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1 Introduction

By rapid progress of network and storage technologies, a huge amount of electronic
data such as Web pages and XML data [23] has been available on intra and internet.
These electronic data are heterogeneous collection of ill-structured data that have
no rigid structures, and often called semi-structured data [1]. Hence, there have been
increasing demands for automatic methods for extracting useful information, par-
ticularly, for discovering rules or patterns from large collections of semi-structured
data, namely, semi-structured data mining [7, 11, 18, 19, 21, 25].

In this paper, we model such semi-structured data and patterns by labeled
ordered trees, and study the problem of discovering all frequent tree-like patterns
that have at least a minsup support in a given collection of semi-structured data.
We present an efficient pattern mining algorithm FREQT for discovering all frequent
tree patterns from a large collection of labeled ordered trees.

Previous algorithms for finding tree-like patterns basically adopted a straight-
forward generate-and-test strategy [19, 24]. In contrast, our algorithm FREQT is an
incremental algorithm that simultaneously constructs the set of frequent patterns
and their occurrences level by level. For the purpose, we devise an efficient enumer-
ation technique for ordered trees by generalizing the itemset enumeration tree by
Bayardo [10].

The key of our method is the notion of the rightmost expansion, a technique
to grow a tree by attaching new nodes only on the rightmost branch of the tree.
Furthermore, we show that it is sufficient to maintain only the occurrences of the
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Figure 1. A data tree D and a pattern tree T on the set L = {A, B} of labels

rightmost leaf to efficiently implement incremental computation of frequency.
Combining the above techniques, we show that our algorithm scales almost
linearly in the total size of maximal tree patterns contained in an input collection
slightly depending on the size of the longest pattern. We also developed a pruning
technique that speeds-up the search. Experiments on real-world datasets show that
our algorithm runs efficiently on real-life datasets in a wide range of parameters.

1.1 Related Works

Only a small number of researches have been done on data mining from semi-
structured data [11, 18, 19, 24, 25, 26] unlike studies on semi-structured databases [3,
23]. Most related researches would be [14, 19, 25, 26] that study the frequent tree
discovery. Wang and Liu [25] considered mining of collections of paths in ordered
trees with Apriori-style technique. Miyahara et al. [19] developed a straightforward
generate-test algorithm for discovering ordered trees in a similar setting as ours.

Dehaspe et al. [11] developed a mining algorithm WARMR for the first-order
models and graph structures. Since a tree is a special case of graph structures, we
can apply WARMR to frequent tree discovery. A difference to our setting is that the
trees are unordered and a matching is not necessarily one-to-one in this case. Also,
since their enumeration technique is more powerful than ours, it has a drawback of
generating dupulicated patterns. [14, 17, 18, 24] study graph mining.

Among the studies on association rule discovery, most closely related ones
are [10, 13, 22]. In discovery of long itemsets, Bayardo [10] proposed an efficient
enumeration technique based on set-enumeration tree for generating itemsets with-
out repetition to overcome the inefficiency of itemset lattice-based enumeration of
Apriori [4, 5]. Sese and Morishita [22] combined a merge-based counting technique
and the set-enumeration tree to cope with discovery with low frequency thresholds.
To cope with the problems of long patterns and the low frequency common in, say,
Web mining, we extend the above techniques for mining ordered trees.

Very recently, Zaki [26] independently proposed efficient algorithms for the
frequent pattern discovery problem for ordered trees. He adopted an efficient enu-
meration technique essentially same to our rightmost expansion using a special
string representation of ordered trees. Combining this enumeration technique with
depth-first search and the vertical decomposition of trees, he presented an efficient
algorithm TREEMINERV that achieves linear scaleup with data size.



1.2 Organization

The rest of this paper is organized as follows. In Section 2, we prepare basic notions
and definitions. In Section 3, we present our algorithm for solving the frequent
pattern discovery problem for labeled ordered trees using the techniques of rightmost
expansion and incremental occurrence update. In Section 4, we run experiments on
real datasets to evaluate the proposed mining algorithm. In Section 5, we conclude
this paper.

2 Preliminaries

In this section, we introduce basic notions and definitions on semi-structured data
and our data mining problems according to [1, 2, 6, 20].

2.1 Labeled Ordered Trees

As the models of semi-structured databases and patterns such as XML [23] and
OEM model [3], we adopt the class of labeled ordered trees defined as follows. For
aset A, #A denotes the cardinality of A. Let £ = {{, ¢y, ¢4, ...} be a finite alphabet
of labels, which correspond to attributes in semi-structured data or tags in tagged
texts.

A labeled ordered tree on L (an ordered tree, for short) is a 6-tuple T' =
(V,E, L, L,vg, =) satisfying the following properties. G = (V, E,vg) is a tree with
the root vg € V. If (u,v) € E then we say that u is a parent of v or that v is a child
of u. The mapping L : V — L, called a labeling function, assigns a label L(v) to
each node v € V. The binary relation < C V2 represents a sibling relation for the
ordered tree T such that w and v are children of the same parent and u < v iff u is
an elder brother of v. In the above definition, an ordered tree is not ranked, that is,
a node can have arbitrary many children regardless its label. In what follows, given
an ordered tree T' = (V, E, L, L,vg, <), we refer to V, E, L, and =<, respectively, as
Vr, Ep, L, and <7 if it is clear from context.

Let T be a labeled ordered tree. The size of T is defined by the number of its
nodes |T'| = #Vyp. The length of a path of T is defined by the number of its nodes.
If there is a path from a node w to a node v then we say that u is an ancestor of
v or v is a descendant of u. For every p > 0 and a node v, the p-th parent of v,
denoted by 7%.(v), is the unique ancestor u of v such that the length of the path
from u to v has length exactly p + 1. By definition, 7%.(v) is v itself and 71.(v) is
the parent of v. The depth of a node v of T, denoted by depth(v), is defined by the
length d of the path zo = vg,21,...,24-1 = v from the root vy of T to the node v.
The depth of T is the length of the longest path from the root to some leaf in T

In Fig. 1, we show examples of labeled ordered trees, say D and T', on the
alphabet £ = {A, B}, where a circle with the number, say v, at its upper right
corner indicates the node v, and the symbol appearing in a circle indicates its label
L(v). We also see that the nodes of these trees are numbered consecutively by the
preorder.

We introduce the canonical representation of labeled ordered trees as follows.



A labeled ordered tree T of size k > 1 is said to be of normal form if the set of the
nodes of T is Vi = {1, ..., k} and all elements in V; are numbered by the preorder
traversal [6] of T'. For instance, trees D and T in the previous example of Fig. 1 are
of normal form. The following lemma is useful.

Lemma 1. Let T be any labeled ordered tree with k nodes. If T is of normal form
then the root is vg = 1 and the rightmost leaf is vi,_1 =k in T.

2.2 Matching of trees

Let T and D be ordered trees on an alphabet £, which are called the pattern tree
and the data tree (or the text tree), respectively. Furthermore, we assume that T is
an order tree of normal form with £ > 0 nodes. We call such a tree T as a k-pattern
tree on L (or k-pattern, for short), and denote by T the sets of all k-patterns on
L. Then, we define the set of patterns on £ by T = Jy>q k-

First, we define the notion of matching functions as follows. A one-to-one
function ¢ : Vp — Vp from nodes of P to nodes of D is called a matching function
of T into D if it satisfies the following conditions for any v,vy,vs € Vp:

® o preserves the parent relation, i.e., (v1,v2) € E7 iff (¢(v1),p(v2)) € Ep.
® o preserves the sibling relation, i.e., v1 <7 va iff p(v1) <p p(v2).
® o preserves the labels, i.e., Ly(v) = Lp(p(v)).

A pattern tree T matches a data tree D, or T occurs in D, if there exists some
matching function ¢ of T into D. Then, the total occurrence of T in D w.r.t. ¢ is
the the list Total(p) = (p(1),...,p(k)) € (Vp)* of the nodes that the nodes of T'
map, and the root occurrence of T in D w.r.t. p is the node Root(p) = (1) € Vp
of D that the root of T maps, where k = |T|. Note that Total(p) is another
representation of the mapping ¢ itself assuming that T is of normal form. For a
pattern T', we define Occ(T') = {Root(yp) | ¢ is a matching function of T into D},
that is, the set of the root-occurrences of T'in D 1. Then, the frequency (or support)
of the pattern T in D, denoted by freqp(T), is defined by the fraction of the
number of the distinct root occurrences to the total number of nodes in D, that
is, fregp(T) = #O0cc(T)/|D|. For a positive number 0 < ¢ < 1, a pattern T is
o-frequent in D if freqp(T) > o.

For example, consider the previous example in Fig. 1. In this figure, a matching
function, say 1, of the pattern 7" with three nodes into the data tree D with ten
nodes is indicated by a set of arrows from the nodes of P. The total- and the
root-occurrences corresponding to ¢, are Total(p) = (7,8,10) and Root(p) = 7,
respectively. Furthermore, there are two root-occurrences of T' in D, namely 2 and
7, while there are five total occurrences of T' in D (or distinct matching functions
of T into D), namely (2,3,4),(2,3,6),(2,5,6),(7,8,10) and (7,9,10). Hence, the
support of T'in D is freqp(T') = #Occ(T')/|D| = 2/10.

L Although Total(y) is a natural candidate for the notion of occurrences for a pattern T in D,
it has a drawback that it is diffcult to define fregp(T’) as a number in the interval [0, 1].



Algorithm FREQT
Input: A set L of labels, a data tree D on L, and a minimum support 0 < o < 1.
Output: The set F of all o-frequent patterns in D.

1. Compute the set C; := F1 of o-frequent 1-patterns and the set RMO; of their
rightmost occurrences by scanning D; Set k := 2;

2. While :Fk—l # 0, do:
2 (a) (Ck, RMOy) := Expand-Trees(Fj_1, RMOr_1); Set Fy := 0.

2 (b) For each pattern T € Cg, do the followings: Compute fregp(T) from
RMOy(T), and then, if freqp(T) > o, then F, := F, U{T'}.

3. Return F=F, U---UFr_1.

Figure 2. An algorithm for discovering all frequent ordered tree patterns

2.3 Problem Statement

Now, we state our data mining problem, called the frequent pattern discovery prob-
lem, which is a generalization of the frequent itemset discovery problem in associa-
tion rule mining [4], as follows.

Frequent Pattern Discovery Problem

Given a set of labels £, a data tree D on £, and a positive number 0 < o <1,
called the minimum support (or minsup, for short), find all o-frequent ordered
trees T' € T such that freqp(T) > o.

The frequent pattern discovery problem seems too simple to apply real world
problems. However, an efficient solusion for this problem can be a base of algorithms
for more complicated data mining problems such as the frequent pattern discovery
problem with document count [25], where the input is collections of trees, and the
optimal pattern discovery problem [8, 12, 20, 22], whose goal is to find the patterns
that optimize a given statistic measure such as the information entropy on a data
set.

Throughout this paper, we assume the standard leftmost-child and right-
sibling representation for ordered trees (e.g., [6]), where a node is represented by a
pair of pointers to its first child, child(), and the next sibling, next(), as well as its
node label and the parent pointer, parent().

3 Mining Algorithms

In this section, we present an efficient algorithm for solving the frequent pattern
discovery problem for ordered trees that scales almost linearly in the total size of
the maximal frequent patterns.

In Fig. 2, we present our algorithm FREQT for discovering all frequent ordered
tree patterns with the frequency at least a given minimum support 0 < ¢ <1 in a
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Figure 3. The rightmost expansion for ordered trees

data tree D. As the basic design of the algorithm, we adopted the levelwise search
strategy as in [4] and the search space similar to the enumeration tree of [10].

In the first pass, FREQT simply creates the set F; of all 1-patterns and stores
their occurrences in RM O; by traversing the data tree D. In the subsequent pass
k > 2, FREQT incrementally computes a set Cp of all candidate k-patterns and
the set RM Oy, of the rightmost occurrence lists for the trees in Cy simultaneously
from the sets Fj_1 and RMOy_; computed in the last stage by using the right-
most, expansion and the rightmost occurrence technique using the sub-procedure
Expand-Trees. Repeating this process until no more frequent patterns are gener-
ated, the algorithm computes all o-frequent patterns in D. In the rest of this
section, we will describe the details of the algorith.

3.1 Efficient Enumeration of Ordered Trees

In this subsection, we present an enumeration technique for generating all ordered
trees of normal form without duplicates by incrementally expanding them from
smaller to larger. This algorithm is a generalization of the itemset enumeration
technique of [10], called the set-enumeration tree.

Rightmost expansion. A basic idea of our enumeration algorithm will be
illustrated in Fig. 3(a). In the search, starting with the set of trees consisting of
single nodes, for every k > 2 the enumeration algorithm expands a given ordered
tree of size k — 1 by attaching a new node only with a node on the rightmost branch
of the tree to yield a larger tree of size k.

Let k > 0 be an integer and £ be an alphabet. Let T be any (k — 1)-pattern
over L and rml(T) be the rightmost leaf of T. Since T is of normal form by
definition, rml(T) = k. Then, the rightmost branch of S is the unique path starting
from the root to rmi(T).

A rightmost expansion of T is any k-pattern obtained from T by expanding a
node on the rightmost branch of 7" by attaching a new rightmost child to v. More



precisely, it is defined as follows. Let p > 0 be any nonnegative integer no more than
the depth of rml(T) and £ € £ be any label. Then, the (p, )-ezpansion of T' is the
labeled ordered tree S of normal form obtained from T by attaching a new node,
namely k, to the node y = wpP(x) as the rightmost child of y. The label of & is ¢
(See Fig. 3(b)). A rightmost expansion of an ordered tree T is the (p, £)-expansion
of T for some integer p > 0 and some label £ € £. Then, we say that either T is the
predecessor of S or S is a successor of T. A pattern T is mazimal w.r.t. rightmost
expansion (or mazimal, for short) if T has no successor.

Lemma 2. For every k > 2, if S is a (k— 1)-pattern then any rightmost expansion
T of S is also a k-pattern. Furthermore, if T is a k-pattern then there exists the
unique (k — 1)-pattern S such that T is a rightmost expansion of S.

Proof. If T is the rightmost expansion of S, then trivially |T'| = k. Since the new
node vy = k is attached to a node on the rightmost branch of S, it should be the
last node in the preorder traversal of 7. This shows that 7" is an ordered tree of
normal form with k& nodes. On the other hand, suppose that T is obtained from
some (k — 1)-pattern S by attaching the node k as a rightmost leaf. Then, we see
that removing the attached leaf k& from T is the only way to build any predecessor
of T'. Since this choice of k£ as the rml of T" is unique, the predecessor of T is also
unique. 0O

The enumeration graph for T is a directed acyclic graph G, where each node
is an ordered tree in 7 U { L}, and a node has an edge to another node T' iff T is
a successor of S. Every single node trees in 77 is assumed to be a successor of the
empty tree L of size 0. From the above lemma, the enumeration graph for 7 is
acutually a tree with root L. Hence, we can enumerate all trees in 7 by traversing
in either the breadth-first or the depth-first manner.

3.2 Updating Occurrence Lists

The key of our algorithm is how to efficiently store the information of a matching
 of each pattern T into the data tree D. Instead of recording the full information
(p(1),...,0(k)) of @, our algorithm maintains only the partial information on ¢
called the rightmost occurrences defined as follows.

Rightmost occurrences. Let k > 0 be any integer. Let T be any k-pattern
and ¢ : Vr — Vp be any matching function of T into D. Then, the rightmost
occurrence of T in D w.r.t. ¢ is the node Rmo(p) = ¢(k) of D that the rightmost
leaf k of T' maps. For every T, we define RMO(T) = {Rmo(y) | ¢ is a matching
function of T into D }, the set of the rightmost occurrences of T in D. For example,
consider the data tree D in Fig. 1. Then, the pattern tree T has three rightmost
occurrences 4,6 and 10 in D. The root-occurrences 2 and 7 of T' can be easily
computed by taking the parents of 4,6 and 10 in D.

Now, we will give an inductive characterization of the rightmost occurrences.
Let = be any node in D. For every positive integer p > 0, we define the p-th head
of =, denoted by head® (z), as follows: If p = 0 then head® (z) is a child of z;



Algorithm Update-RMO(RMO,p,¥)
1. Set RM Opew to be the empty list € and check := null.
2. For each element z € RMO, do:
(a) If p =0, let y be the leftmost child of z.
(b) Otherwise, p > 1. Then, do:

— If check = wpP(x) then skip z and go to the beginning of Step 2
(Duplicate-Detection).

— Else, let y be the next sibling of 7p?~*(x) (the (p — 1)st parent
of z in D) and set check := wpP(z).

(¢c) While y # null, do the following;:
— If L(y) = ¢, then RMOqew := RMOnew - (y); /* Append */
— y := next(y); /* the next sibling */
3. Return RMOpew.

Figure 4. The incremental algorithm for updating the rightmost occurrence
list of the (p,l)-expansion of a given pattern T from that of T

Otherwise, p > 0, and head® () is the next sibling of the (p — 1)st parent h of x,
i.e., the leftmost (oldest) node y such that mp?~!(z) < y.

Lemma 4. Let S be a (k—1)-pattern occuring in a data tree D and ¢ : Vg — Vp be
a matching function of S into D. Let T be a (p,£)-expansion of S and ¢ : Vi — Vp
be any extension of @, i.e., (i) = @(i) holds for everyi=1,...,k—1. Then, ¢ is
a matching function of T into D iff ¢ satisfies the following (1) and (2):

(1) ¥(k) is either the p-th head of (k — 1) or one of its right (younger) siblings,
i.e., head® (p(k — 1)) < (k).

(2) Lp(y(k)) =1

For every p > 0 and £ € L, we define the binary relation HEAD® =
{ (z,y)| =,y € Vp,headP (x) <y, L(y) = £} C Vp x Vp. Let U be any set.
For a set A C U and a binary relation R C U x U, we define the set of images
R(A)={bla€ A,(a,b) € R}. The following lemma follows from Lemma 4.

Lemma 5. Let p >0 and £ € L. If T is the (p,£)-expansion of a pattern S, then
RMO(T) = HEAD®™"(RMO(S)) holds.

Algorithm Update-RMO. Following Lemma 5, the algorithm Update-RMO
of Fig. 4 exactly generates the elements in RMO(T) for the (p,£)-expansion T of
a pattern S without duplicates from the rightmost occurrence list RMO(S). Since
the algorithm computes the elements of HEAD®(RMO(S)), the correctness of
the algorithm is immediate from Lemma, 4.



However, the straightforward implementation of Lemma 5 often scans the
same nodes more than once if p > 1 and then the computed list of the elements
in RMO(T) may contain some duplicates. To avoid this problem, we introduce
the Duplicate-Detection technique as follows. When p > 1 holds, the algo-
rithm checks if the value of check is equivalent to the p-th parent 7%, (z) for each
x € RMO(T) before scanning its siblings. If the answer is yes then it skips the cur-
rent element © € RMO(T) and goes to the next element in RMO(T). Otherwise
the algorithm update the variable check with 7}, (v). Later in the experiments of
Section 4, we will see that the Duplicate-Detection technique greatly improves the
efficiency of the algorithm FREQT.

Now, we show the correctness of the algorithm Update-RMO. Let A be a set,
s =ay---a, € A* be a sequence over A, and <, be a binary relation on A. Let
1 <i4,j < n. Then, s is said to be monotonic (noncrossing) w.r.t. <4 if a; <4 a;
(a; <a aj ) holds for any pair ¢ < j, For a sequence s = a;---a, € A* and a
function £ : A — A*, we assume that £(s) = &(a1)---&(an). In what follows,
RMO(T) means the list of the rightmost occurrences of T but not the set.

Lemma 6. The algorithm Update-RMO (with the Duplicate-Detection technique)
enumerates all the nodes of any rightmost occurrence list without repetition, if the
following two conditions are satisfied: (i) all the elements of RMO(T) are ordered

in the preorder of D for any I-pattern T, and (ii) the algorithm scans all the nodes
of RMO(T) in the order of RMO(T).

Proof. We prove the lemma by showing that a sequence RMO(T) of nodes of D
preserves a monotonicity w.r.t. a particular relation on Vp, namely a k-th preorder
relation, at any stage k. First, the k-th preorder sequence of D is a sequence II; of
nodes of D, recursively defined as follows: (1) II; is the sequence of all the nodes in
D ordered in the preorder of D, and (2) II;, = Cp(lx—_1), where Cp : Vp — (Vp)*
is the function that returns for an input v € Vp the sequence of all the children
of v whose node occurs at once in the order of the sibling relation <p. Then, a
k-th preorder relation <j, is defined as follows: v; < vy iff v; occurs in front of
ve or equals to vs in the k-th preorder sequence II, for any vi,vs € Vp. From
this definition, the assertion that a sequence s of nodes of D is monotonic w.r.t.
<y is equivalent to the assertion that s is a subsequence of II;. For the relation
<k, it is easy to prove that v; < v implies 7pP(vy) <g_p, mpP(v2). Suppose
that RMO(S) is monotonic w.r.t. the d-th preorder relation <4, where S is any
pattern and d = depth(rml(S)), then the sequence mp?(RMO(S)) is noncrossing
w.r.t. <4_, because of the above statement. Moreover, the algorithm Update-RMO
skips manipulation about the duplicate occurrences in mp?(RMO(S)) using the
Duplicate-Detection technique. Therefore, the output RMO(T') of the algorithm
for the input (RMO(T),p,¥) is monotonic w.r.t. <4_,41 where T is the (p,l)-
expansion of S, and d — p + 1 = depth(rml(T)) holds at this time. Now we have
shown that RMO(T) computed by the algorithm is monotonic w.r.t. <4 for any
pattern T' where d = depth(rml(T)), and also the lemma. 0O



Algorithm Expand-Trees(F, RMO)
1. C:=0; RMOypew := 0;
2. For each tree S € F, do:
® For each (p,¢) € {1,...,d} x L, do the followings, where d is the
depth of the rightmost leaf of S:
— Compute the (p, £)-expansion T of S;
— RMOyew(T) := Update-RMO(RMO(S), p, {);
- C=CU{T};
3. Return (C, RM Onew);

Figure 5. The algorithm for computing the set of rightmost expansions
and their rightmost occurrence lists.

3.3 Analysis of the Algorithm

We go back to the computation of the candidate set Ci. In Fig. 5, we present the
algorithm Expand-Trees that computes the set C and the corresponding set RM Oy,
of the rightmost occurrence lists. The set RM Oy, is implemented by a hash table
such that for each tree T € C, RM Oy (T) is the list of the rightmost occurrences of
T in D. We show the correctness of the algorithm FREQT of Fig. 2.

Theorem 7. Let L be a label set, D be a data tree on L, and 0 < o < 1 be a
minimum support. The algorithm FREQT correctly computes all o-frequent patterns
in T without duplicates.

The running time of the algorithm is bounded by O(k*bL N), where k is the
maximum size of the frequent patterns, b is the maximum branching factor of D,
L = #L, and N is the sum of the lengths of the rightmost occurrences lists of fre-
quent patterns. Furthermore, FREQT generates at most O(kLM) patterns during
the computation, where M is the sum of the sizes of the maximal o-frequent pat-
terns, while a straightforward extension of Apriori [4] to tree patterns may generate
exponentially many patterns in k.

3.4 Pruning by Node-Skip and Edge-Skip

In this subsection, we describe some improvements for FREQT.

Node-Skip. This pruning technique skips useless nodes with infrequent labels
using the information of F;. Suppose that a 1-pattern with label £ € £ is not o-
frequent in D. Then obviously, the label £ does not appear in any o-frequent pattern
F. Hence, we can skip the call of Update-RMO(RMO, p,¢) when /£ is infrequent
label.

Edge-Skip. This pruning technique removes useless edges with infrequent
pairs of labels by using the information of F». Similarly to Node-Skip above, we



observe that if (¢1,¢>) is a pair of the labels of infrequent 2-pattern E ¢ F», then
the pair (¢, ¢>) does not appear in any o-frequent pattern in F. Hence, we can skip
the call of Update-RMO(RM O, p, ¢5) when /; is the label of the nodes in RM O and
the pair (f2,¢5) is infrequent.

3.5 An Example

Consider the data tree D in Fig. 1 of size |D| = 10 and assume that the minimum
support is 0 = 0.2 and £ = {4, B}. This value of o implies that a o-frequent
pattern requires two nodes as the number of the minimum root occurrences. In
Fig. 6, we show the patterns generated by FREQT during the computation.

First, the algorithm computes the set F; of the frequent 1-patterns 77 and T3
in stage 1 by traversing the data tree D and records their rightmost occurrences in
RMO;. In stage 2, calling Expand-Trees with F; and RM O, gives the candidate
set C» and the set of their rml-occurrence lists RMOs. In Fig. 6, we see that
Co = {T11,T12,T1,T22}, and that they are obrained from their predecessor T; or
T, by attaching a new leaf with label A or label B. The rightmost occurrence list
of Th1 is {3,5,8,9} and one of T}» is {4,6, 10}, then the root occurrence lists of T
and Ty» are both {2,7} and thus T1; and T» are o-frequent. On the other hand,
the patterns T5; and T, have frequency 0 < ¢ = 0.2, and thus, it is discarded from
Fo.

By repeating these processes after stage 3, the algorithm terminates at stage
5 and returns F = .7:1 @] .7:2 @] .7:3 @] .7:4 = {Tl,TQ,Tll,Tlg,Tllg,T114,T1134} as the
answer.

4 Experimental Results

In this section, we present experimental results on real-life datasets to evaluate
the performance and the robustness of our algorithm on a range of datasets and
parameters. The task considered here is substructure discovery from HTML /XML
pages, which is to discover a set of frequent substructures as patterns in a large
document tree generated from a collection of Web pages gathered from Internet.
The goals of these experiments are: (i) How the running time scales with the size
of the data trees and the value of minimum frequecy thresholds; (ii) Performance
comparison of the versions of our algorithm equipped with the speed-up methods
described in Section 3.

4.1 Implementation and Experimental Setup

We implemented our prototype system of the effcient tree mining algorithm FREQT
described in Section 3 (Fig. 2) in Java (SUN JDK1.3.1 JIT) with a DOM library
(OpenXML), a standard API for manupulating document trees of XML/HTML
data. The experiments were run on a PC (Pentium ITT 600MHz) with 512 megabytes
of main memory running Linux 2.2.14.

In the experiments, we implemented and compared the following three algo-
rithms. In what follows, the parameters n and ¢ denote the data size as the number
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Figure 6. The enumeration tree for patterns on the data tree D in Fig. 1,
where the minsup o = 0.2. The pair (p,£) attached to an arrow from a pattern S to
a pattern T indicates that T is tha (p,£)-expansion of S. A white pattern represents
a frequent pattern, and a shadowed pattern represents an infrequent pattern. For
each pattern, the number s attached it represents its frequency.

of nodes and the minimum support.

e FREQT without the Duplicate-Detection: This version uses explicit
duplicate check instead of the Duplicate-Detection technique.

e FREQT: This is a straightfoward implementation of the FREQT algorithm
of Fig. 2 with the Duplicate-Detection technique in Section 3.

e FREQT with Node-Edge-Skip: This version is FREQT with the Node-Skip
and the Edge-Skip techniques of Section 3.4 as well as the Duplicate-Detection.
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4.2 Data

We prepared two datasets Clteseers (5.6MB) and Allsite (3.6MB) by collecting
Web pages from search engines and Web databases. The Cliteseers dataset was a
collection of Web pages from an online bibliographic archive Citeseers?, and the
Allsite dataset was a mixture of Web pages from 30 major Web search engine sites
listed in [15]. Both datasets consisted of a few hundreds of HTML pages. After
collecting pages, datasets were parsed to create DOM trees, and then attribute-
value pairs in a DOM tree were converted into a set of nodes as follows. If a node
v has an attribute-value pair (Attr, Val) then we create a two-node tree consisting
of the root and a child labeled with Attr and Val, resp. Then, we attach such
two-node trees represening pairs as a subtree of v in the lexicographic order on
attribute-value pairs. After preprocessing, the data trees for Citeseers had 196,247
with 7,125 unique tags, and Allsites had 192,468 nodes with 9,696 unique tags.

4.3 Scalability

In the first experiment, we studied the scalability of the algorithm FREQT. Fig. 7(a)
showed the running time of FREQT with 0 = 3% on the Citeseers data as the size
n of the data tree is increased from 316KB to 5.62MB as HTML page size. The
total number of discovered maximal frequent patterns is around ten for all data
size while the number of the rightmost occurrences scanned linearly increases from
12,844 nodes to 223,003 nodes as the data size is increased. As a result, the running
time scales almost linearly with size n of the data tree, but slightly above linear.
This nonlinearlity probably comes from that the average length of sibling lists may
slowly increase as n grows.

’http://citeseer.nj.nec.com/
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4.4 Comparison of algorithms

Secondly, we show the performance comparison among three algorithms with differ-
ent update technique for the rightmost occurrence lists, namely FREQT without the
Duplicate-Detection, FREQT, and FREQT with Node-Edge-Skip. Fig. 8 shows the
running time on the Allsite data as the minimum support o is decreased from 10%
to 1.75%. For the largest value of o = 10%, only 1-patterns can be frequent and,
thus, three algorithms coincide each other. For smaller values of o < 10%, FREQT
was more than ten-times faster than the slowest algorithm FREQT without the
Duplicate-Detection, and FREQT with Node-Edge-Skip was three-times faster than
FREQT. For instance, the running times of the three algorithms with ¢ = 2%, in
this order, were 37.15 (sec), 3.285 (sec), and 1.151 (sec), respectively.

4.5 Running time and tree statistics against stages

In the third experiment, we studied the behavior of the algorithm FREQT in more
detail when the number of frequent patterns is quite large. Fig. 7(b) shows the
running time of FREQT with ¢ = 2% on a subset of Citeseers of 1.49MB as well
as the total number of the discovered frequent patterns as the stage proceeds. In
association rule mining [4], it is often reported that the number of frequent patterns
has a peak at stage 2 and decreases afterwards. Unlike this, it is interesting that in
Fig. 7(b) both the running time and the number of frequent patterns have a peak
at the middle stages. From this, a special optimization strategy may be required
for tree mining.

4.6 Examples of discovered patterns

In Fig. 9, we show examples of frequent patterns, in HTML format, discovered by
the FREQT algorithm from the HTML pages in the Citeseers data (89,128 nodes)
with the minimum support o = 1.17%. By inspection on the data, we observe that
the algorithm correctly captured repeated substructure of bibliographic entries; One
is for an HTML link at the header of an entry and another is for the body of an
entry, where #text_1 corresponds to the fixed label “Correct,” #text_2 stand for



No. 68, Size 6, Hit 1162, Freq 1.30%
<a href=_> <font color="#6F6F6F"> #text_1 </font> </a>

No. 10104, Size 20, Hit 1039, Freq 1.17%
<p> #text_2
<b> #text_3 <!-- CITE --> <font color="green"> #text_4 </font>
#text 5 </b> #text 6 <br /> <br />
<font color="#999999"> #text 7 <i> #text 8 </i> #text 9 </font> </p>

Figure 9. Exzamples of discovered frequent patterns

the title of an article, #text_3 to #text 6 for texts in its abstract, #text_7 to
#text_ 9 for the title of a citation below the abstract, the color codes "#6F6F6F"
and "#999999" stand for dark gray and light gray, respectively. These two trees
have sizes 6 and 20 (nodes), and appeared in 1.30% (1162 times) and 1.17% (1039
times) of nodes in the data tree.

5 Conclusion

In this paper, we studied a data mining problem for semi-structured data by mod-
eling semi-structured data as labeled ordered trees. We presented an efficient al-
gorithm for finding all frequent ordered tree patterns from a collection of semi-
structured data, which scales almost linearly in the total size of maximal patterns.
We run experiments on real-life Web data to evaluate the proposed algorithms.

From the experiment on Web data, our algorithm is useful to extract regu-
lar substructures in a large collection of Web pages, and thus, may have applica-
tions in information extraction from Web and query modification in semi-structured
database languages [15, 21].

To deal with more realistic applications, we need to expand our algorithm to
deal with more complex components such as attributes and texts in semi-structured
data. Extension for graph structures [14, 17, 18] and first-order models [11] is an-
other future work. Studies on the computational complexity of learning tree struc-
tured patterns [9, 15] may give some insights on mining such complex structures.
Moreover, heuristic approaches like the algorithm Cupid [16] computing a score that
represents a similarity of two labeled trees, would be promising.
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