Jobooobobobobobobbobouooboboon

Efficient Maximal Pattern Discovery from Massive Geometric
Graphs

0000 Yhoooo2 o000 3
Hiroki Arimura!, Takeaki Uno!, Shinichi Shimozono®

!J000000000000O00 Hokkaido University
emailarim@ist.hokudai.ac.jp
200000000 National Institute of Informatics
uno@nii. jp
00000000000 Kyushu Institute of Technology
sin@ai.kyutech.ac. jp

Abstract:
with isomorphism invariant under geometric transformations such as translation, rotation, and

A geometric graph is a labeled graph whose vertices are points in the 2D plane

scaling. While Kuramochi and Karypis (ICDM2002) extensively studied the frequent pattern
mining problem for geometric subgraphs, the maximal graph mining has not been considered so
far. In this paper, we study the maximal (or closed) graph mining problem for the general class
of geometric graphs in the 2D plane by extending the framework of Kuramochi and Karypis.
Combining techniques of canonical encoding and a depth-first search tree for the class of maximal
patterns, we present a polynomial delay and polynomial space algorithm, MaxGeo, that enumerates
all mazximal subgraphs in a given input geometric graph without duplicates. This is the first result
establishing the output-sensitive complexity of closed graph mining for geometric graphs. We also
show that the frequent graph mining problem is also solvable in polynomial delay and polynomial

time.
1 Introduction

Backgrounds. By rapid growth of both the amount
and the varieties of nonstandard datasets in scientific,
spatial, and relational domains, there are increasing
demands for efficient methods to extract useful pat-
terns and rules from weakly structured datasets. Graph
mining is one of the most promising approaches for

knowledge discovery from such weakly structured datasets.

The following topics have been extensively studied for
the last years: frequent subgraph mining [7, 12, 17,
27], maximal (closed) subgraph mining [3, 9, 20, 25]
and combination with machine learning [21, 28]. See
surveys, e.g. [8, 24], for the overviews.

Geometric graphs. In this paper, we study a
graph mining problem for the class § of geometric
graphs. Geometric graphs (geographs, for short) [15]
are a special kind of vertex- and edge-labeled graphs

*00000b000b00000o0o0oobD0oo0oo0oD0Oo
0000000 060-0814 000000 1400 900
000000 E-mail: arim@ist.hokudai.ac.jp

whose vertices have the coordinates in the 2D plane
R?, while the labels represent geometric features and
their relationships. The matching relation for ge-
ographs is defined through the invariance under a
class of geometric transformations, such as transla-
tion, rotation, and scaling in the plane, in addition
to the usual constraint for graph isomorphism. Ge-
ographs are useful in applications concerning with ge-
ometric configurations, e.g., analysis of chemical com-
pounds, geographic information systems, and knowl-
edge discovery from vision and image data.
Maximal pattern discovery problem. For the
class of geometric graphs, Kuramochi and Karypis
presented an efficient mining algorithm gFSG for fre-
quent geometric subgraph mining, based on Apriori-
like breadth-first search [15]. However, frequent pat-
tern mining has a problem that it can easily produce
an extremely large number of solutions, which de-
grades the performance and the comprehensivity of
data mining to a large extent. On the other hand,

rotation |
scaling

trandation

/geometric graph G

O 1: Three basic types of geometric transformations

the mazimal subgraph mining problem® asks to find
only all mazimal patterns (closed patterns) appearing
in a given input geometric graph D, where a mazimal
pattern is a geometric graph which is not included
in any properly larger subgraph having the same set
of occurrences in D. Since the set M of all maxi-
mal patterns is expected to be much smaller than the
set F of all frequent patterns and still contains the
complete information of D, maximal subgraph min-
ing has some advantage as a compact representation
to frequent subgraph mining.

Difficulties of maximal pattern mining. How-
ever, a number of difficulties in maximal subgraph
mining for geometric graphs exist. In general, max-
imal pattern mining has a large computational com-
plexity [4, 26]. So far, a number of efficient maximal
pattern algorithms are proposed for sets, sequences,
and graphs [3, 9, 20, 22, 25]. Some algorithms use
explicit duplicate detection and maximality test by
maintaining a collection of already discovered pat-
terns. This requires large memory and delay time,
and introduces difficulties to use efficient search tech-
niques, e.g., depth-first search. For these reasons,
output-polynomial time computation for the maxi-
mal pattern problem is still a challenge in maximal
geometric graphs. Moreover, the invariance under ge-
ometric transformation for geometric graphs adds an-
other difficulty to geometric graph mining. In fact,
no depth-first algorithm has been known so far even
for frequent pattern mining.

Main result. The goal of this paper is to develop
a time and space efficient algorithm that can work
well in theory and practice for maximal geometric
graphs. As our main result, we present an efficient
depth-first search algorithm MaxGeo that, given an
input geometric graph, enumerates all frequent max-
imal pattern P in M without duplicates in O(m(m +

LAlthough the maximal pattern discovery is more often
called closed pattern discovery, we use the term “maximal”
rather than “closed” in this paper for the consistency with
works in computational complexity and algorithms area [4, 26].

n)||D]|? log ||D]|) = O(n®logn) time per pattern and
in O(m) = O(n?) space, with the maximum number
m of occurrences of a pattern other than trivial pat-
terns, the number n of vertices in the input graph,
and the number ||D|| of vertices and edges in the in-
put graph. This is a polynomial delay and polyno-
mial time algorithm for the maximal pattern discov-
ery problem for geometric graphs. This is the first
result establishing the output-sensitive complexity of
maximal graph mining for geometric graphs.

Other contributions of this paper. To cope
with the difficulties mentioned above, we devise some
new techniques for geometric graph mining.

(1) We define a polynomial time computable canon-
ical code for all geometric graphs in G, which is
invariant under geometric transformations. As
a bi-product, we give the first polynomial de-
lay and polynomial space algorithm FreqGeo for
frequent geometric subgraph mining problem.

(2) We introduce the intersection and the closure
operation for G. Using these tools, we define the
tree-shaped search route T for all maximal pat-
terns in G. We propose a new pattern growth
technique arising from reverse search and clo-
sure extension [18] for traversing the search route
R by depth-first search.

Related works. There are closely related researches
on 1D and 2D point set matching algorithms, e.g. [2],
where point sets are simplest kind of geometric graphs.
However, since they mainly study exact and approx-
imate matching of point sets, the purpose is different
from this work.

A number of efficient maximal pattern mining al-
gorithms are presented for subclasses of graph, trees,
and sequences, e.g., general graphs [25], ordered and
unordered trees [9], attribute trees [3, 20], and se-
quences [4, 6, 23]. Some of them have output-sensitive
time complexity as follows. The first group deal with
mining of “elastic” or “flexible” patterns, where the
closure is not defined. CMTreeMiner [9], BIDE [23],
and MaxFlex [6] are essentially output-polynomial time
algorithms for location-based maximal patterns though
it is implicit. They are originally used as pruning for
document-based maximal patterns [6].

The second group deal with mining of “rigid” pat-
LCM [22]
proposes ppc-extension for maximal sets, and then
CloATT [3] and MaxMotif [4] generalize it for trees

terns which have closure-like operations.

and sequences. They together with this paper are
polynomial delay and polynomial space algorithms.

Some of other maximal pattern miners for complex
graph classes, e.g.,CloseGraph [25], adopt frequent pat-
tern discovery augmented with,e.g., maximality test
and the duplicate detection although it seems diffi-
cult to achieve output-polynomial time computability
in this approach.

Organization of this paper. In Section 2, we in-
troduce maximal pattern mining for geometric graphs.
In Section 3, we give the canonical code and frequent
pattern mining. In Section 4, we present polyno-
mial delay and polynomial space algorithm MaxGeo
for maximal pattern mining, and in Section 5, we con-
clude. For the details and the proof of this work, see

the technical report [5].

2 Preliminaries

In this section, we prepare basic definitions and nota-
tions for maximal geometric graph mining. See Ap-
pendix for a detailed explanation. We denote by N
and R the set of all natural numbers and real num-
bers, resp.

2.1 Geometric transformation and
congruence.

We briefly prepare basic of plane geometry [11, 13].
In this paper, we consider geometric objects, such as
points, lines, point sets, and polygons, on the two-
dimensional Euclidean space E = R2, also called the
2D plane. A geometric transformation T is any map-
ping T : R? — R?, which transforms geometric ob-
jects into other geometric objects in the 2D plane R2.
In this paper, we consider the class Tgeo Of geometric
transformations consisting of three basic types of ge-
ometric transformations: rotation, scaling, and their
combinations. In general, any geometric transforma-
tion T' € Tgeo can be represented as a 2D affine trans-
formation T : & — AZ+1, where A is a 2 x 2 nonsingu-
lar matrix with det(A) # 0, and t is a 2-vector. Such
T is one-to-one and onto. In addition, if T" € Tgeo
then T preserves the angle between two lines. It is
well-known that any affine transformation can be de-
termined by a set of three non-collinear points and
their images. For Tgeo, we have the following lemma.

Lemma 1 Given two distinct points in the plane T, T
and the two corresponding points T, T, there exists
a unique geometric transformation T, denoted by

T (&1 Zo; &%), such that T(Z;) = &} for everyi = 1,2.

3.0
5
B
C
20 2 4 7
B B
B B B
10
1 B 3 6 B 8
1.0 20 3.0 40 x

O 2: A geometric database D with V' = {1,...,9},
EV = @, and EE = {B,C}

T (%, 42; &) is computable in O(1) time. The
above lemma is crucial in the following discussion.
For any geometric object O and T' € Tge0, we denote
the image of O via T by T'(O). The inverse image of
O via T is T7(O).

2.2 Geometric graphs

We introduce the class of geometric graphs according
to [15] as follows. Let ¥y and ¥ be mutually disjoint
sets of vertex labels and edge labels associated with
total orders <x, on Yy UXEg. In what follows, a vertex
is always an element of N. A graph is a vertex and
edge-labeled graph G = (V, E,\, u) with a set V of
vertices and a set E C V2 of edges. Each € V has
a vertex label \(z) € By, and each e = 2y € E C V2
represents an unordered edge {z,y} with an edge label
w(e) € Lg. Two graphs G; = (Vi, E;, Ai, i) (i = 1,2)
are isomorphic if they are topologically identical to
each other, i.e., there is a bijection ¢ : Vi — V5 such
that (i) Ai(z) = Xa(é(2)), (ii) for every zy € (V1)32,
xy € By iff ¢(z)d(y) € Es, and (iii) for any zy € Ey,
p1(zy) = p2(¢(2)¢(y)). The mapping ¢ is called an
isomorphism of G; and Gs.

A geometric graph is a representation of some geo-
metric object by a set of features and their relation-
ships on a collection of 2D points.

Definition 1 (geometric graph) Formally, a geo-
metric graph (or geograph, for short) is a structure
G = (V,E,c,\,), where (V, E, X\, u) is an underlying
labeled graph and ¢ : V' — R? is a one-to-one mapping
called the coordinate function. Each vertex v € V has
the associated coordinate c(v) € R? in the 2D plane
as well as its vertex label A(v). We refer to the com-
ponents V, E,c, \,u of G as Vg, Eq, ca, AG, UG-

We here assume that no two vertices or edges have
the same coordinates. We denote by G the class of all
geometric graphs over Yy and Y.

Alternative representation for geographs. Al-
ternatively, a geometric graph can be simply repre-
sented as a collection of labeled objects G = V U E,
where V. = { (F;,\i)|i =1,...,n} C R?> x By, and
E={{e;,u)|i=1,....m} CR> xR x ¥g. Each
(Z,) is a labeled vertex for a vertex v with c(v) = 7
and A\(v) = A, and each (c(v), c(u), u) is a labeled edge
for an edge e = vu with label u(e) = u. A labeled
object refers to either a labeled vertex or a labeled
edge. Let OL = (R? x ©v) U (R?> x R? x ¥g) be
a domain of labeled objects. We assume the lexico-
graphic order <pr, over OL by extending those over
N,R?, Yy and 3g. Since the correspondence between
G and @G is obvious, we will often use both represen-
tations interchangeably. For instance, we may write
GU {(v,Z,A)} or G\ {(e,p)}. Since c is one-to-one,
we may also write ¥ € G instead of & € ¢(Vg).

2.3 Geometric isomorphism and matching

Now, we extend the notions of isomorphisms and match-
ings for geographs as in [15]. Let G1,G2 € G be any
geographs. Then, GG; and Gy are geometrically iso-
morphic, denoted by G; = G, if there are an isomor-
phism ¢ of G; and G2 and a transformation T € Tgeo
such that T'(c(x)) = ¢(¢(z)) for every vertex z of Gy.
The pair (¢, T') is a geometric isomorphism of G; and
G,.

Let G = (V,E,c, A\,) be a geograph. A geograph
H is a geometric subgraph of G, denoted by H C G,
if H is a substructure of G, that is, (i) Vg C V and
Ey C E hold, and (ii) mappings Ay, pmg, and cy are
the restrictions of A, u, and ¢, respectively, on V.
Now, we define the matching of geographs in terms of
geometric subgraph isomorphism.

Definition 2 (geometric matching) A geograph P
geometrically matches a geograph G (or, P matches
G) if there exists some geometric subgraph H of G
that is geographically isomorphic to P with a geomet-
ric isomorphism (@, T). Then, we call the geometric
transformation T' a geometric matching function from

P to G or an occurrence of P in G.

We denote by M(P,G) C Tgeo the set of all geo-
metric matching functions from P to G. We omit ¢
from (¢, T) above because if P matches G then, there
is at most one vertex v = ¢(u) € Vi of G such that
c(v) = T(c(u)) for each u € Vp of P. Clearly, P
matches G iff M(P,G) # (. If P matches G then we
write P C G and say P occurs in G or P appears
in G. If PC Q and Q Z P then we define P C Q.

We can observe that if both of P C @Q and Q C P
hold then P = @, that is, P and @ are geometrically
isomorphic. If we take the set G of the equivalence
classes of geographs modulo geometric isomorphisms,
then C is a partial order over G.

2.4 Patterns, occurrences, and frequencies

Let k > 0 be a nonnegative integer. A k-pattern (or
k-geograph) is any geograph P € G with k vertices.
From the invariance under Tge,, we assume without
any loss of generality that if P is a k-pattern then
Ve ={1,...,k}, and if £ > 2 then P has the fixed
coordinates ¢(1) = (0,0) and ¢(2) = (0,1) € R? for
its first two vertices in the local Cartesian coordinate.
An input geometric database of size n > 0 is a single
geograph D = (V,E,e, A\, pu) € G with |[V| = n. We
denote |V |+|E|, which is total size of D, by ||D||. D is
also called an input geograph. Fig. 2 shows an example
of an input geometric database D with V' = {1,...,9}
over ¥y =, and X = {B,C}.

Let P € G be any k-pattern. Then, the location list
of pattern P in D is defined by the set L(P) of all ge-
ometric transformations that matches P to the input
geograph D, i.e., L(P) = M(P, D). The frequency of
P is |L(P)| € N. For an integer 0 < o < n, called a
minimum support (or minsup), P is o-frequent in D
if its frequency is no less than o.

Unlike ordinary graphs, the number of distinct match-
ing functions in L(P) is bounded by polynomial in the
input size.

Lemma 2 For any geograph P, |L(P)| is no greater
than n* under T geo.

Lemma 3 (monotonicity) Let P,Q be any geographs.
(i) If P = Q then L(P) = L(Q). (i) If P C Q then
L(P) 2 L(Q). (iii) If P C Q then |L(P)| > |L(Q)].

2.5 Maximal pattern discovery

From the monotonicity of the location list and the fre-
quency in Lemma 3, it is natural to consider maximal
subgraphs in terms of C preserving their location lists
as follows.

Definition 3 (maximal geometric patterns) A ge-
ometric pattern P € G is said to be mazimal in an
input geograph T if there is no other geometric pat-
tern @ € G such that (i) P C @ and (ii) L(P) = L(Q)
hold.

In other words, P is maximal in D if there is no
strictly larger pattern than P that has the same lo-
cation list as P’s. Equivalently, P is maximal iff any
addition of a labeled object to P makes L(P) strictly
smaller than before. We denote by ¥ C G be the
set of all o-frequent geometric patterns in D, and by
M C G be the set of all maximal geometric patterns
in D under T. The set of all o-frequent maximal pat-
terns is M7 = M N JF7.

Now, we state our data mining problem as follows.

Definition 4 (data mining problem) The mazimal
geometric pattern enumeration problem is, given an
input geograph D € §G of size n and a minimum sup-
port 1 < o < n, to enumerate every frequent maximal
geometric pattern P € M7 appearing in D without
outputting no isomorphic two.

Our goal is to devise a light-weight and high-throughput

mining algorithm for enumerating all maximal pat-
terns appearing in a given input geograph. This is
paraphrased in terms of output-sensitive enumeration
algorithms in Section 2.6 as a polynomial delay and
polynomial space algorithm for solving this problem.
This goal has been an open question for M and even
for 9 so far.

We can define a different notion of location list
D(P), called the document list, defined as the set of
input graphs in which a pattern appears, and the max-
imality based on D(P) in a similar way. Actually, the
location-based maximality is a necessary condition for
the document-based maximality. However, we do not
go further in this direction.

2.6 Model of computation

We make the following standard assumptions in com-
putational geometry [19]: For every point p = (z,y) €
E, we assume that its coordinates x and y have infi-
nite precision. Our model of computation is the the
random access machine (RAM) model with O(1) unit
time arithmetic operations over real numbers as well
as the standard functions of analysis ((-)2,sin, cos,
etc) [1, 19].

An enumeration algorithm A is an output-polynomial
time algorithm if A finds all solutions S € 8 with-
out duplicates on a given input [in total polynomial
time both in the input size and the output size. A is
polynomial delay if the delay, which is the maximum
computation time between two consecutive outputs
If A
is polynomial delay then A is also output-polynomial

is bounded by polynomials in the input size.

Algorithm MaxGeo: (D : geograph, o : minsup)
task: finding all o-frequent maximal patterns of M in
D.

1: L = Clo(0); // The bottom mazimal geograph

2: Call the recursive procedure Ex-
pand_MaxGeo(L, 0, o, D);

Algorithm Expand_MaxGeo(P, «,, D)
1: if P is not o-frequent then return; //Frequency
test
2: else output P as a o-frequent maximal geograph;
3: for each missing labeled object & = (0, ¢) do
£ Q=Clo(PU{E})
5: if (£ <cano_e(g) ™) then return;
6 if ((ElT € Q - P) T <Cano_e(Q) 6) then
return;
: call Expand_MaxGeo(Q, ¢, 0, D);
8: endfor

O 3: A polynomial delay and polynomial space
algorithm MaxGeo for the maximal geometric sub-
graph enumeration problem

time. A is a polynomial space algorithm if the maxi-
mum space A uses is bounded by a polynomial in the
input size.

3 Algorithm for Maximal Pattern
Discovery

In this section, we present an efficient algorithm Max-
Geo for the maximal pattern enumeration problem for
the class of geographs that runs in polynomial delay
and polynomial space in the input size.

3.1 Outline of the algorithm

In Fig. 3, we show our algorithm MaxGeo for enumer-
ating all o-frequent maximal geometric patterns in
M7 using backtracking. The key of the algorithm is
a tree-like search route R = R(M7) implicitly defined
over M7.

route R, the algorithm MaxGeo searches R by jump-

Then, starting at the root of the search

ing from a smaller maximal pattern to a larger one in
the depth-first manner. Each jump is performed by
expanding each maximal pattern in polynomial time,
thus the algorithm is polynomial delay.

3.2 Canonical encoding for geographs

In this subsection, to properly handle the geomet-
ric isomorphism among the isomorphic patterns, we
introduce the canonical code for geometric patterns,
which is invariant under geometric transformations in
Tgeo- Let P be any k-pattern with Vp = {1,...,k}.
Recall that the first two vertices of P have the fixed

coordinates ¢(1) = (0,0),¢(2) = (0,1) € R? in their
local 2D plane.

Suppose that the vertex set Vp of P has at least 2
vertices. Let 6 = (3 <y, ¢(v))/|Vp| be the centroid
(the center) of the vertices in P, which is the av-
erages of z-coordinates and y-coordinates of all ver-
tices in P. We choose a point & € P,¥ # & hav-
ing the minimum Euclidean distance to & called base
point. Denote by @) the pattern obtained by trans-
forming P in a polar coordinate system such that &
is mapped to the origin and # is mapped to (1,0),
where the first element of the coordinates gives the an-
gle. We define the coordinate of the origin by (0,0).
Let O = Vg U{{c(v), c(u) — c(v), puw), (c(u), ¢(v) —
c(u), puv) | uv € Eg}. Then, the code Code(P,¥) of
P is defined by the elements of O sorted in the lexi-
cographic order.

Clearly, there are at most k distinct Code(P, %) de-
pending on the choice of the base point #. Then, the
canonical code Code*(P) for pattern P is defined by
the lexicographically minimum code among the codes
of P. A pattern P is said to be canonical if (i) it has
no vertex, (ii) it has one vertex at (0,0), or (iii) its
vertices are indexed in the order of its canonical code.

Theorem 4 (characterization of canonical code)
For any P,Q € G of size k > 0, Code*(P) = Code*(Q)
iff P=Q under Tgeo.

A code can be computed in O(k? log k) time for any
k-pattern P and base point Z, then the code for an-
other base point is obtained by shifting it. Hence, we
can compute the canonical code of P in O(k?log k)
time. The purpose of the canonical code and the
canonical pattern is to define a representative pattern
among the geometric isomorphic patterns. Thus, our

task is to enumerate all o-frequent canonical patterns.

3.3 Finding missing objects

There are infinitely many candidates for possible la-
beled object at Line 3 of Fig. 3. From the next lemma,
we can avoid such a blind search by focusing only on
missing objects for P, which is either labeled vertex or
edge & such that L(P) D L(PU{¢}) # 0 holds. From
Lemma 1 and Lemma 3, we have the next lemma.

Lemma 5 (missing labeled objects) Let P be a
pattern with nonempty L(P) in D. Any missing ob-
ject &€ = (o,l) for P is the inverse images of some
labeled vertex or labeled edge m via T for some match-
ing T € L(P), that is, ¢ = T~(x) for some m € D.

From Lemma 5 above, we know that there are at
most O(|L(P)| - ||D[]) = O(IV]*([V| + |E[)) missing
objects.

Combining the discussions in the previous subsec-
tion and this subsection, we have the following theo-
rem as a biproduct of canonical coding.

Theorem 6 (frequent geographs) The algorithm Fre-
qGeo in Fig. 7?7 enumerates all o-frequent geometric
graphs in a given input database D € G in polynomial
delay and polynomial space in the total input size.

3.4 Intersection and closure operations for
geographs

Let G; and G5 be two geographs with Vi, NV, # 0.
The mazimally common geometric subgraph (MCGS)
of G; and (> is a geograph which is represented by
labeled objects common to both G; and G>. MCGS
is unique for geographs, while they are not unique for
ordinary graphs.

The intersection operation N is reflexive, commuta-
tive, and associative over §. For aset G = {G1,...,Gn}
of geographs, we define NG = Gi NGy N --- NGy
We can see that the computation time for NG are
bounded by O(||Gl|log||G]|]). Some literatures [14]
give an intersection of labeled graphs or first-order
models in a different way which is based on the cross
product of two structures. However, their iterative ap-
plications causes exponentially large intersection un-
like NG above. Gariiga et al.[10] discuss related is-
sues.

Now, we define the closure operation for G.

Definition 5 (closure operator for geographs) Let
P € G be geograph of size > 2. Then, the closure of
P in D is define by the geograph Clo(P):

Clo(P)=({T~'(D)|T € L(P) }.

Theorem 7 (correctness of the closure operation)
Let P be a geograph of size > 2 and D be an input
database. Then, Clo(P) is the unique, mazimal geo-
graph w.r.t. C satisfying L(Clo(P)) = L(P).

Lemma 8 For any geographs P,Q € G, the following
properties hold:
(i) P C Clo(P). (i) L(Clo(P)) = L(P).
Clo(P) = Clo(Clo(P)).
(iv) P C Q iff L(P) O L(Q) for any mazimal P,Q €
M.

(v) Clo(P) is the unique, smallest maximal geograph

(iii)

containing P.

(vi) For the empty graph §, L = Clo(0) is the small-
est element of M.

Theorem 9 (characterization of maximal geographg?]

Let D be an input geograph and P € G be any geo-
graph. Then, P is mazimal in D iff Clo(P) = P.

3.5 Defining the tree-shaped search route

In this subsection, we define a tree-like search route
R = (M7,P, 1) for the depth-first search of all maxi-
mal geographs based on a so-called parent function.

Let Q € M be a maximal pattern with vertices at
least 2 such that Q@ # 1. For any labeled object
§ € Q, define the &-prefix of () as the pattern Q[¢]
which is the collection of the labeled objects prior to
¢ in Code*(Q). Then, the core indexr core_i(Q) of
@ is the labeled object & such that L(Q[¢']) # L(Q)
holds for any &' prior to £ in Code*(Q). We can show
that if @) # L then core_i(Q) is always defined.

Q[core_i(Q)] C @ is a shortest prefix of @ satisfy-
ing L(Q[¢]) = L(Q). Moreover, if we remove core_i(Q))
from the prefix Q[core_i(Q)], then we have a prop-
erly shorter prefix, and then the location list changes.
Now, we define the parent function P that gives the
predecessor of ().

Definition 6 (parent function P) The parent of any
maximal pattern Q € M (Q # L) is defined by
P(Q) = Clo(Q[&€] \ {£}), where & = core_i(Q) is the

core index of Q.

Lemma 10 P(Q) is (i) always defined, (ii) unique,
and (i1i) a mazimal pattern in M. Moreover, P satis-
fies that (iv) P(Q) C Q, (v) |P(Q)| <|Q], and (vi)
L(P(Q)) D L(Q).

Now, we define the search route for M7 as a rooted
directed graph R(M°) = (M°,P, L), where M? is the
vertex set, P is the set of reverse edges, and L is
the root. For the search route, we have the following
theorem.

Theorem 11 (reverse search property) For every
o, the search route R(M?) is a spanning tree with the
root L over all the maximal patterns in M?.

3.6 A polynomial space polynomial delay
algorithm

The remaining thing is to show how we can efficiently

traverse the search route R(M?) starting from L. How-

ever, this is not a straightforward task since R(M?)

To cope with this dif-

ficulty, we introduce the technique so called reverse

only has the reverse edges.

search [?] and the closure extension [18].

Lemma 12 For mazimal patterns (Q and P, P is the
parent of Q only if Q = clo(PUE) holds for a missing
ect & for P.

The operation of adding a labeled object and taking
its closure is called closure extension. Lemma 12 says
that any maximal geometric pattern can be obtained
by applying to L closure extensions repeatedly.

From Lemma 12, we can see that to find all chil-
dren of a pattern P, we have to examine the closure
extension for all missing objects for P. Clearly, a
closure extension @ = Clo(P U¢) of P is a child
of P if its parent is P. Since the parent of @ can
be obtained by computing its canonical code, we can
check whether a closure extension is a child or not
in O(k*logk) time where k is the number of labeled
objects in (). Since the computation of clo(Q) takes
O(|L(Q)] x ||D]|log || D||) time, we obtain the follow-
ing theorem.

Theorem 13 (correctness and complexity of MaxGeo)

Given an input geograph D with vertex set V and

a minimum support threshold o > 0, the algorithm

MAXGEO in Fig. 8 enumerates all o-frequent maxi-

mal geographs in O((m||D||)x ((m+n)||D||log || DI[)) =
O(m(m +n)||D||? log|D|) per mazimal geograph with

O(||D]]) space, where m = O(n?) is the mazimum size

of the location lists.

If o is not so small, then the number of missing
objects to examine will be small, such as O(n), then
the computation time will be short. It is expected in
practical computation. Moreover, in practice, usually
almost all (maximal) patterns to be output have small
frequency close to o, thus computation time for the
closure operation is rather short. According to the
computational experiments in [4, 22], practical com-
putation time is very small in such cases.

Corollary 14 The mazximal geograph enumeration prob-
lem 1is solvable in polynomial delay and polynomial
space.

4 Conclusion

In this paper, we presented a polynomial delay and
polynomial space algorithm that discovers all maxi-
mal geographs in a given geometric configuration with-
out duplicates. As future works, we are working on
implementation and experimental evaluation of the
algorithm. Dealing with input of many geographs
and document occurrence is a straightforward work.

Dealing with polygons is also straightforward, by us-

ing sophisticated labels to identify edges of polygons

as a group. Extensions with approximation and con-

straints, with applications to image processing and ge-

ographic information systems, are other future prob-

lems.

gooo

[1]
[2]

[3]

[7]

[10]

[11]

Aho, A. V., Hopcroft, J. E., Ullman, J. D., Data
Structures and Algorithms, 1983.

T. Akutsu, H. Tamaki, T. Tokuyama, Distri-
bution of distances and triangles in a point set
and algorithms for computing the largest com-
mon point sets, Discr. & Comp. Geom., 20(3),
307-331, 1998.

H. Arimura, T. Uno, An output-polynomial time
algorithm for mining frequent closed attribute
trees, In Proc. ILP’05, LNAI 3625, 1-19, Au-
gust 2005.

H. Arimura, T. Uno, A polynomial space
and polynomial delay algorithm for enumer-
ation of maximal motifs in a sequence, In
Proc. ISAAC’05, LNCS, 2005.

H. Arimura, T. Uno, S. Shimozono, Time and
Space Efficient Discovery of Maximal Geometric
Graphs, In Proc. DS2007, LNAI, Springer, 2007.
(to appear) (Also appeared as TCS Technical
Report Series A, Hokkaido University, Division
of Computer Science, TCS-TR-~A-07-26, 2007.)

H. Arimura, T. Uno, Effcient algorithms for min-
ing maximal flexible patterns in texts and se-
quences, TCS-TR-A-06-20, DCS, Hokkaido Uni-
veristy, 2006. (submitting)

T. Asai, K. Abe, S. Kawasoe, H. Arimura,
H. Sakamoto, and S. Arikawa. Efficient substruc-
ture discovery from large semi-structured data.
In Proc. SDM’02, 2002.

Y. Chi, R. R. Muntz, S. Nijssen, J. N. Kok,
Frequent subtree mining — An overview, Fun-
dam. Inform., 66, 1-2, 161-198, 2005.

Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz,
CMTreeMiner: mining both closed and maximal
frequent subtrees, In Proc. PAKDD’04, 2004.

G. C. Garriga, R. Khardon, L. De Raedt, On
mining closed sets in multi-relational data, In
Proc. IJCAI 2007, 804-809, 2007.

C. Guerra, Vision and image processing algo-
rithms, Algorithms and Theory of Computation
Handbook, Chapter 22, 22-1-22-23, CRC Press,
1999.

[12]

[27]

[28]

A. Tnokuchi, T. Washio, H. Motoda, An apriori-
based algorithm for mining frequent substruc-
tures from graph data, In Proc. PKDD’00, 13—
23, LNAT 1910, 2000.

A. Jain, Fundamentals of Digital Image Process-
ing, Prentice-Hall, 1986.

R. Khardon, Learning function-free horn expres-
sions, Machine Learning 37(3), 241-275, 1999.

M. Kuramochi, G. Karypis, Discovering frequent
geometric subgraphs, In Proc. IEEE ICDM’02,
258-265, 2002.

S. Nakano, Efficient generation of plane trees,
Information Processing Letters, 84, 167-172, El-
sevier,2002.

S. Nijssen, J. N. Kok, Effcient discovery of fre-
quent unordered trees, In Proc. MGTS 03, 2003.

N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal,
Discovering frequent closed itemsets for associa-
tion rules, In Proc. ICDT’99, 398—416, 1999.

F. P. Preparata and M. I. Shamos, Compu-
tational Geometry: An Introduction, Springer,
1985.

A. Termier, M.-C. Rousset, M. Sebag, DRYADE:
a new approach for discovering closed frequent

trees in heterogeneous tree databases, In
Proc. ICMD’04, 2004.
K. Tsuda, T. Kudo, Clustering graphs by

weighted substructure mining, Proc. ICML 2006,
953-960, 2006.

T. Uno, T. Asai, Y. Uchida, H. Arimura, An ef-
ficient algorithm for enumerating closed patterns
in transaction databases, In Proc. DS’04, LNAI
3245, 16-30, 2004.

J. Wang, J. Han, BIDE: Efficient Mining of
Frequent Closed Sequences, In Proc. IFEE
ICDE’04, 79-90, 2004.

T. Washio, H. Motoda, State of the art of graph-
based data mining, SIGKDD Ezxplor., 5, 1, 5968,
2003.

X. Yan, J. Han, CloseGraph: mining closed fre-
quent graph patterns In Proc. KDD’03, 2003.

G. Yang, The complexity of mining maximal fre-
quent itemsets and maximal frequent patterns,
In Proc. KDD’04, 344-353, 2004.

M. J. Zaki, Efficiently mining frequent trees in a
forest, In Proc. KDD’02, 71-80, 2002.

M. J. Zaki, C. C. Aggarwal, XRules: an ef-
fective structural classifier for XML data, In
Proc. KDD’03, 316-325, 2003.

