as LastPrin(α).

Given an L-AT∆ , the inconsistency of information can be reflected by conflicts (at-
tacks) among arguments. An argument can be attacked on its uncertain parts or the
consequences of these parts. The current paper assumes that all the elements in K are
uncertain, and all the norms must be applicable, then the attack relation is defined as
follows.

Definition 3 (Attacks). Let α , β , β ′ be arguments constructed based on an L-AT∆ =
(L-AS,K A), α attacks β on β ′, iff: 1) β ′ ∈ Sub(β ) of the form β ′′

1 , . . . ,β
′′
n ⇒ ϕ and

Conc(α) =−ϕ; or 2) β ′ = ϕ and ϕ ∈ Prem(β )∩K , s.t. Conc(α) =−ϕ .

Since L-ASPIC is specifically designed to detect and handle conflicts arising from
legal norms, and the context has been limited to the design of AVs, elements in K A

can be considered as assumptions (e.g. “Driver(PS1)”, “Intoxicated(PS1)”), which
should have similar priorities, therefore the premises of arguments may be conflict-
ing/attackable.

When two arguments conflict as shown in Def. 2, whether one can defeat another
is determined by some pre-defined preferences. (these could e.g. be highler-order legal
values such as “repect for human life”) Let A denote all the arguments constructed
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based on an L-AT∆ , ⩽ denote a preordering on P and ⊴Dem denote a set comparison
based on the Democratic approach [11]. The preference ordering ⪯ on A is defined as
follows.

Definition 4 (Argument ordering). Let (L-AS,K A) be an L-AT∆ , for all α , β con-
structed based on it, β ⪯α iff LastPrin(β )⊴Dem LastPrin(α), i.e.: 1) LastPrin(α)=
/0 and LastPrin(β ) ̸= /0; or 2) ∀P ∈ LastPrin(β ), ∃P′ ∈ LastPrin(α) s.t. P ⩽ P′.

We write β ≺ α iff β ⪯ α and α ⪯̸ β . Based on Def. 4, arguments that do not apply
norms always stronger than arguments that do apply norms. The reason is that in the
setting of L-ASPIC , if an argument contains only elements from K and Rs, it repre-
sents the currently acceptable epistemic knowledge (beliefs). Since beliefs are generally
considered to take precedence over normative knowledge, it should be plausible that it
cannot be defeated by an argument that contains norms.

For the choice of comparative principles, preferences on the set of arguments are ex-
tracted according to the Democratic approach for set comparison [11] and the last-link
principle [31] for the elements selection. The legal basis of the Democratic approach
is that law in real life will protect preferred rights and benefits when it has to choose.
For example, when two groups of legal rules are incompatible, the one containing the
principle to protect human lives defeats the one aiming at protecting money (in many,
but not all contexts). Meanwhile, the last-link principle is used primarily for legal ap-
plications and is more suitable for normative reasoning [32].

In order to get an output of acceptable conclusions, first, we need to identify the
justified arguments, which can be achieved by an argument evaluation process based on
abstract argumentation frameworks (AF) and argumentation semantics [14]. Given an
L-AT∆ , an AF =(A ,D) can be established based on the set of all the arguments (A )
and the defeat relation (D) on the basis of the attack relation between arguments and
the ordering ⪯ on A . Let S denote one of the basic argumentation semantics introduced
in [14], ES denote the set of all extensions obtained under S, and ES ∈ ES denote one
of the extensions. An argument α ∈ A is said to be accepted w.r.t. ES if α ∈ ES. In
the following we say α is sceptically justified under S if ∀ES ∈ ES, α ∈ ES, and α

is credulously justified under S if ∃ES ∈ ES such that α ∈ ES. Then according to the
accepted/justified arguments, we can identify the accepted conclusions.

4 Legal support system for autonomous vehicles

In §3.1 we explained a structured argumentation framework L-ASPIC for reasoning
based on an inconsistent legal ontology. Then given a legal ontology, particularly for
AVs design, we can construct a LeSAC system based on L-ASPIC :
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Example 3 (A LeSAC ). Given a legal ontology for AV ∆ =(T,A), as shown in Example
2. LeSAC = (L ,K A,RT ,n,P, prin) is an argumentation theory instantiated by ∆ :

N =



r1 : Driver(x)⇒ Sober(x);
r2 : Intoxicated(x)⇒¬LeaveCar(x);
r3 : Driver(x), Intoxicated(x)⇒ BeRevokedDrivingLicense(x);
r4 : Driver(x), Intoxicated(x)⇒ TakeCriminalResposibility(x);
r5 : hitAndRun(x,y)⇒ TakeCriminalResposibility(x);
r6 : hitAndRun(x,y),causeDeath(x,y)⇒ AggravatedPunishment(x);
r7 : hitAndRun(x,y),Driver(x), Intoxicated(x)⇒ AggravatedPunishment(x);
r8 : CauseAccident(x), In jury(y)⇒ trans f erToSa f ePlace(x,y);
r9 : CauseAccident(x), In jury(y),NeedEmergencyAid(y)⇒ doNecessaryAid(x,y)



Rs =



r10 : Sober(x)→¬Intoxicated(x);
r′10 : Intoxicated(x)→¬Sober(x);
r11 : trans f erToSa f ePlace(x,y)→ LeaveCar(x);
r′11 : ¬LeaveCar(x)→¬trans f erToSa f ePlace(x,y);
r12 : doNecessaryAid(x,y)→ LeaveCar(x);
r′12 : ¬LeaveCar(x)→¬doNecessaryAid(x,y)



K A =



Driver(PS1); Intoxicated(PS1);
hitAndRun(PS1, In jury1);
In jury(In jury1);
causeDeath(PS1, In jury1);
CauseAccident(PS1);
NeedEmergencyAid(In jury1)



P =


p1 : Human lives should be protected as a priority;
p2 : AI products should avoid extra risk about sa f ety f or their users;
p3 : People should avoid putting others into dangerous by his own behaviours,

and should bear corresponding responsibility.


prin(r1) = p3; prin(r2) = p2; prin(r3) = p3; prin(r4) = p3; prin(r5) = p3;
prin(r6) = p3; prin(r7) = p3; prin(r8) = p1; prin(r9) = p1

Properties for a well-defined argumentation theory based on ASPIC+ are speci-
fied in [31]. Likewise, a well defined LeSAC should also meet some requirements, such
as Rs should be closed under transposition or contraposition. closure under transposi-
tion (or contraposition). ie.: if ϕ1, . . . ,ϕn → ψ ∈ Rs, then for each i = 1 . . .n, there is
ϕ1, . . . ,ϕi−1,−ψ,ϕi+1, . . .ϕn →−ϕi ∈ Rs. In Example 3, rules r′10, r′11 and r′12 are the
transposed rules of rule r10, r11 and r12, respectively.

We now present LeSAC its reasoning functions using the case study. To clarify these
support functions more visually, we use Example 3 to show how AV designers could
solve their different problems in this situation through LeSAC .

Legal compliance detection When engineers complete a whole design draft, they
could use the consistency checking function to check whether this design is fully com-
pliant with given laws and where conflicts are.
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Definition 5 (Consistency Checking). The ABox of ∆ is consistent w.r.t. the TBox of
∆ iff A is conflict-free based on attack relations, i.e., ∄α,β ∈A such that α attacks β .

If a design is completely consistent after reasoning, it means it is fully compliant
with given laws. Otherwise, it is not. And by tracing where arguments conflict, we could
know which part of the design needs modification. Based on the LeSAC in Example 3,
we can at least construct the following two arguments.

Example (Example 3 cont.).
α =(CauseAccident(PS1), In jury(In jury1)⇒ trans f erToSa f ePlace(PS1, In jury1))→LeaveCar(PS1)
and β = Intoxicated(PS1)⇒¬LeaveCar(PS1). According to Definition 3, α and β attack
each other, therefore the legal ontology on which this LeSAC is based is inconsistent.

Feedback for single change If AV engineers want to keep the main design of an AV
and only do some minimal changes, LeSAC can provide possible further legal conse-
quences with these new details by instance checking. According to LeSAC , assertions
are the conclusions of arguments. So based on the extension of arguments, we can de-
cide whether an assertion is accepted. The definition of acceptance of assertions is:

Definition 6 (Assertion Acceptance). An assertion X is sceptically/credulously ac-
cepted under certain argumentation semantics S, iff ∃A∈A , s.t. A is sceptically/credulously
justified w.r.t. ES and Conc(A) = X.

To determine whether a certain modification is consistent with the current design
and given laws, we translate this problem into whether a legal assertion about this AV
can be accepted as a conclusion of an accepted/justified argument. Consider arguments
α and β in Example 4, we have LastNorms(α) = {r8}, LastNorms(β ) = {r2}, and
LastPrin(α) = p1, LastPrin(β ) = p2 respectively. Assume that based on ⩽ on
P , p2 < p1, then according to Definition 4, β ≺ α . Therefore, α can defeat β , but
not vice versa. Based on the LeSAC in Example 3, there are no other arguments to
attack or defeat α . As a consequence, α is sceptically justified w.r.t. any ES, and the
assertion “LeaveCar(PS1)” is sceptically accepted. The following definition defines
instance checking based on a LeSAC for all the possible forms of classes.

Definition 7 (Instances Checking). Let ϕ be an individual, sceptically or credulously,
it holds that ϕ is an instance of a class:

– C (/¬C), iff ∃α ∈ A , s.t. α is sceptically justified w.r.t. ES and Conc(A) =C(ϕ)(/¬C(ϕ);
– C⊓D, iff ∃α,β ∈ A such that α and β are both sceptically/credulously justified w.r.t. ES

and Conc(A) =C(ϕ), Conc(B) = D(ϕ);
– C⊔D, iff ∃α,β ∈A s.t. at least one of α and β are sceptically/credulously justified w.r.t. ES

and Conc(α) =C(ϕ), Conc(β ) = D(ϕ);
– ∃P.D, iff ∃α,β ∈A such that α and β are both sceptically/credulously justified w.r.t. ES and

Conc(α) = P(ϕ,x), Conc(β ) = D(x) (x is an individual);
– ∀P.D, iff ∃α ∈ A s.t. Conc(α) = P(ϕ,x); and ∀α ∈ {α| Conc(α) = P(ϕ,x)}, ∃β ∈ α , s.t.

Conc(β ) = D(x).
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Giving legal explanations How to best use argumentation theory to generate under-
standable explanations has become an increasingly important topic in AI regulation
and AI design. There have been works [13,16] discussing which standards should an
argumentation-based explanation meet and some formal explanations [6,16,20] for dif-
ferent argumentation frameworks are given. For legal systems, an agent needs expla-
nation for a certain reasoning result as an assertion rather than an acceptable set with
understandable legal information. Considering AV engineers’ needs, the explanation
of reasoning results from LeSAC should show how a legal conclusion is obtained and
which content in this situation makes it accepted or not. For any agent y, let ⩽y denote
y’s priority orderings over set P , we propose a formal definition of explanation:

Definition 8 (Explanation). Let X be an assertion in a LeSAC that is sceptically ac-
cepted under certain argumentation semantics S by a rational agent y, then ∃α ∈ A
s.t. Conc(α) = X. The explanation for y to accept X is Expy = C (α)∪C (β )∪{⩽y},
where:

– C (α) = Prem(α)∪ Rules(α), which explains how X is reached;
– C (β ) = Prem(β )∪ Rules(β ) such that β defends α according to ⩽y and the

defeat relation D , which explains why X is justified.

Def. 8 provides a formal explanation of why a legal conclusion X is accepted for
certain design requirement. It consists of two parts. The first part explains how X is
reached by presenting all the premises contained in K A and all the legal rules con-
tained in RT that are applied to construct argument α . The second part explains why
this legal conclusion is accepted by presenting all the legal information and relevant
legal principles applied to construct the arguments that defend α . Consider our running
examples, for the acceptance of the assertion “LeaveCar(PS1)”,

Expy =({In jury(In jury1),CauseAccident(PS1),NeedEmergencyAid(In jury1)}∪{r8,r9})∪{p2 < p1}

and for the acceptance assertion “¬LeaveCar(PS1)”, it is:

Exp′y = ({Intoxicated(PS1)}∪{r2})∪ ({Intoxicated(PS1)}∪{r′10})∪{p1 < p2}

5 Conclusion and future work

This paper constructed a legal support system able to help engineers of AVs improve
their designs’legal compliance by importing argumentation theory into legal ontology.
We discussed the emerging legal problems brought by AI products and the new respon-
sibility engineers are facing from the perspective of both legal theory and social reality.
The conclusion was that a new kind of legal technology is useful to help fix the gap
between AI products and the legal world. We extended ASPIC+ to a new argumenta-
tion framework particularly for legal reasoning called L-ASPIC . Based on L-ASPIC we
constructed the legal support system LeSAC . We showed how this system performs
different relevant reasoning functions with both formalized definitions and an example.
What’s more, we also encoded the test case to show the feasibility of this system. In
future work, we will explore deeper the legal discussion and try to include some im-
portant ethical issues that delineate the duties of the designer and that of the legislator.
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We will also improve the legal representation and import machine learning methods
such as representation learning to match the empirical information in real cases. The
database for further research and experiments is also under construction. Another plan
is to integrate it into a conventional engineering workflow.
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12. Čyras, K., Rago, A., Albini, E., Baroni, P., Toni, F.: Argumentative xai: A survey. In: Pro-
ceedings of IJCAI-21. pp. 4392–4399 (2021)

13. Dauphin, J., Cramer, M.: Aspic-end: Structured argumentation with explanations and natural
deduction. TAFA 2017

14. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321 – 357
(1995)

15. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Simari, G., Rah-
wan, I. (eds.) Argumentation in Artificial Intelligence. pp. 100–218. Springer US (2009)

16. Fan, X., Toni, F.: On computing explanations in argumentation. In: Twenty-Ninth AAAI
Conference on Artificial Intelligence (2015)

17. Fang, J., Huang, Z.: Reasoning with inconsistent ontologies. Tsinghua Science & Technol-
ogy 15(6), 687–691 (2010)

18. Gangemi, A., Sagri, M.T., Tiscornia, D.: A constructive framework for legal ontologies. In:
Law and the semantic web, pp. 97–124. Springer (2005)

103

https://colab.research.google.com/drive/1BibJ5mVdoL7AvBRqmBQzL2XISaj6WICa?usp=sharing
https://colab.research.google.com/drive/1BibJ5mVdoL7AvBRqmBQzL2XISaj6WICa?usp=sharing


19. Garcı́a, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach. The-
ory and Practice of Logic Programming 4(2), 95–138 (2004)

20. Garcı́a, A.J., Simari, G.R.: Defeasible logic programming: Delp-servers, contextual queries,
and explanations for answers. Argument & Computation 5, 63–88 (2014)

21. Getman, A.P., Karasiuk, V.V.: A crowdsourcing approach to building a legal ontology from
text. Artificial intelligence and law 22(3), 313–335 (2014)
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Abstract. In different domains, compliance with legal documents about
industrial maintenance is crucial. Legal industrial maintenance is the le-
gal commitment of a company to control, maintain and repair its equip-
ments. With the evolution of legal texts, companies are increasingly
adopting automatic processing of legal texts in order to extract their key
elements and to support the task of analysis and compliance. To perform
such a task of knowledge extraction, a number of state-of-the-art pro-
posal relies on a semantic model. Based on existing models from both
legislative and industrial maintenance domains, we propose a new se-
mantic model for the legal industrial maintenance: SEMLEG (SEmantic
Model for the LEGal maintenance). This model results from an anal-
ysis of documents extracted from the Légifrance French governmental
website.

Keywords: Semantic model · legal maintenance · industrial mainte-
nance.

1 Introduction

In December 2021, the CNIL (French National Commission for Computing and
Liberties)3 has applied a record penalty against Google of 150 million euros for
non-compliance with the law. This example shows that companies are obliged
to respect the law and risks, otherwise, severe sanctions can be applied. In order
to carry out a legal monitoring, companies usually rely on human expertise
to manually analyse legal documents. As highlighted in [17], in France, there
are “more than 10,500 laws, 120,000 decrees, 7,400 treaties, 17,000 community’s
texts, tens of thousands of pages in 62 different codes. Some are constantly being
modified: 6 modifications per working day for the 2006 Tax Code”. Therefore, a
first problem is the quantity of legislative documents and their constant updates.
Secondly, the domain-specific vocabulary can make it difficult to understand the
3 https://www.cnil.fr/
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legislation. Third, the abundance of cross-references in legal documents makes
reading them tedious.

In order to address these issues, companies and the scientific community con-
sider the automated processing of legislative documents. With the advantage of
helping to process massive information, the processing of such documents aims
to extract and to represent legislative rules. In this paper, we focus on struc-
turing the legal maintenance information through a semantic model: SEMLEG
(SEmantic Model for the LEGal maintenance). These extraction and structur-
ing objectives have concrete applications. As an example, elevator maintenance
technicians can be assisted by automated tools that analyse legal documents and
propose to them a synthetic view of the elevator maintenance plan.

The rest of this paper is organized as follows. Section 2 presents a motivating
example to illustrate our goals. Section 3 introduces the main related works
on knowledge extraction from textual documents, with a focus on legislative
semantic models and on semantic models of industrial maintenance. Section 4
presents SEMLEG model, which aims to cover the domain of legal industrial
maintenance. Finally, the paper is concluded in Section 5.

2 Motivating example

Figure 1 shows an example of document from the French governmental website
Légifrance. This document has been translated with Google Translate. It de-
scribes the legal regulation for companies working on lifting devices, and more
specially on their checks. As in Figure 1, several cross-references are illustrated in
Section 1; the text mentions different articles (R4323-23 to R4323-27, R4535-7,
[...]) and refers the reader to the labour code. Section 2 of the document is ded-
icated to define what is a lifting device and a lifting accessory. It is worthwhile,
with an automated process, to extract and synthesize the relevant elements from
the document. In our case, we can expect knowledge extraction about the defini-
tions in Section 2 and the rules in Section 3. First, the definitions allow systems
or human to categorize the equipments into a group bound with a set of rules.
In this way, when the technician uses a Computerized Maintenance Manage-
ment System (CMMS) to operate on a lift, it knows the lift as an asset category
and can suggest retrieving the manufacturer’s instructions from the head of the
establishment according to the order of March 1, 2004, Section 3.a.

The information extraction task can be broken down into multiple subtasks.
The first one is the extraction of information from legal documents. The second
one is the structuring of this information. The next sections are dedicated to
answer these questions. Later in this paper, we will illustrate our proposition
with the legal document, as in Figure 1.

3 Related work

This section presents a state of the art of the different proposals in information
extraction from textual documents. The use of semantic models will be studied
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Fig. 1. Example of an ‘Order’ from Légifrance translated in English.
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in Section 3.2 with a particular attention on models related to the law (Section
3.2.1) and models related to the industrial maintenance (Section 3.2.2).

3.1 Information extraction

Information extraction is a broad domain with multiple proposals in the scientific
community. Nowadays, a wave of works has notably adopted neural networks in
labelling or classification tasks in order to extract relevant elements. We can cite,
for example, the work of David B. et al. [3] who developed a system allowing to
anonymize German financial documents. The system makes it possible by find-
ing entities such as first and last names, postal and e-mail addresses, locations,
etc. The study was conducted on different architectures such as RNN (Recurrent
Neural Networks), LSTM (Long and Short Term Memory) [18] or CRF (Condi-
tional Random Fields) [12]. The Transformers’ technology has been introduced
[21] and has surpassed many existing models. It has been demonstrated that
this architecture can be successful used to extract named entities [24] and to
structure texts into knowledge graphs [5].

A significant part of the works proposes an information extraction based on
resources containing, in a structured way, the concepts of a domain as well as the
relations between them. These resources are semantic models like, for example,
ontologies or knowledge graphs. The creation and the use of a semantic model
has been the subject of different proposals in the literature. Munira A. et al.
[1] proposed an Ontology-Based Information Extraction (OBIE) system with
the objective of extracting, from textual documents, the land suitability for
residential use. In the domain of industrial maintenance, [6] developed a system
that relies on a semantic model and that allows managing the maintenance assets
in industry. In the following section, we introduce the semantic models in the
domain of the legal maintenance. We will, at least, present the two main domains
related to the legal maintenance: the law and the industrial maintenance.

3.2 Semantic models

Semantic models related to the law. One of the early works in semantic
modelling related to the law [11] created the “Frame” model, which aims to
structure legal rules. Many of its concepts will be found in the further works.
Van E. et al. [20] detail two of these models dedicated to the representation
of legislation: FOLaw and LRI-Core. LRI-Core has been used as a high-level
ontology for the modelling of German administrative laws. LKIF [8] is an open
source ontology alternative to LRI-Core which can be applied on multi-domain
representation of the law in order to facilitate its reuse. This ontology contains
for example the notion of “Right” which characterizes the permission, obligation
or prohibition to perform an act according to the law. LegalRuleML [2], an XML
standard for the legal domain, has been inspirited by LKIF to represent the legal
knowledge and legal reasoning.

The LKIF ontology has been constructed via a supervised approach in order
to manually build a semantic model [9]. While most works have considered the
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construction of the models in a manual manner, several alternative approaches
have considered the construction using automatic approaches on large corpus
[16].

Beyond structuring knowledge semantically, other works focus on mathemat-
ical formalizations using, e.g., deontic logic rules. Propagated in the scientific
community by [23], this formalization of philosophical concepts relies on sym-
bolic reasoning with notions of modality (prohibition, permission, obligation).

Semantic models for industrial maintenance. Semantic models dedicated
to legal maintenance have also been addressed in scientific research. In 2004,
Rasovska I. et al. [15] proposed a system composed of a conceptual model al-
lowing to make decisions related to the industrial maintenance. Few years later,
the IMAMO (Industrial MAintenance Management Ontology) [6] has been pub-
lished. IMAMO is an ontological model with the objective of standardizing in-
formation exchanges related to maintenance. It aims at ensuring semantic in-
teroperability while generating data to be used as a decision-making support.
Many other works reflect this structure life cycle for industrial equipment [7, 19,
14, 13, 10]. We find in these models essential concepts for industrial maintenance.
For example, the notion of ‘actions’ that group different acts specific to main-
tenance such as assembly, energization, scrapping, etc. We can mention a last
open source model produced by the IOF group (Industrial Ontologies Foundry)
which tries to "create a set of reference and open ontologies covering the whole
industry domain"4.

3.3 Positioning

From all semantic representations listed above, none of them is sufficient on its
own to represent legal industrial maintenance. On one hand, we have models
specially designed to model legal rules, but we can’t find key elements of main-
tenance such as material entities. On the other hand, industrial maintenance
models have been proposed by the scientific community, but do not structure
the legal notions. The limit of the state of the art arises here with the inability
to fully model the domain of legal industrial maintenance.

The reuse of existing ontologies is in fact a practice in ontology construction.
In particular for information retrieval and knowledge engineering, in [22], the
authors mention two main constraints for the implementation: the first one is
the adequacy of ontologies with the information retrieval task. The second con-
straint is to find ontologies that represent, jointly and accurately, the domain.
However, it appears that the domain of legal industrial maintenance, being very
specialized, do not comply with the second constraint. The existing models, not
covering the specificities of the domain we are dealing with, we decided to create
SEMLEG, reusing as much as possible existing ontologies. This model allows
linking the Computerized Maintenance Management System (CMMS) with the
legal obligations present in the legal texts.
4 https://www.industrialontologies.org/our-mission/
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4 Semantic model for legal maintenance: SEMLEG

In this section, we detail the different concepts of SEMLEG. A second part is
devoted to illustrate the SEMLEG model on an example taken from Légifrance5.

4.1 Reusing existing vocabularies

As introduced in the previous section, there are two main approaches for building
an ontology: automatically with a large corpus or manually by experts. In this
paper, we have chosen the construction via experts, supported by the reuse of
existing semantic models (as further detailed in the following). This choice is
motivated by a desire for interpretability between the models, as well as the
reuse of existing concepts rather than trying to recreate them [4]. In SEMLEG
we use two existing ontologies: LKIF-CORE is dedicated to the legal elements
and IOF to the maintenance elements. In this section, we will describe in more
detail the motivation for choosing these ontologies. Both of LKIF-CORE6 and
IOF7 are hosted on GitHub and can be easily accessed.

Fig. 2. Fragment of the IOF ontology.

Figures 2 and 3 illustrate the fragments of IOF and LIKIF of interest for
SEMLEG: Norm for LKIF-CORE and independent continuant, action for IOF.
We have the class lkif-core:Norm and, with this concept, we can represent the
notion of obligation and prohibition as presented before. On the IOF side, we

5 https://www.legifrance.gouv.fr/
6 https://github.com/RinkeHoekstra/lkif-core
7 https://github.com/welschmichel/IOF_Maintenance_Working_Group_Public
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Fig. 3. Fragment of the LKIF-CORE ontology.

have the class lkif-core:independent continuant which allows representing
material and immaterial entities. We will find, for example, on the immaterial
side: geographical areas. On the material side, we will find: the owner, a buyer, a
seller, etc. We will also find more inert elements like: mechanical systems, tools,
machines. We also chose to include iof:Action which allows representing, for
example, maintenance tasks, the action of buying, selling, etc.

4.2 Construction and explanation of SEMLEG

The process of constructing SEMLEG has been divided in two main steps: (1)
the extraction from Légifrance of three representative industrial maintenance
decrees in various domains: pressured equipments8, lifting machines9, and buried
tanks10; (2) the identification of the recurrent parts of the rules that compose
the orders and the construction of the semantic model by 4 experts, each one
coming from a different field of expertise: (a) industrial legal maintenance, (b)
ontological knowledge modeling, (c) generalized information systems and (d)
automatic natural language processing. This work allowed us to obtain the model
illustrated in Figure 4. Its implementation in OWL from the software Protégé11

is available as open source on GitLab12.

8 https://www.legifrance.gouv.fr/loda/id/JORFTEXT000036128632/2022-06-01/
9 https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000439029/2022-07-01/

10 https://www.legifrance.gouv.fr/loda/id/JORFTEXT000018820571/2022-06-01/
11 https://protege.stanford.edu/
12 https://gitlab.irit.fr/semleg/semleg
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Fig. 4. SEMLEG semantic model.
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Table 1. SEMLEG concepts and definitions

Concept Definition Example
Source Allows, like Russian dolls, to encapsulate a set of rules,

definitions or other sources.
Article L. 512-5

Link Links two sources together. This link can be a repeal, a
mention or a modification.

Modified by ORDER of May 11, 2015

Definition Stores the definition of an act or resource. A functional test of a lifting device is the
test which consists in moving in the most
unfavorable positions

Rule Describe the rules and allows aggregating the necessary en-
tities.

The periodic general verification of lift-
ing devices must be done every twelve
months.

Act Is the act of the rule. Verification
iof:Action Represents actions in the field of industrial maintenance. Verification
Resource Represents the material or immaterial resources of a rule. Lifting devices
Undefined Represents undefined resources.
iof:independent continuant Brings together tangible and intangible entities. Lifting devices
Modality Represents the modality of a rule, which can be an obliga-

tion, a prohibition or a permission.
Must (obligation)

lkif-core:Norm Reflects the legal or moral right to do or not to do some-
thing or to obtain or not obtain an action, thing or consid-
eration in civil society.

Must (obligation)

Operand Represents the elements on which a logical operation will
operate.

Operator Represents the logical operation operator.
SuccessiveConjunction Represents performing one action after another. I do A and after B
ParallelConjunction Represents the performance of an action at the same time

as another.
I do A and at the same time B

SimpleDisjunction Represents the completion of one action or another. I do A or B
Condition Conditions acts, resources and operators. Lifting devices used for the transport

of persons
TemporalCondition Conditions via a temporal aspect. Every twelve months
SpatialCondition Conditions via a spatial aspect. In the factory area
NumericalCondition Condition via a numeric value. After 5 cm
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Table 1 presents the list of SEMLEG concepts and the definition attached to
each concept. In the rest of this section, we will see in particular how SEMLEG
allows us to structure the legislative tree, the rules, the operators between the
rules as well as the conditions.

The legislative tree is modeled by a successive imbrication of groups, al-
lowing to structure the legal information. For example, we will find a chapter
dedicated to an idea which is itself in a section. Chapters, sections, articles, etc.
are modeled via the concept semleg:Source and their nesting via the relation
semleg:hasSubSource. To link sources together, we have introduced the con-
cept semleg:Link. It allows a source to abrogate, mention or modify another
source. At the leaves of this tree, which is the legislative document, there are
two types of elements: definitions and rules. Definitions are a legal explanation
of what is meant by the use of a term. They aim to characterize objects, acts,
actors, etc. Rules, on the other hand, are responsible for carrying the main leg-
islative information.

The rule is characterized, in SEMLEG, by: a subject (semleg:hasSubject),
an act (semleg:Act), a modality (semleg:Modality) and an object (sem-
leg:hasObject).

For the construction of SEMLEG, we have reused existing concepts; this is
why we can see on the diagram equivalence relations between SEMLEG classes
and IOF or LKIF-CORE classes. So we have equivalence between the classes:
lkif-core:Norm and semleg:Modality, lkif-core:independent continuant
and semleg:Resource, iof:Action and semleg:Act.

Note that a resource can sometimes be undefined (semleg:Undefined). For
example, in the sentence: “A draft of the report must be sent at the end of the
audit”, we do not find any mention of the subject (who must hand in the report).
As a result, the rule will therefore be modelled with an undefined subject.

Sequence of rules. Like the mathematical operations, we have introduced op-
erators (semleg:Operator) and operands (semleg:Operand) which are con-
cepts that allow us to reason about the sequence between rules. We have so far
identified 3 different operators: simple disjunction, the parallel conjunction and
the successive conjunction. The simple disjunction can be translated as: “I do A
or B”. The parallel conjunction can be translated as: “I do A and at the same time
B”. The successive conjunction can be translated as: “I do A and then only
B”. The operators thus make it possible to structure the chains of rules (the
operands) in the legislative texts.

Conditions are concepts that can be used by acts, resources and operators.
For example, conditions can add a notion of time to the performance of an
act: “When the installation is shut down [...]”. Within the framework of our
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study, we met mainly three sub-types of conditions: temporal conditions (sem-
leg:TemporalCondition), spatial conditions (semleg:SpatialCondition) and
numerical conditions (semleg:NumericalCondition). This list is not exhaus-
tive, and the more particular conditions can be structured via the parent class :
semleg:Condition.

4.3 Extract from Légifrance structured via SEMLEG

In this section, we illustrate the use of SEMLEG with an example (Figure 5) ex-
tracted from Légifrance. Consider the following example: “When the installation
is permanently shut down, the tanks and pipes are degassed.”13.

Fig. 5. Order of 18 April 2008 from Légifrance.

As we can see in Figure 5, the example is depicted in a sequence of nested
blocks. In our case, the rule is in Section 5, itself in Title A, itself in the Order of
18 April 2008. This nesting introduces the first concept: semleg:Source. This
separation allows two sources to be linked together via semleg:Link. In our
example, “Section 5” is a source connected to “Order of August 9, 2017 - art. 2”
by a modification link. It is through this process that we are able to model the
evolution over time.

The following sentence available in Section 2 illustrates the concept of defini-
tion: “A tank is said to be buried when it is completely or partially below the level

13 https://www-legifrance-gouv-fr.translate.goog/loda/article_lc/
LEGIARTI000035650389/2022-06-01?_x_tr_sl=fr&_x_tr_tl=en&_x_tr_hl=fr&
_x_tr_pto=wapp
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of the surrounding ground, whether it is directly in the ground or in a pit. Tanks
installed in premises are not considered buried, even when the premises are lo-
cated below the surrounding ground.”14. This sentence is an essential element in
understanding and defining what a buried tank is.

In Figure 6, we have labelled our example sentence using the concepts we
define in SEMLEG (we do not detail the links with other ontologies). We thus
find the following concepts: modality, resources, act and conditions.

Fig. 6. Example of a Légifrance sentence structured with SEMLEG

In our example, the modality is an obligation in implicit form. Indeed, unlike
explicit modalities which can have verbs like “must” and “can”, implicit modalities
do not have these verbs. The second element is the act which is in our sentence:
“are degassed”. This action is performed by a subject not mentioned in this sen-
tence. Finally, the subject will perform an action on another resource considered
as the object of the rule: the tanks and the pipes. This second resource can find a
more precise characterization in IOF via the concept: iof:Maintainable Item.

Then, the operator is in our case a simple disjunction thanks to the word
“or” which allows choosing between ’a competent person’ and ’an organization’.
The operator acts here as a junction between the rule proposing ’a competent
person’ and the second one proposing ’an organization’.

14 https://www-legifrance-gouv-fr.translate.goog/loda/article_lc/
LEGIARTI000030706280/2022-06-01?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=
fr&_x_tr_pto=wapp
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Finally, we have the conditions. In our example, “when the installation is
permanently shutdown” is a condition that qualifies the act.

5 Conclusions and future work

In this paper, we have presented a semantic model called SEMLEG which al-
lows structuring textual documents of legal industrial maintenance. This model
results from a manual analysis of documents from Légifrance involving domain
experts. It combines existing ontologies from legal and industrial maintenance
domains. While we have illustrated the use of SEMLEG with a subset of repre-
sentative documents, the next step of this work will be to extend the evaluation
of the adequacy of the proposed model with a larger set of documents within a
task of information extraction. This can led to the evolution of the model. We
plan also to assess the benefits of SEMLEG in the extraction task, by comparing
the task performance without SEMLEG and with SEMLEG.
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