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Abstract

A simple and complete proof of strong normalization for first and second order intu-
itionistic natural deduction including disjunction, first-order existence and permuta-
tive conversions is given. The paper follows Tait-Girard approach via computability
predicates (reducibility) and saturated sets. Strong normalization is first established
for a set of conversions of a new kind, then deduced for the standard conversions.
Difficulties arising for disjunction are resolved using a new logic where disjunction
is restricted to atomic formulas.
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1 Introduction

Strong normalization theorem for a logical system (and a given set of
rewriting rules or reductions of derivations) states that every sequence of re-
ductions terminates in a normal form. This kind of results play a fundamental
role in proof theory and theoretical computer science [1,7]. One of the most
important characteristics of a normal form is a subformula property: a nor-
mal derivation of a formula A contains only subformulas of A. Although the
first normalization (cut-elimination) proof has been given by G. Gentzen for
sequent calculus (T.-systems), the focus of the study of normalization moved
after [14] to natural deduction, for example [2,3,6,9,10,12,15]. The applications
included analysis of cut elimination, analysis of proofs including consistency,
effective disjunction and existence properties, and extraction of programs from
proofs. Many of them rely on Curry-Howard isomorphism [8] between natural
deductions and suitable extensions of lambda calculus.
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Most of the strong normalization proofs in the literature are given for
the so-called negative fragment allowing &,—, ¥,—, but not Vv, 3. Even when
V,d are included, the set of reductions most often does not include “remote”
conversions performed when an introduction rule is separated from elimination
rule for the same formula (such introduction/elimination pair is called a cut)
by a series of V,3-rules. For example, the following figure at the left is to be
converted into the figure at the right:

Cle,THFA Cle],T'+B

I'F J2C[x] Cle],THA&RB
'FA&B ' 3eClz] Cle], T A
' A I'F A

To include remote conversions and preserve a local character of reductions
one introduces permutative conversions moving the elimination rule up the
derivation until it meets an introduction component of the cut (or another
obstacle). A permutative conversion transforms the left hand side into the
figure
Cle,THFA Cle],I'+B
Cle,THFA&B

I'F J2C[x] Cle],TH A
' A
then to
I'F32Clz] Cle],TH A
' A

as intended. Leaving out permutative conversions forfeits subformula property,
since a proof normal with respect to all other conversions can still contain
“remote” cuts.

Our goal in this paper is to give a simple and complete proof of strong
normalization for the first and second order logic including disjunction, first-
order existence and permutative conversions for first order connectives, suit-
able both for extensions to stronger systems and for teaching. The attention
in this paper is restricted to intuitionistic systems. We follow Tait-Girard ap-
proach [5,6,16] using computability predicates and saturated sets as the range
for second order quantifiers. In this approach strong normalization is deduced
from a stronger property, called computability (reducibility in this paper).
Instead of natural deductions deriving a formula A one works (via Curry-
Howard isomorphism) with corresponding A-terms of type A. A useful device
introduced in [16], called saturated sets in this paper, is to switch to untyped
A-terms, some of which can belong to a set A of computable terms of type A.
The definition of A in [6,16] is given by a simple induction on the construction
of A. A similar simple induction on A proves that all terms in A are strongly
normalizing. After this it turned out to be possible to prove that every typed
term t of type A belongs to A, hence strongly normalizes. The second proof
is by induction on the term ¢. This nice modularity is violated in most of the
familiar extensions of proofs by [6,16] to reductions which include permutative
conversions. In [10,15,18] the definition of the relation ¢ € A uses an inductive



construction (inside of induction on A) which can be proved to equivalent to
an explicit arithmetic definition. This makes proofs of basic properties of sets
A and of t € A longer and more difficult to follow. An alternative treatment
in [2,9] also defines relation playing the role similar to ¢ € A by induction on ¢
and normalization ordinal of . [12] requires complicated inductive definitions
of saturated sets.

Our proof reestablishes modularity mentioned above. Most of the obvious
attempts to define sets 3z A and AV B of computable terms of types dzA
and AV B stall because the complexity of the conclusion C' of the 3- or V-
elimination rule

k324 ADLTHC THFM:AVB u:ATEFN:C v:BTHL:C

THC [+ (M,N,L)un:C

is not connected in any way with the complexity of 4z A or AV B. This diffi-
culty is resolved in the present paper by additional conversions (3), (V1), (V2)
in Section 3, which allow to define 3z A in terms of A. For disjunction we use
a translation of AV B by Jz((qor V q12) & ((gor — A) & (g1 — B))), where
go and ¢, are predicate constants used to distinguish components of a direct
sum and satisfied essentially only by constants 0 and 1. This translation allows
to restrict disjunction to atomic formulas and give particularly a simple and
perspicuous set of axioms for qg, ¢, allowing to avoid most of the difficulties
other axiomatizations cause for disjunction. In particular, we define the satu-

rated set F'V (¢ for atomic formulas F, (¢ explicitly (instead of reducing it to
F, () as the property SN of being strongly normalizable. We wanted to define
M € AV B so that if Mpy = 0 then Mp, € A and if Mpy = 1 then Mp, € B,
but it is not a correct definition for arbitrary formulas A, B, since Mpq is not a
constant in general. However, if A = B, the relation M € AV B can be defined
as Mp; € A. In particular, for atomic formulas F, G, the relation M € FV (&
can be defined as M € SN. We were able to get away with such an oversimplifi-
cation because F' = (¢ = SN. This latter equivalence uses independence of the
sets A from the first order arguments of the predicate symbols: A[z := s] = A.
This property was often used implicitly in previous normalization proofs. Its
explicit use simplifies many of the definitions and proofs. Another simplifica-
tion results from a bold use of untyped terms. While the conversion (3) in
Section 3 agrees with traditional realizability interpretations, the conversions
(V1),(V2), strictly speaking, do not respect realizability or Brouwer-Heyting-
Kolmogorov interpretation which requires for V-elimination something like
“conditional conversions”: (M, N, L),, — if Mp, = 0 then N[u := Mp,],
(M,N, L)y, — if Mpy = 1 then Llu := Mpy]. A possibility to drop the
guarding conditions for Mpg is a piece of luck. Because of (V1) and (V2),
if the system allowed non-atomic disjunctions, the system would fail to be
strongly normalizing.

Strong normalization of second order natural deduction with disjunction
and existential quantification and permutative conversions is established in
[12,15]. [15] needs some supplementary details in order to be complete. [12]
gave in detail only a proof for second-order universal quantification and stated



it can be extended to second-order existential quantification. We do not know
of any other attempts of strong normalization proofs for second-order systems
with permutative conversions in the literature.

There are many works on strong normalization of weaker systems. Strong
normalization of second order natural deduction with disjunction and exis-
tential quantification without permutative conversions is proved in [6]. Strong
normalization of second order natural deduction with existential quantifica-
tion without permutative conversions is proved in [5]. Strong normalization
of the negative fragment of second order natural deduction is discussed in
[4,7,11,18,19]. Strong normalization of first order natural deduction with dis-
junction and existential quantification and permutative conversions is proved
in [10,18,3]. Strong normalization of first order natural deduction with disjunc-
tion and permutative conversions is proved in [2,9]. Strong normalization of
first order natural deduction with general elimination rules is discussed in [9].
Strong normalization of first order propositional Ay-calculus with permutative
conversions is proved in [2].

An important (for the second author) pointer to a possible fruitful di-
rection came from [17] where a partial normalization result (without Vv /v
conversions) is established for an extension of intuitionistic logic explicitly us-
ing Curry-Howard terms. Another important incentive (for the same author)
came from approach suggested in [13] using a natural deduction system NJi
for first order intuitionistic predicate logic. Standard elimination rules for 4,V
are replaced in NJi by “instantiation” rules

LFEJzA K ' AV Ay FE O
< T >3.aF Az /0] T > aovan A A; Vi (j=0,1)

It was conjectured there that a direct Tait-Girard style proof of strong nor-

malization for NJi is feasible and would lead to a perspicuous proof for NJ
with permutative conversions via the translation from NJ to NJi. The proof
presented below can be seen as a confirmation of this conjecture.

Section 2 describes the definition of the second order natural deduction
N.J¥? with permutative conversions and states the strong normalization the-
orem. The second order logic LAD, with atomic disjunction is defined in
Section 3. Section 4 proves its strong normalization. In Section 5, simulation
of full disjunction in LAD> is discussed and a translation from N.JV? into
LAD; is given. Using this translation and the strong normalization of LAD,
the strong normalization of N.J¥? is proved in that section.

2 Reductions for the second order natural deduction system N.JV?

In this paper, we call the second order intuitionistic natural deduction
with permutative conversions without second-order existential quantification
the system N.J¥2. Tt has disjunction, first-order existential quantification and
their permutative conversions. We will give the definition of the system N.JV2.

Below we give the list of axioms and inference rules for N.J%? together with



a standard assignment of the second order A-terms to deductions in N.J¥? by
Curry-Howard isomorphism. The system of reductions is also standard and
includes permutative conversions for V, 4.
Definition 2.1 (Language) First order variables z,y, z, ...,

Function symbols f, g, A, ...,

Predicate variables XY, ...,

Predicate symbols ¢,r,.. .,

First order terms ¢,s,... 1= 'r|ff_:

Formulas A, B,... == L|¢l|X#]A — B|A & B|V2A|AV B|3zAVX A,

Abstraction terms 7" ::= X |A7. A,

Term variables u?, v?, w®, ... where for every u

s B.
Definition 2.2 (Substitution) Substitution ¢[z := s].Alz := s] is defined
in a familiar way.

Aand vP, if wis v then A

Substitution Ax[T] is defined by induction on A as follows:

(XP)x[¥] =

(X1)x[M\i.A] = A[7 == 1]

(A& B)x[T] = (Ax[T] & Bx[T))

The other cases are defined similarly to the case A & B.
Definition 2.3 (Terms and typing) Assumptions

ut s A
Inference rules
[u? : A]

M:B M:A—B N:A
—T1 )
iAoy D MN : B (= E)

M:A N:B : A & B AL B

(M, N) CAGB (&) ” A (&ET) ” B (& E2)
M - M ¥z A

Ax.M : V'r { (V) Ms: Alx := s] (VF)

(0, My™VE . AV B (1, M)"VB . AV B
[ut 2 A] [vP: B]

M:AVB N:C L:'(_?(vm Ml J_

(M,N, L)ya 5 :C Mps: A (LE)
[-n.."" : Al
M: A [:r = S] M:3r A \/ (1
E”r i
(s, ;“t-"f)a“”‘i' :dx A (31 (U Ny (3F)
1[ 2 V\’/i 2
AX.M : V\' { (V*1) lfT. Ax[T] (V°F)



The rules (VI), (3E), and (V?I) have a standard proviso for variables.

Type superscripts in u?,(0, M)AVE, (1, MY*VE and (s, M)34 are some-
times omitted to save notation.

Substitutions M[z := N], M[u? := N] and M[X := N] are defined in a
standard way.
Definition 2.4 (Reductions) A conversions:

(3) (Aa.M)R — M[a := R] (ais z,utor X. Ris s, N,or T.)

(pairl) (M,N)pg — M

(pair2) (M,N)p, = N

(V1) ((0, M), N, L)a,m — N[u® := M]

(V2) ({1, M),N, L)ya,5 — L[v? := M]

() ((s, MY, N),ua — N[z := s,u :== M]

Permutative conversions:

(perm3) (M,N),usaR— (M, NR), ,a (R is 3,N.T.po, p1, or pc)

(perm33) (M,N),ua. L)y, = (M,(N, L), ,5),.4

(perm3V) (M,N)yun, Lty L)y ue — (M, (N, Ly, L2)y5 02 )

(permV)  (M,N,L)ya s R — (M, NR, LR), 5 )

(R is 3,N.T.po, p1, or pc)
(perm Vv 3) (M,N,L)a,8,K),,c —
(W(Vh)y?,,(f;,f\)y? )t B

(perm V V) ((M, Ny, Nz) s, Ky, K 3)” ”n —
(11' (Vh I\h I\g)” . u ,(V), hh I\g)” Jg )rf‘,-r.l.‘?

Congruence.
(congr) M — M’
if N — N’ holds and M’ is obtained from M by replacing just one occurrence
of N by N'.
We say that M reduces to N if M — N.
Remark. Subject reduction property and Church Rosser property hold.
A term M is strongly normalizable if there is no infinite reduction sequence
M — My — My —
beginning with M.
Theorem 2.5 (Strong normalization) Fuvery term of the system N.JY? is
strongly normalizable.
Note that every term of N.J¥? is typable. The rest of this paper contains
a proof of this theorem.

3 System LAD,

The system LAD- is obtained from the system N.JV? by the following
modifications:
(1) Disjunction F'V G is allowed only for atomic formulas F, (5.



(2)

(3)

(4)

The reduction rules for disjunction and existential quantification are more
general than in N.J¥?. We have the reduction rules (V1) of (M, N, L), —
N[u := Mp,] and (V2) of (M, N, L),, — L[v := Mp,] for disjunction
where py and p; are the projections. These rules allow us to reduce the
disjunction elimination term (M, N, L), ., even if M is not a disjunction
introduction term (0, M’) or (1, M"). We have the reduction rules (3) of
(M,N)z. — N[z := Mpo,u := Mp,] for first-order quantification. It
reduces the existential quantification elimination term (M, N),, even if
M is not an existential quantification introduction term (s, M").

The reduction rules are applied to quasi-terms according to the general-
ized reductions so that the result of reduction includes the expressions
like Mpg. The set of quasi-terms is closed under reductions, while the set
of terms is not closed under reductions.

The inference rules in Definition 3.2 below are untyped versions of the
corresponding rules of N.JV? plus the axioms ¢g, ¢q, ¢y for “cases” opera-
tion.

Definition 3.1 (Language) First order variables z,y, z, ..,

Function symbols f, g, h, ... including specific constants 0, 1,

Predicate variables X,Y, ...,

Predicate symbols ¢, r,... including specific predicate symbols ¢q, ¢;.-
Fach of function symbols, predicate variables and predicate symbols has

a fixed arity. Notation X indicates that the predicate variable X has arity n.

Term variables u, v, w, ...,
Term constants ¢q, 1, €3,

First order terms #,s,... 1= 'r|f?‘_:
Atomic formulas F, G, ... == q?.‘_:
Formulas A, B,... == L|¢l|X1]A — B|A & B|V2A|F V G|3z A|VX A.

A formula is also called a type.

Abstraction terms 7" ::= X |A7. A,

Fach abstraction term has a fixed arity.

Substitution A[z := s] is defined as usual.

Substitution Ax[T] is defined in the same way as in the system N.JV.

Definition 3.2 (Terms and typing) Terms M, N, L, ...

Assumptions
u: A

Inference rules

[u :: Al

:'“Hr :: B :'“Hr LA ‘ — B :Nr o ‘
e Aasp D MN : B (= E)

vy @n  AALE pry  MLALE (op)

(M,N): A& B Mpq : / Mp:: B
_ M:A M ¥z A
Ae. M :Vzr A (1) Ms: Alx := s (VE)

=1



:'“lf M F‘ :'“lf M C: f3
oy eve VY dan e VP

[u : F ] [v :: ]

:'“lf 8 F‘ \ C: :N— :: C L :: C
(:‘“l"{.. :N—.. L).”_‘.?__. B C (VE)

[u: Al
M : Alz := s]
(s, M) : 3z A

:'“lf i
Mp, : A (LE)

:'“lf : 3.7' /.‘ :N— :: C
(3}—) (:'“lf.. ‘N—)x,ﬂ. B C (HE)

co : Gol cr gl Ca: Got = it — L

CMiAap MIYXA o
AX.M VXA (V1) MT : Ax[T] (VE)

The rules (VI), (3F), and (V?1) have a standard proviso for variables.

N :BF M: A means that there is a proof of M : A from assumptions
Ny :By,...,N, : B, where N = Ny,..., N, and B = By, ..., B,.

Definition 3.3 (Quasi-term)
quasi-terms M =

0|1]coler|ez|polpi|po|z || Aw. MM M|{(M, M)|Az.M|

(M, M), |(M, M, M), .JAX.M|

Llg|X|M — M|M & M|VxM|M Vv M|3zM|VYX M

From now on, M, N, L,..., P,Q, R, ... denote quasi-terms.

Note that X7 and ¢f are quasi-terms because MN is a quasi-term if M
and N are quasi-terms.

Notation. MMMy ... M, = ((...((MM)My)...)M,). Tt is also abbrevi-
ated by M M where M = M 1ree M.

Substitution M|z := N|, M[u:= N], M[X := N] is defined in a standard
way.

Au.M binds win M. Ax.M,¥VaM and 3z M bind z in M. AX.M and VXM
bind X in M. (M, N),.,, binds z and win N. (M, N, L), binds uin N and v
in L. The set FV(M) of the free variables of M is defined in a standard way.
Definition 3.4 (Reductions) For quasi-terms M, N, the relation M — N
is defined as follows.

A conversions.

(B) (Aa.M)N — M[a:= N] (ais z,uor X)

(pairl) (M,N)pg — M

(pair?2) (M,N)p, = N

(V1) (M,N, L), — N[u:= Mp]

(V2) (M,N,L),.,— Llv:= Mp]

(3) (M, N),.. = N[z := Mpg,u:= Mp,]



Permutative conversions.

(perm3) (M,N),.R— (M,NR),.,

(perm33) (M N)py R)y = (M, (N, R)y)

(perm3V) (M,N )iy Riy Ry s — (ML (N, Ryy Ro) g iy )

(permV) (M,N,L),.,R— (M,NR, LR),,,

(perm Vv 3) (M, N, L)y oy R)yy = (M, (N, R) gy (Ly Ry )y s

(perm V V) (M, Nty N2y s By R2)uy iy —

(M, (N1, Ry, Ry s (Nay By Ry o )y s

Congruence.

(congr) M — M’
if N — N’ holds and M’ is obtained from M by replacing just one occurrence
of N by N'.

We say M reduces to N if M — N. The relation —7% is defined as the
transitive closure of the relation — and the relation —* is defined as the
reflexive transitive closure of the relation —.

Remark. (1) The reduction (V1) is applicable even if M = (1, N).

(2) The set of quasi-terms is closed under reduction. This is easily proved
by induction on a quasi-term.

(3) Neither subject reduction property nor Church Rosser property
holds. A counterexample to subject reduction property is v : B,w : A F
((1,0), w0y s = Ay ((1,0), 21, 0)0, 0 — (1,0)py by (V1), but v: Byw: AF
(1,v)p; : A. A counterexample to Church Rosser property is (v, ¢g,¢1) — ¢
by (V1) and (v,¢q,¢1) — ¢1 by (V2).

Definition 3.5 A quasi-term M of LADs is strongly normalizable if there is
no infinite reduction sequence

M — My — My — ...
beginning with M.

|M| is the maximum number of the reduction steps of the reduction se-
quences from M, which exists by Konig’s lemma.

4 Strong normalization for terms of the system LAD,

Definition 4.1 SN denotes the set of strongly normalizable quasi-terms.
For n > 0, a quasi-term M is n-strongly normalizable if MM, ... M, is
strongly normalizable for all strongly normalizable quasi-terms My, ..., M,,.
SN, denotes the set of n-strongly normalizable terms.
Definition 4.2 (Saturated set) A set S of quasi-terms is saturated if the
following hold.
(SN) S C SN,
(VarConst) aReS if Re SN (aisuor the term constant 2),
(8)  (Aa.M)NRe S if M[a:=N]Re Sand NeSN

(ais z, uor X),



(pairl) (M, ;V)}'Jnﬁ, €S if MREe Sand NeSN,

(pair2) (M, N);.'h}?‘, €S if NEeSand Me SN,

(V) (M, N, L).?,_‘.?_,}?‘, €S if Nu:= A-'“vf;.'h]}?‘, € S and

I[v:= Mp )R € S and M € SN,
(3  (M,N), ReS if Nz:=Mpo,u:=Mp]|EeS
and M € SN.

Definition 4.3 A set valuation is a function which maps every predicate
variable to a saturated set.

For a set valuation o, a predicate variable X, and a saturated set S, the set
valuation o[X := S] is defined by (o[ X := S])(X) = S and (o[ X := S])(V) =
oY) for X Y.

For a type A and a set valuation o, the set Ao of quasi-terms is defined
by induction on A as follows.

glc = SN,

Xioc = o(X),

M € A— Bo iff MN € Bo for every N in Ao,

M € A& Bo iff Mp, € As and Mp, € Bo,

M € YxAc iff MN € Ao for every quasi-term N € SN,

FvV Go=5SN,

M € FxAc iff Mp, € Ao,

M € Lo iff Mp, € S for every saturated set S,

M € VX" Ac iff MN € A(o][X := S]) for every quasi-term N € SN,, and
every saturated set 5.

Remark. (1) The simple definition of F'V (Yo works because the formulas
F and (& are both atomic.

(2) Impredicativity is treated by the saturated sets. Second order variables
range over the set of saturated sets in the definition of Ao.

Notation. |}§| = Y;|R;| where R is the sequence Ry ... R,. !fh.(}?‘,) is the
length of the sequence R.

The next lemma proves that the set SN satisfies the conditions (V) and
(3) of the definition of a saturated set.
Lemma 4.4 (1) (M, N, L).?,_‘.?_,}?‘, € SN if N[u := s“vf;.'h]}?‘,, Llv = A-'“vf;.'h]}?‘, and
M are in SN.

(2) (M, N)x‘.”_}?‘, € SN if N[z := Mpo,u =M ;.'J1]}§, and M are in SN.

Proof.

N, L are in SN in both (1) and (2) since N[u := Mpi]R, L[v == Mp]R of
(1) and N[z :== Mpg,u := Mp]R of (2) are in SN.

We will prove (1) and (2) simultaneously by induction on a pair (|M| +
Ih(R).|N| + L] + |R]).

(1) Assume N[u := Mpy]R and L[ := Mp;]E and M are in SN. We will
show that if (M, N, L).?,_‘.?_,}?‘, — K, then K € SN. Consider cases according to
the reduction — used in (M, N, L).?,_‘.?_,}?‘, — K.

10



Case ' = (M', N, L)}?‘, where M — M'. We have N[u := Mp,] —*
Nu := M'p;] € SN since N[u := Mp,] € SN. By IH for |M'| < |M| with
[h(R) unchanged, K € SN.

Case K = (M,N', L)R where N — N'. TH for |[N’| < |N| with |M| and
Ih(R) unchanged.

Case K = (M, N, L’)}?‘, where L. — L', Similar to the previous case.

Case K = (M, N, L)R' where B — E'. TH for |R'| < |R| with |M|, N, |L|
unchanged and [h(R) = [h(R).

Case K is Nu:= Mp{]R or Llv := Mp;]R. By the assumption.

Case (M, N, L).”_‘.?__.R}?‘, — (M, NR, LR).H_‘.?__.}?‘, = K. We can assume u,v €
FV(R). By the assumption, (NR)[u := Mp,]R,(LR)[v := Mp,]RE € SN.
By TH for R with |M| unchanged and Ih(R) + 1 = Ih(RR), we have
(M,NR,LR),.,E € SN.

Case ((P,Q)p., N, L).?,_‘.?__.}?‘, — (P, (Q., N, L).?,_‘.?__.)x‘w}?‘, = K. We can assume
r,w € FV(N), FV(L). By the assumption and the reduction (P, Q),.. —
Q[r := Ppo,w = Ppy], N[u := Q[z := Ppo.w = Ppi]p1]R, Llv := Q[z :=
Ppg,w = P;h]m]}?‘,, and Q[r := Ppg,w := Pp,] are in SN. By IH for |Q[z :=
Ppg,w = Pp]| < |(P,Q)rwls (Q[r := Ppg,w := Ppy], N, L).?,_‘.?__.}?‘, is in SN.
Hence (Q, N, L),,[x := Ppg,w := P}h]é is in SN. By the assumption, P is in
SN. By IH (2) for |P| < |(P, Q)zu|, (P, (Q, N, L).?,_‘.?__.)x‘w}?‘, is in SN. Note that we
have |P| < |(P, Q)| because (P, Q). reduces to Q[z := P'pg,w := P'p]
when P reduces to P’.

Case ((P, Q1. Q2)uwy0ns N. L)un R —

(P (Q1, N, L) (@20 N,y L) s -

We can assume wy,wy € FV(N),FV(L). By (P,Q1,Q2)w i —
Qi[wy = Ppi] and the assumption, N[u = Qi[w; = Pp|m]R. L[v :=
Q1w = Pm]m]}?‘,, and Qq[w; := Ppy] are in SN. By TH for |Q[w;, :=
Ppi]l < [(P,Q1,Q2)uwywsls (Qi[wey := Ppy], N, L).?,_‘.?__.}?‘, is in SN. Hence
(Q1, N, L), [w :== P}h]ﬁ is in SN. Similarly, (Q2, N, L), [wy = P}h]ﬁ is
in SN. From the assumption, P is in SN. By IH for |P| < |(P, Q1,Q2)u.|,
(P, (Q1. N, L)uns (Q2y Ny L))oy B is in SN.

(2) Similar to (1). O
Lemma 4.5 SN is a saturated set.

Proof.

We check all conditions in the definition of the saturated sets.

(VarConst). Induction on |R|.

(3). Assume M[a := N]E and N are in SN. We will prove (A\a.M)NR €
SN by induction on |[M] + |N| + |R|. Assume (Aa.M)NE — K. Consider all
cases according to the definition of the reduction — used in ()m-.s“vf)N}?, — K.

Case K = (A\a.M')N R where M — M'. By TH for |[M'| < |M|.

Case K = (A\a.M)N'R where N — N'. By TH for |N'| < |N]|.

Case K = (A\a.M)NE' where E — E'. By TH for |§’| < |}§|
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Case K = M[a := N]R. By the assumption.

The conditions (pairl) and (pair2) are proved similarly to (3).

The conditions (V) and (3) are established in Lemma 4.4. O
Theorem 4.6 The set Ao is saturated for every type A and every set valua-
tion o.

Proof. Induction on A.

Case ¢f. By Lemma 4.5.

Case Xi. Xioc = o(X') is saturated by the definition of o.

Case A — B.

(SN). Suppose M € A — Bo. By TH A (VarConst), w € Ac. By the
definition of A — Bo, Mw € Bo. By IH for B (SN), we have Mw € SN.
Hence M SN.

(VarConst). Let a and R be those in the condition (VarConst). Take
arbitrary M € Ao. By IH for A (SN), we have M € SN. By IH for B
(VarConst), we have aRM € Bo. Hence ak € A— Bo.

(3). Suppose M[a := V]ﬁ € A— Bo, and N € SN. Take arbitrary
P € Ac. By the definition of A — Bo, we have M[a := N]RP € Bo. By IH
for B (3). (A(}-.ﬂxf)N}?‘,P € Bo. Hence ()m-.?vf)N}?‘, € A— Bo.

Other conditions are similar to (3).

Case F'V (. By Lemma 4.5, since F'V Go = SN.

The other cases are similar to Case A — B. O

Definition 4.7 A valuation p is a function which maps every first order vari-
able to an SN quasi-term, every term variable u to a term belonging to a
saturated set, and every predicate variable of arity n to an SN, quasi-term.

For a valuation p, a term variable u, and a term M belonging to a saturated
set, the valuation plu := M] is defined by (p[u := M])(u) = M and (p[u :=
M]))(e) = p(e) for a first order variable, a second order variable, or a term
variable a such that o = u.

For a valuation p, a first order variable x, and an SN quasi-term M, the
valuation p[z := M] is defined similarly. For a valuation p, a predicate variable
X", and an SN, quasi-term M, the valuation p[X := M] is defined similarly.

For a quasi-term M and a valuation p, Mp is defined as M[7 := p(7), 1 :=
p(il), X = p(f)] where all the free variables of M are among 7, i, X .

The next lemma says that formulas and abstraction terms of LAD2 under
substitution p are strongly normalizable.

Lemma 4.8 Let p be a valuation.

(1) sp is in SN, if s is a first order term.

(2) Ap is in SN, if A is a formula.

(3) A\@.M is in SN, it M[7 := N]is in SN for all N € SN where [h(Z) =
!fh.(ﬁ) = n.

(4) Tp is in SN, if T is an abstraction term of arity n.

Proof. (1) Induction on s.

(2) Induction on A.
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(3) We show that N € SN and M[7 = \—/‘r] € SN imply ()\5“.;";"1’)&" €SN
by induction on the pair (Ih(N), | M|+ |N|).

Suppose (AT. ;“vf)ﬁ — K. We will show K is in SN. Consider cases accord-
ing to the reduction — of (A\Z.M)N — K.

Case (A\Z.M)N — (A\#.M")N. By TH for |M'| < |M]|.

Case (A\Z.M)N — (AZ.M) N’. By TH for |N| < |N].

Case ()\T1T3 M)N, V) — (M. M|z, = Vﬂ)ﬁg where ;73 = 7 and
NiN, = N. By the assumption, we have Mz, := N|[#, := N,] € SN.
By TH for Ih(N,) < Ih(N), we have (AZo.M[z, := N;])N, € SN.

Therefore (A\Z.M)N is in SN.

(4) If T'= X, then the claim follows from p(X') € SN,. Suppose T' = A\7.A
and [h(7) = n. Assume N are in SN and [h(N) = n. Let p/ = pl7 == \—/‘r] By
(2), Ap' is in SN. (Ap)[# := N]is in SN. Hence N € SN implies (Ap)[7 :=
\—/‘r] € SN. By (3), A\7.Ap isin SN, that is, Tp is in SN,. O
Lemma 4.9 For any set valuation o, the following hold.

(1) Az := slo = Ao.

(2) Ax[T)o = A(c[X = (X0)x[T)o]) where X is of arity n and 0 is the
sequence of 0’s of length n.

(3) A(o[X = 8]) = Ac if X € FV(A).

Note. If {T'} is an abbreviation for (X0)x[T]o, the claim (2) states that
Ax[T)o = A(a[X = {T}]).

Proof. (1) and (3) are proved by induction on A.

(2) Induction on A.

(ase XI. If T =Y, then LHS = Yio and by (1) it equals V0o = RHS.

If T = \i.A, then LHS = A[# := {]o and by (1) it equals A[# := 0]o = RHS.

Other cases are straightforward. O

The next statement is central in this paper.

Theorem 4.10 (Reducibility) Suppose p is a valuation, o is a set valuation
and p(ii) € Bo.

Ifii: B M : A, then Mp € Ao.

Proof. We use induction on the proof of i : B + M : A. Consider cases
according to the last rule. sat (SN) denotes the condition (SN) of the definition
of the saturated sefs. sat (/) and so forth are similar.

Case u: A. up = p(u) € Ao by the assumption.

Case
[u: Al
M:B
AuM:A—= B

Assume N € Ao. Let p' = p[u := N]. By IH, Mp' € Bo, that is, (Mp)[u :=
N] € Bo. By sat (SN), N is in SN. By sat (3), (Au.Mp)N € Bo. By the
definition of A — Bo, A\u.Mp € A — Bo. Hence (Au.M)p € A — Bo.
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Case
M:A—B N:A
MN:B

By IH, Mp € A — Bo and Np € Ac. Hence (Mp)(Np) € Bo, that is,
(MN)p € Bo.

Cases (&) and (& F) are straightforward.

Case

M: A

Ar.M : Yz A

Assume N is in SN. Let p' = p[z := N]. By IH, Mp' € Ao, that is,
(Mp)[x := N] € Ac. By sat (3), (Ax.Mp)N € Ac. Hence (Az.M)p € Va Ac.

Case

M ¥z A

Ms: Az := 3]

By IH, Mp € YxAo. By Lemma 4.8 (1), spis in SN. Hence (Mp)(sp) € Ao.
By Lemma 4.9 (1), (Ms)p € Alx := slo.

Case

M : Alz := s]

(s, M) : 3z A

By TH, Mp € Afz := s]o. By Lemma 4.9 (1), Mp € As. By Lemma 4.8
(1), sp is in SN. By sat (pair2), {sp, Mp)p: € Ac. Hence (s, M)p € Tz Ao.

Case

[u : Al

M:3zA N:C
(M, N),: C

By IH, Mp € 3z Ac. By sat (SN), Mp is in SN. By the definition of 3z Ao,
Mppy € Ac. Let p' = p[x := Mppo.u := Mpp]. By TH, Np' € Co, that is,
(Np)[z == Mppo,u := Mpp,] € Co. By sat (3), (Mp,Np),... € Co, that is,
(M,N),.p € Co.

Case

M:F
0. M):FVG
By IH, Mp € Fo = SN. Hence (0, M)p = (0, Mp) € SN = F V Gio.

Case

[u : F ] [v :: ]

M:FVG N:C L:C
(M,N,L),,:C

By TH, Mp is in SN. Hence Mpp, is in SN. Let p’ = p[u := Mpp,]. By TH,
Np' € Co, that is, (Np)[u :== Mpp,] € Co. Similarly (Lp)[v := Mpp,] € Co.
By sat (V), (Mp, Np, Lp).., € Co, that is, (M, N, L),..p € Co.

Case

M: A

AX.M VXA

Assume N is in SN, and S is a saturated set. Let p’ = p[X := N] and
o' = o[X := S]. By the variable condition, p'(u) € Bo'. By TH, My’ € Ao’
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Hence (Mp)[X := N] € A(o[X = S]). By sat (3), (AX.Mp)N € A(a[X :=
S1). By the definition of VX Ao, (AX.M)p € VX Ao.

Case
M : VXA
MT : Ax[T]
By TH, Mp € YX Ao. By Lemma 4.8 (4), Tp is in SN,. By Theorem
4.6, (X0)x[T)o is a saturated set. By the definition of VX A, (Mp)(Tp) €
A(o][X := (X0)x[T]o]). By Lemma 4.9 (2), (MT)p € Ax[T]o.

Case
:'“Hr i B
Mp, : A

By IH, Mp € Lo. By the definition of Lo, Mpp, = Mp,p € Ac.

Case g : ¢o0. Obviously ¢g is in SN.

Case ¢y : got — 1t — L. Assume M, N are in SN and S is a saturated
set. By sat (VarConst), c;MNp, € S. Hence c;MN € 1o. Hence Cop = €3 €
Ggot = it = Lo. O
Theorem 4.11 (Strong Normalization) If M : A, then M is strongly nor-
malizable.

Proof. Let p = Id and o(X) = SN. By the theorem 4.10, Mp € As. By
Mp = M and sat (SN) for Ag, we have M € SN. O

Remark. (1) In this section, the definition of the reduction is used only in
the proofs of Lemmas 4.4 and 4.5 and Lemma 4.8 (1),(2) and (3). Note that
Lemma 4.8 uses the definition to show some claims like the statement that
M e SN implies fﬁ € SN. The definition of the typing is used only in the
proof of Theorem 4.10.

(2) If the system LAD2 had non-atomic disjunction, it would not be
strongly normalizing. An example of non-termination for that system is the
term M where

N = A ({0, u), v, wu), .,

M = NN.

Then we have = M : X — X in the extended LAD, by using the non-atomic
disjunctions X V(X — X ) and (X = X))V (X = X) = (X — X)). We have
FN: X — X by lettingu : X, v: X, and w: X - X in N and using
X V(X — X). Similarly we also have - N : (X — X) = (X — X). Therefore
F M : X — X holds. On the other hand, N reduces Au.(0, u)p;u by (V2), and
the latter reduces to Au.uu. Hence M is not strongly normalizable, because

M —* (Aw.uu)(Auw.uu) holds.

5 Simulation of disjunction in LAD,

Suppose A and B are formulas. The system LAD2 simulates the formula
AV B by the formula

Fr((qgor V q17) & ((gor — A) & (10 — B)))
where z € A, B.



The inference

A
AV B (V)

is simulated by the proof
G0 = ¢10 = L g0 |

10— L q10
L
A B )
G0 G0 — A 10— B
qo0 V ¢10 (go0 = A) & (10 — B)

(00 V ¢10) & ((go0 — A) & (10 — B))
Az ((gor V q12) & ((gor — A) & (12 — B)))

The inference

Al [B)

AV B (1 (1
c (VE)

is simulated by the proof

2 2
D D
(gor — A) & (12 — B) | (gor — A) & (12 — B) |
qor — A qor v — B s
_ D : :
Gor V 1. & C |
JxD & 2

C

where

D= (qrVqzr)& ((gor — A) & (1z — B)).

Let us define a translation from N.J¥? into LAD,.
Definition 5.1 (Translation) For a formula A of N.JV2, the formula A of
LAD5 is defined as follows.

A=A (A= q?.‘_: X?.‘_: 1),

ASB=A— ﬁ"

ALB= A& g’,

YaA = YaA (a =z, X),

AV B =32((gox V 17) & ((qor — A) & (quz — B)))  (x fresh),

A = JzA.

For an abstraction term T of N.J¥2, the abstraction term T' of LAD, is
defined by

X=X,

AT A = \EA.
For a term M of NJY2, the quasi-term M of LAD, is defined as follows.

ud = u,

A M = .M,
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3

=1
~

MN = MN,
(M,N)= (M, N),

Mp; = Mp; (i=0,1),

Ae.M = Aa. M,

Ms = Ms,

(0;’&)"" = (0, ({0, co), ()\?_?Jr.:'“;f, Avy.cacovipy))) (v fresh),

(l,’}&)"" = (1,{{1,¢c1), {(Avg.covacrpu, )\?Jf.s“;f))) (vs fresh),

(M, N, L)ya s =

(M, (wpo, Kf[u 1= WP Pollp), .?J[-v = WP P1U ] gy )
(ug, uq, w fresh),

(s, M)A = (s, M),

(M, N)yun = (M, Ny,

Mpa = Mp,,

AX.M = AX.M,

MT = MT.
We sometimes write (M)~ instead of M.
Lemma 5.2 (1) A[r := s] = Az = s].

(2) Ax[T] = Ax[T]. ) ) )

(3) (M[z == s,u” := N, X :=T))~ = M|z := s,u := N, X = T] holds.
This claim holds also when variable capturing is allowed in the substitution.

(4) In LAD,, if T\u: B M : AandT' + N : fé’, then ' = M[u:= N]: A.

(5) If x,u?, X € FV(M), then x,u, X € FV(M). )

(6) If M has just one free occurrence of the variable u”, then M has just
one free occurrence of the variable u.

Proof. (1)(2) Induction on A.

(3)(5)(6) Induction on M.

(4) Induction on the proof of T',u: BF M : A. O
Theorem 5.3 (Soundness of the translation) (1) If wB  BEFM:Ain
NJY?, then 1 - é FM:Ain LAD,. )

(2) If M — N in NJV?, then M —* N in LADs.

Proof. (1) Induction on the proof of wB B M: A

Case (—1).
[u? : A]

S
e Il

M:B
MAM: A= B
By TH, Tu: AR M: B. By (—=1). ' MM : A— B, and thisis T F
AuA M : A B.
Case (VI1).
M: A
(0, M): AV B




We have KE qn(] and (0, (’n) qo0 V q10

By IH, M : A. Hence Avg. M : o0 — A.

We also have ¢y 1 go0 — 10— L3 ¢o 2 qo0; caco 1 10— L. Assume vy @ ;0.
We get cocquy @ L; eqcquipy : B. Hence Avy.cacovipy t 10— B.

By combining them, we get ((0, cq), (Av;. “th Avy.cacov1pr)) (@0 V ¢0) &
((qo0 — /i) & (10— ﬁ’)) and (0, ({0, cq), (Avy. M, )\31 (’3(’031;.'&))) : Az ((qor V
nr) & ((gor — A) & (@ — B))). The latter is (0 W) : AV B.

Case (V12) is similar to Case (VI1).

Case (VFE).

[u?: A] [vP : B]

M:AVB N:C L:C
(:'“l"f, :Nr, L)_”_A‘_?_,B H C
Let D = (o V 1) & ((qor — A) & (quz — B)).
Assume w : D.

We have wpqg : goxr V ¢y .

We have w P1Po * GoT — A. Assume ug : gor. Then wppoug : A. By TH,
Tu:AFN:C. By Lemma 5.2 (4), T, ug - gor,w: DF N’[u = wpPolo)] : C.

We also have wpp; : gz — B. \‘;qume wuy : qre. Then wpypyuy @ B. By TH,
Iv:BF L:C.By Lemma 5.2 (4), Tyuy : que,w : D F ﬁ[-v = wppiy] : C.

Bv combining wpy and the two terms for C', we obtain f’,_-w : D+
(u Pos AV[N = w ;.'Jmnnn] L[ = w ;.'Jﬁ'h?h])un - (. By TH, M : /‘i'—\/—B, that is,
M :3zD.Hencel F (W (wpo, N[u := wpipouo), L[-v = WP P1U ) gy ) - C,
that is, T F (M, N, L)” WP 5.

Other cases are similar to (—T).

(2) We prove this claim by induction on the definition of the reduction
M — N. Consider the same cases as in the definition of the reductions in
N.JY2.

Case (—>) (Aur.M)N — M[u? := N]. We have ()m"" W) = (Au. M)N —
M[u := N]. By Lemma 5.2 (3), the right hand side is M[u? := N].

Case (V1) ({0, M), N, L)1 ,5 — N[u? := M]. We have

({0, MY, N, L)y 5 )™
= ({0, ((0, cg), (Av;. M, \v, CaCoUIPL))),s
(wpo, N[u == wpypotte), Lo := w P1P1%1 ] Vg ann )
— (E( ((0, o), (Avy. M, \v, .C2CoU1PL))))P1Pos
V[n = ((0, ({0, co), ()\LJ{.JI,)\3;1.(32(30?}1}'JJ_))))}'h}'h}')n?Ln],
Llv : (( ({0, o), ()\-vf.s“;f, AV1.€2¢001P L)) )P1IP1IP1IUA ] ug s
(SO o), Nfu := (Avy. “tNI)nn] f;[ = (Av1-C20001P L )11 ] )ug.uy
— N[u == (v M)ug[uo == (0, co)p1]
—* N[u = M]

By Lemma 5.2 (3), it is N[-u."r:—# M].
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Case (V2) is ‘;imilal‘ to Case (V1).

Case (3) ((s, M),N),,» — N[z := su* = M]. We have
((s, M ) V)N;. = ((s W) V)m,_ — \Nzr['r = (s, W);.'Jn, u o= (.';,A-'“;f);.'h] —*
\Nzr[ = su = M]. By Lemma 5.2 (3), the right hand side is
N[z := s,u? := M].

Ca.se (;.'Jf—:?‘m\/) (M,N,L)ya,sR — (M,NR,LR),,5. We can assume
A, 0P € R. By Lemma 5.2 (5), u,v € R. We have

((1!, :Nr, L)-u."' ,-r.JBR)N
= (A-'“;f, ('m;-'Jn, N’[u = u~;-'J1;-'Jnnn] f[ = U‘;-'J1;-'J'1?4’1])-31.0.@:4 )N”ﬁ)’
. (ff, (w?}n, N’[N - 311?;1;:)0?4’0] N[ = WP ?HDrm 28 ﬁ)x.w
— (M, (wpo. N[u == wpypoto) R, f[‘ = wpipre] o, )
= (“ff (rppn,(ffﬁ)[r - 31‘}'1'1}')0?10] (LR)[v 2= wp1p1tia])uo .y oo

Cases (perm V V) and (perm V 3) are similar to (permV).

Case (Congr) M — M’ where N — N’ holds and M’ is obtained from M
by replacing just one occurrence of N by N’. Suppose N : A. There exists a
term L and a term variable u® such that M is obtained from L by replacing
just one occurrence of u? by N by allowing variable capturing. Then M’ is
obtained from L by replacing u? by N’ in the same way.

By Lemma 5.2 (6), L has just one occurrence of the variable u. By Lemma
5.2 (3), M is obtained from I, by replacing u by N by allowing variable captur-
ing. Similarly M’ is obtained from L by replacing u by N’ by allowing variable
capturing.

By TH, we have N —+ N’. Hence M —+ M’ holds.

Other cases are similar to Case (—). O
Theorem 5.4 (Strong normalization) If M : A in NJVY?, then M is
strongly normalizable in N.JY?.

Proof. Assume M — M; — My — ---. By Theorem 5.3 (2), we have the
sequence M —+ A-'“;ﬂ —% ... in LAD,. On the other hand, by Theorem 5.3
(1), we have M : Ain LAD,. By Theorem 4.11, we have M e SN in LAD,

and this leads to a contradiction. O

6 Concluding Remarks

As a referee pointed out, an attempt to extend our proof to second order
existential quantification is blocked because a union of saturated sets is not
in general a saturated set. Our proof has worked for second order universal
quantification, since an arbitrary intersection of saturated sets is a saturated
set.

A union of saturated sets fails to be saturated because of the condition
(V) in the definition of saturated sets. Given two saturated sets Sy and S5, to
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show that Sy U S, is saturated, we need to check the condition (V). We assume
Nlu:=M ;.l)dﬁ, € 51U S,
Llv:=M ;.'31]}?‘, €5 US,.
The assumption of the condition may be the case that
Nlu:=M ;.l)dﬁ, € Si,
Llv == A-'“vf;.'h]}?‘, € 5,.
We do not see any way to derive the conclusion of the condition
(M,N,L),,E € S;U S,.
Our proof can be extended to second-order existential quantification with
one of the following restrictions:
¢ Atomic second-order existential quantification: we impose the condition that
T is atomic for
M : /}X (7] (30
(T, M)Y3X4 . 3X A
Then we can define M € IX" Ao as Mpy € SN, and Mp, € A(o[X :=
SN]), since X ranges over only atomic abstraction terms and we can choose

SN as the saturated set for the value of X.

e Positive second-order existential quantification: we have the restriction that
X occurs only positively in A for (32I). Then A(o[X := S]) is increasing
with respect to S. We can define M € AX"As as Mpg € SN,, and Mp, €
A(o[X := S]) for some saturated set S. Then we can choose A(a[X := SN])
as the covering of A(a[X := S;]) and A(c[X := S5]) in the proof of Theorem
4.6, the case IX A, the condition (V).

e Negative second-order existential quantification: we have the restriction that

X occurs only negatively in A for (32). Then A(o[X := S]) is decreasing
with respect to S. We can define M € 3X" Ao as Mpy € SN, and Mp, €
A(o[X := S]) for some saturated set S. Then we can choose A(c[X :=

Sy N Sy)) as the covering of A(a[X := S4]) and A(a[X := S;]) in the proof
of Theorem 4.6, the case IX A, the condition (V).

e Disjunction is prohibited. Because of absence of the condition (V), we do
not need use a union of saturated sets. So we can define M € AX" Ao as
Mpo € SN, and Mp, € A(a[X := S§]) for some saturated set S.

We can prove strong normalization of those systems in the same way as this

paper. However, our proof does not work for the second-order existential quan-

tification without any restrictions of them.
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