
Counting the Number of Independent Sets in Chordal Graphs1

YOSHIO OKAMOTO2, TAKEAKI UNO3, RYUHEI UEHARA4

Abstract: We study some counting and enumeration problems for chordal graphs, especially concerning independent
sets. We first provide the following efficient algorithms for a chordal graph: (1) a linear-time algorithm for counting
the number of independent sets; (2) a linear-time algorithm for counting the number of maximum independent sets;
(3) a polynomial-time algorithm for counting the number of independent sets of a fixed size. With similar ideas, we
show that enumeration (namely, listing) of the independent sets, the maximum independent sets, and the independent
sets of a fixed size in a chordal graph can be done in constant time per output. On the other hand, we prove that the
following problems for a chordal graph are#P-complete: (1) counting the number of maximal independent sets; (2)
counting the number of minimum maximal independent sets. With similar ideas, we also show that finding a minimum
weighted maximal independent set in a chordal graph isNP-hard, and even hard to approximate.
Keywords: Chordal graph, counting, enumeration, independent set,NP-completeness,#P-completeness, polynomial
time algorithm.

1 Introduction

How can we cope with computationally hard graph problems? There are several possible answers, and one of them is
to utilize the special graph structures arising from a particular context. This has been motivating the study of special
graph classes in algorithmic graph theory [3, 14]. This paper deals with counting and enumeration problems from this
perspective. Recently, counting and enumeration of some specified sets in a graph have been widely investigated, e.g.,
in the data mining area. In general, however, from the graph-theoretic point of view, those problems are hard even
if input graphs are quite restricted. For example, counting the number of independent sets in a planar bipartite graph
of maximum degree 4 is#P-complete [22]. Therefore, we wonder what kind of graph structures makes counting and
enumeration problems tractable.

In this paper, we consider chordal graphs. Achordal graphis a graph in which every cycle of length at least four
has a chord. From the practical point of view, chordal graphs have numerous applications in, for example, sparse
matrix computation (e.g., see Blair & Peyton [2]), relational databases [1], and computational biology [4]. Chordal
graphs have been widely investigated, and they are sometimes called triangulated graphs, or rigid circuit graphs (see,
e.g., Golumbic’s book [14, Epilogue 2004]). A chordal graph has various characterizations; for example, a chordal
graph is an intersection graph of subtrees of a tree, and a graph is chordal if and only if it admits a special vertex
ordering, called perfect elimination ordering [3]. Also, the class of chordal graphs forms a wide subclass of perfect
graphs [14].

It is known that many graph optimization problems can be solved in polynomial time for chordal graphs; to list a
few of them, the maximum weighted clique problem, the maximum weighted independent set problem, the minimum
coloring problem [13], the minimum maximal independent set problem [9]. There are also parallel algorithms to solve

1An extended abstract of this paper appeared in the proceedings of the 31st International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2005), pages 433-444, Lecture Notes in Compter Science Vol. 3787, Springer Verlag, 2005.

2Department of Information and Computer Sciences, Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku, Toyohashi, Aichi 441-
8580, Japan.okamotoy@ics.tut.ac.jp

3National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan.uno@nii.jp
4Corresponding author. School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa

923-1292, Japan.uehara@jaist.ac.jp

1

Table 1: Summary of the results. We denote the number of vertices and edges byn andm respectively. The running
times for enumeration algorithms refer to time per output.

Chordal graphs Counting [ref.] Enumeration [ref.]
independent sets O(n + m) O(1)

[this paper] [this paper]
maximum independent sets O(n + m) O(1)

[this paper] [this paper]
independent sets of sizek O(k2(n + m)) O(1)

[this paper] [this paper]
maximal independent sets #P-complete O(n + m)

[this paper] [8, 16]
minimum maximal independent sets #P-complete

[this paper]

some of these problems efficiently [15]. However, relatively fewer problems have been studied for enumeration and
counting in chordal graphs; the only algorithms we are aware of are the enumeration algorithms for all maximal cliques
[12], all maximal independent sets [16] (see also conclusions in a paper of Eppstein [8]), all minimum separators and
minimal separators [5], and all perfect elimination orderings [6].

In this paper, we investigate the problems concerning the number of independent sets in a chordal graph. Table
1 lists the results of the paper. We first give the following efficient algorithms for a chordal graph; (1) a linear-time
algorithm to count the number of independent sets, (2) a linear-time algorithm to count the number of maximum
independent sets, and (3) a polynomial-time algorithm to count the number of independent sets of a given size. The
running time of the third algorithm is linear when the size is constant. Note that in general counting the number
of independent sets and the number of maximum independent sets in a graph is#P-complete [18], and counting the
number of independent sets of sizek in a graph is#W[1]-complete [11] (namely, intractable in a parameterized sense).
Let us also note that the time complexity here refers to the arithmetic operations, not to the bit operations.

The basic idea of these efficient algorithms is to invoke a clique tree associated with a chordal graph and perform a
bottom-up computation via dynamic programming on the clique tree. A clique tree is based on the characterization of
a chordal graph as an intersection graph of subtrees of a tree. Since a clique tree can be constructed in linear time and
the structure of a clique tree is simple, this approach leads to simple and efficient algorithms for the problems above.
However, a careful analysis is necessary to obtain the linear-time complexity.

Along the same idea, we can also enumerate all independent sets, all maximum independent sets, and all indepen-
dent sets of constant size in a chordal graph inO(1) time per output.

On the other hand, we show that the following counting problems are#P-complete: (1) counting the number of
maximal independent sets in a chordal graph, and (2) counting the number of minimum maximal independent sets
in a chordal graph. Using a modified reduction, we furthermore show that the problem to find a minimum weighted
maximal independent set isNP-hard. We also show that the problem is even hard to approximate. More precisely,
there is no polynomial-time approximation algorithm to find such a set within a factor ofc ln |V |, for some constantc,
unlessNP ⊆ DTIME(nO(log logn)). This is in contrast with a linear-time algorithm by Farber that finds a minimum
weighted maximal independent set in a chordal graph when the weights are 0 or 1 [9].

The organization of the paper is as follows. Section 2 introduces the concept of a clique tree. In Section 3, we
devise a linear-time algorithm for counting the number of independent sets, and in Section 4, we discuss how to count
the maximum independent sets in linear time. In Section 5, we provide an efficient algorithm for counting the number
of independent sets of each size simultaneously. In Section 6, we briefly describe how to apply our method for counting
to enumeration, which leads to constant time algorithms. In Section 7, we prove that counting the number of maximal
independent sets and counting the number of minimum maximal independent sets are hard. In Section 8, we modify
the reduction in Section 7 to show that it is hard to find a minimum weighted maximal independent set, and even hard
to approximate.

2

2 Preliminaries

A graphG = (V, E) consists of a finite setV of verticesand a collectionE of 2-element subsets ofV callededges.
The vertex set and the edge set ofG are often denoted byV(G) andE(G) respectively. Theneighborhoodof a vertex
v in a graphG = (V, E) is the setNG(v) = {u ∈ V | {u, v} ∈ E}, and thedegreeof a vertexv is |NG(v)| and is
denoted by degG(v). If no confusion can arise we will omit the subscriptG. We denote the closed neighborhood
NG(v) ∪ {v} by N[v]. Given a graphG = (V, E) and a subsetU ⊆ V , thesubgraph ofG induced byU is the graph
(U, F), whereF = {{u, v} ∈ E | u, v ∈ U}, and denoted byG[U]. A vertex setI is an independent setof G if G[I]
contains no edge, and a vertex setC is a clique if every pair of vertices inC is joined by an edge inG. We regard
an empty set as an independent set of size zero. An independent set ismaximumif it has the largest size among all
independent sets. An independent set ismaximalif none of its proper supersets is an independent set. An independent
set isminimum maximalif it is maximal and has the smallest size among all maximal independent sets. A maximum
clique, a maximal clique and a minimum maximal clique are defined analogously.

An edge which joins two vertices of a cycle but is not itself an edge of the cycle is achordof the cycle. A graph
is chordal if each cycle of length at least four has a chord. Given a graphG = (V, E), a vertexv ∈ V is simplicial in
G if NG(v) is a clique inG. An orderingv1, . . . , vn of the vertices ofV is aperfect elimination orderingof G if the
vertexvi is simplicial inG[{vi, vi+1, . . . , vn}] for all i = 1, . . . , n. It is known that a graph is chordal if and only if it
has a perfect elimination ordering [3, Section 1.2]. Given a chordal graph a perfect elimination ordering of the graph
can be found in linear time [19, 21].

To a chordal graphG = (V, E), we associate a treeT , called aclique treeof G, satisfying the following three
properties. (A) The nodes ofT are the maximal cliques ofG. (B) Two nodes ofT are adjacent only if their intersection
is non-empty. (C) For every vertexv of G, the subgraphTv of T induced by the maximal cliques containingv is a
tree. (In the literature, the condition (A) is sometimes weakened as each node is a (not necessarily maximal) clique
of G.) It is well known that a graph is chordal if and only if it has a clique tree, and in such a case a clique tree can
be constructed in linear time. Some details are explained in books [3, 20]. The following property is important in the
running time analysis of our algorithms.

Lemma 2.1. LetG = (V, E) be a chordal graph, and denote byK the family of maximal cliques ofG. Then, it holds
that

∑
K∈K |K| = O(|V | + |E|).

Proof. Take any perfect elimination orderingv1, v2, . . . , vn of G. Let C(vi) := NG[vi] ∩ {vi, vi+1, . . . , vn}. It
is known that for every maximal cliqueK of G there exists a vertexvi ∈ V such thatK = C(vi) holds [12].
SinceC(vi) ⊆ NG[vi], we have|C(vi)| ≤ |NG[vi]| = 1 + degG(vi). Putting together, we obtain

∑
K∈K |K| ≤∑

v∈V |C(v)| ≤
∑

v∈V(1 + degG(v)) = |V | + 2|E| = O(|V | + |E|).

3 Linear-Time Algorithm to Count the Independent Sets

In this section, we describe an algorithm for counting the number of independent sets in a chordal graphG. First, we
introduce some notations and state some lemmas. Given a chordal graphG = (V, E), we construct a clique treeT of
G. We now pick up any node in the clique treeT , regard the node as the root ofT , and denote it byKr. This is what
we call arooted clique tree. For a maximal cliqueK in a chordal graphG and a rooted clique treeT of G, a maximal
cliqueK ′ in G is adescendantof K (with respect toT) if K ′ is a descendant ofK in T . For convenience, we considerK

itself a descendant ofK as well, and when no confusion arises we omit saying “with respect toT .” Let PRT(K) be the
parent ofK in T . We also denote the set of children ofK in T by CHD(K). For convenience, we definePRT(Kr) := ∅
and CHD(K`) := ∅ for each leafK`. We denote byT(K) the subtree ofT rooted at the node corresponding to the
maximal cliqueK. Let G(K) denote the subgraph ofG induced by the vertices included in at least one node inT(K).
Observe thatG(K) is a chordal graph of whichT(K) is a clique tree.

The basic idea of our algorithm is to divide the input graph into subgraphs induced by subtrees of the (rooted)
clique treeT . Let K be any maximal clique with two childrenK1, K2 on a rooted clique treeT . Let T1 andT2 be two
node-disjoint subtrees ofT which are rooted atK1 andK2, respectively. LetC be the set of vertices inG shared byT1

andT2. Then,C induces a clique, andC ⊂ K. This property is very useful for counting the number of independent
sets since every independent set can contain at most one vertex of the cliqueC. Therefore we can partition the family

3

of independent sets into two groups; a family of independent sets that contain one vertex fromC, and the other family
of independent sets that contain no vertex fromC. Moreover, sinceC ⊂ K, (K1 \ K) and(K2 \ K) share no vertex.
Thus, in each case, we can divide the counting problem onto two disjoint subgraphsG(K1) andG(K2). Hence we can
use a recursive approach.

For a graphG, let IS(G) be the family of independent sets inG. For a vertexv, let IS(G, v) be the family of
independent sets inG includingv, i.e.,IS(G, v) := {S | S ∈ IS(G), v ∈ S}. For a vertex setU, let IS(G,U) be the
family of independent sets inG including no vertex ofU, i.e.,IS(G,U) := {S | S ∈ IS(G), S ∩ U = ∅}.

Lemma 3.1. Let G be a chordal graph andT be a rooted clique tree ofG. Choose a maximal cliqueK of G, and
let K1, . . . , K` be the children inCHD(K). Furthermore letv ∈ K and S ⊆ V(G(K)). Then,S ∈ IS(G(K), v)
if and only if S is represented byS = {v} ∪ S1 ∪ · · · ∪ S` such thatSi ∈ IS(G(Ki), v) if v belongs toKi, and
Si ∈ IS(G(Ki), K ∩ Ki) otherwise. Furthermore, such a representation is unique.

Proof. We first show the only-if part. Assume thatS ∈ IS(G(K), v). Let Si := S ∩ G(Ki) for everyi = 1, . . . , `.
Then,S includes the union of{v} andS1, . . . , S`. Let us show the converse inclusion. Choose an arbitrary vertex
x ∈ S. If x = v, thenx is certainly included in the union of{v} andS1, . . . , S`. Otherwise, we havex ∈ V(G(K)) \ K.
SinceV(G(K)) = K ∪

⋃`

i=1 V(G(Ki)), the vertexx belongs toSi for somei = 1, . . . , `. Therefore,S is included
in the union of{v} andS1, . . . , S`. Now, we need to show that for everyi = 1, . . . , ` the setSi satisfies the property
required in the lemma. Fixi = 1, . . . , `. If v belongs toKi, thenSi belongs toIS(G(Ki), v) sincev also belongs to
S. If v 6∈ Ki, thenSi belongs toIS(G(Ki), Ki ∩ K) sincev is adjacent to any vertex ofKi ∩ K. Thus the required
property is satisfied. This completes the proof of the only-if part.

Next, we prove the if part. Assume thatS is the union of{v} andS1, . . . , S` satisfying thatSi ∈ IS(G(Ki), v) if
v ∈ Ki, andSi ∈ IS(G(Ki), K ∩ Ki) otherwise. Whenv ∈ Ki, sincev is adjacent to all vertices ofK \ {v}, every
vertex inSi \ {v} belongs toV(G(Ki)) \ K. Whenv 6∈ Ki, by the definition ofIS(G(Ki), K ∩ Ki), every vertex
in Si \ {v} belongs toV(G(Ki)) \ K. Therefore, for eachi = 1, . . . , ` it holds thatSi \ {v} ⊆ V(G(Ki)) \ K. This
implies thatS \ {v} ⊆ V(G(K)) \ K. Now, we show that for everyi, j ∈ {1, . . . , `} with i 6= j, (Si \ {v}) ∪ (Sj \ {v})
is independent. To show that, suppose not. SinceSi andSj are independent, there must be an edge{x, y} ∈ E such
that x ∈ Si \ {v} andy ∈ Sj \ {v}. Since{x, y} is an edge ofG, it is included in some maximal cliqueKxy of G.
SinceTx andTy are subtrees ofT , this implies thatx or y must belong toK. Without loss of generality, assume thatx

belongs toK. (Remember thatx ∈ Si \ {v}.) If Si ∈ IS(G(Ki), v), thenSi ∩ K ⊇ {v, x}. This is a contradiction toSi

being independent. IfSi ∈ IS(G(Ki), K ∩ Ki), thenSi cannot contain any vertex ofK, particularlyx. This is also a
contradiction. Thus the claim is verified, and it implies thatS \ {v} is an independent set ofG(K). Together with the
observation that no vertex ofG(Ki) \ K is adjacent tov if v 6∈ Ki, this further implies thatS is an independent set of
G(K). Sincev ∈ S, this shows thatS ∈ IS(G(K), v).

To show the uniqueness, suppose thatS is the union of{v}, S1, . . . , S` and also the union of{v}, S ′
1, . . . , S ′

` such
that there existsi with Si 6= S ′

i. Without loss of generality assume thatSi 6= ∅. Choose a vertexu ∈ Si \ S ′
i, where

u 6= v. Then, there must existj 6= i with u ∈ S ′
j. Hence, there exists a nodeL ∈ T(Ki) such thatu ∈ L and a node

L ′ ∈ T(Kj) such thatu ∈ L ′. Then, by Property (C) in the definition of a clique tree, the nodes on the path connecting
L andL ′ in T containu. In particular we haveu ∈ K. Therefore,u andv belong to the cliqueK and at the same time
they belong to the independent setS. This is a contradiction.

By a close inspection of the proof above, we can observe that for everyi, j ∈ {1, . . . , `}, i 6= j, it holds that
V(G(Ki)) \ K is disjoint fromV(G(Kj)) \ K. This property gives a nice decomposition of the problem into several
independent parts, and enables us to perform the dynamic programming on a clique tree.

By similar discussion as above, we obtain the following lemma.

Lemma 3.2. Let G be a chordal graph andT be a clique tree ofG. Choose a maximal cliqueK of G, and let
K1, . . . , K` be the children inCHD(K).

1. We haveS ∈ IS(G(K), K) if and only if S is the union ofS1, . . . , S` such thatSi ∈ IS(G(Ki), K ∩ Ki).
Furthermore, such a representation is unique.

2. For eachi = 1, . . . , `, we haveSi ∈ IS(G(Ki), K ∩ Ki) if and only ifSi belongs either toIS(G(Ki), v) for
somev ∈ Ki \ K or to IS(G(Ki), Ki). Furthermore,Si belongs to exactly one of them.

4

Proof. (1) Similar to Lemma 3.1, we omit.
(2) First, assume thatSi ∈ IS(G(Ki), v) for somev ∈ Ki \ K. SinceKi is a clique,Si cannot include any vertex

of Ki \ {v}, particularly ofK ∩ Ki. Therefore,Si ∈ IS(G(Ki), K ∩ Ki). Secondly, assume thatSi ∈ IS(G(Ki), Ki).
Then,Si includes no vertex ofKi ∩ K, sinceKi ∩ K ⊆ Ki. Hence,Si ∈ IS(G(Ki), K ∩ Ki). This proves the if part.

Let us prove the only-if part and the uniqueness. Assume thatSi belongs toIS(G(Ki), Ki∩K). WhenSi includes
a vertexv of Ki \ K, we haveSi ∈ IS(G(Ki), v). Note thatv is a unique element inSi ∩ (Ki \ K) sinceSi is an
independent set andKi \ K is a clique. Therefore,Si 6∈ IS(G(Ki), u) for u ∈ (Ki \ K) \ {v}. WhenSi includes no
vertex ofKi \ K, it follows thatSi ∈ IS(G(Ki), Ki).

From these lemmas, we have the following recursive equations forIS.

Equations 1. Let G be a chordal graph andT be a rooted clique tree ofG. For a maximal cliqueK of G which is not a
leaf of the clique tree, letK1, . . . , K` be the children ofK in T . Furthermore, letv ∈ K. Then, the following identities
hold. (We remind thaṫ∪ means “disjoint union.”)

IS(G(K)) = IS(G(K), K) ∪̇
⋃̇

v∈K
IS(G(K), v);

IS(G(K), v) = {S ∪ {v} | S =
⋃̀

i=1

Si, Si ∈
{

IS(G(Ki), v) if v ∈ Ki

IS(G(Ki), Ki ∩ K) otherwise

}
};

IS(G(K), K) = {S | S =
⋃̀

i=1

Si, Si ∈ IS(G(Ki), Ki ∩ K)};

IS(G(Ki), Ki ∩ K) = IS(G(Ki), Ki) ∪̇
⋃̇

u∈Ki\K
IS(G(Ki), u) for eachi = 1, . . . , `.

These equations lead us to the following algorithm to count the number of independent sets in a chordal graph (we
remind that an empty set is an independent set).

Algorithm #IndSets
Input: A chordal graphG = (V, E);
Output: The number of independent sets inG;
1: construct a rooted clique treeT of G with rootKr;
2: call #IndSetsIter(Kr);
3: return

∣∣IS(G,Kr)
∣∣ +

∑
v∈Kr

|IS(G(Kr), v)|.

Procedure#IndSetsIter(K)
Input: A maximal cliqueK of the chordal graphG;
Output: The number of independent sets inG(K);
4: if K is a leaf ofT then
5:

∣∣IS(G(K), K)
∣∣ := 1 and|IS(K, v)| := 1 for eachv ∈ K;

6: else
7: foreachchild K ′ of K do call #IndSetsIter(K ′);
8: foreachchild K ′ of K do compute

∣∣IS(G(K ′), K ′ ∩ K)
∣∣ by

∣∣IS(G(K ′), K ′)
∣∣ +

∑
u∈K ′\K |IS(G(K ′), u)|;

9: compute
∣∣IS(G(K), K)

∣∣ by
∏

K ′∈CHD(K)

∣∣IS(G(K ′), K ′ ∩ K)
∣∣;

10: foreachv ∈ K do compute|IS(G(K), v)| by
∣∣IS(G(K), K)

∣∣ ×
∏

K ′∈CHD(K),v∈K ′ |IS(G(K ′),v)|
∏

K ′∈CHD(K),v∈K ′ |IS(G(K ′),K ′∩K)|
;

// The correctness of the equation is proved in the text.
11: endif.

Theorem 3.3. The algorithm#IndSets outputs the number of independent sets in a chordal graphG = (V, E) in
O(|V | + |E|) time.

5

Proof. From Equations 1, we only need to check that Step 10 computes correctly. This can be seen as follows:

|IS(G(K), v)| =
∏

K ′∈CHD(K)

∣∣IS(G(K ′), K ′ ∩ K)
∣∣

=
∏

K ′∈CHD(K),v∈K ′

|IS(G(K ′), v)| ×
∏

K ′∈CHD(K),v6∈K ′

∣∣IS(G(K ′), K ′ ∩ K)
∣∣

=
∣∣IS(G(K), K)

∣∣ ×
∏

K ′∈CHD(K),v∈K ′ |IS(G(K ′), v)|
∏

K ′∈CHD(K),v∈K ′

∣∣IS(G(K ′), K ′ ∩ K)
∣∣ .

Let us consider the computation timet(K) taken by a call to#IndSetsIter(K). The overall running time of
#IndSets is t(Kr)+O(|Kr|). Steps 7 and 8 takeO(t(K ′)) andO(|K ′|) time for eachK ′ ∈ CHD(K) respectively. Step 9
can be done inO(CHD(K)). Next, we analyze the computation time for Step 10. Since|IS(G(K), v)| can be computed
in O(|{K ′ ∈ CHD(K) | v ∈ K ′}|) time for eachv ∈ K, Step 10 can be done inO(

∑
v∈K |{K ′ ∈ CHD(K) | v ∈ K ′}|)

time. Therefore, the accumulated time taken by a call to#IndSetsIter(Kr) is
∑

K ′∈CHD(Kr)(O(t(K ′)) + O(|K ′|)) +

O(|CHD(Kr)|) + O(
∑

v∈Kr
|{K ′ ∈ CHD(Kr) | v ∈ K ′}|). By expandingt(K ′) inside the sum, we can see that this is

at mostO(
∑

K∈K(|K| +
∑

v∈K |{K ′ ∈ CHD(K) | v ∈ K ′}|)), whereK denotes the set of nodes in the clique tree, i.e.,
the family of maximal cliques ofG. By Lemma 2.1, we have

∑
K∈K |K| = O(|V | + |E|). Furthermore, it follows that∑

K∈K
∑

v∈K |{K ′ ∈ CHD(K) | v ∈ K ′}| =
∑

v∈V |{K ′ ∈ K | v ∈ K ′}| =
∑

K∈K |K| = O(|V | + |E|) again by Lemma
2.1. Hence, the overall running time isO(|V | + |E|).

4 Linear-Time Algorithm to Count the Maximum Independent Sets

In this section, we modify Algorithm#IndSets to count the number of maximum independent sets in a chordal graph.
For a set familyS, argmax(S) denotes the family of sets inS of the maximum size. For a graphG, letMIS(G) be
the family of maximum independent sets inG. For a vertexv, letMIS(G, v) be the family of maximum independent
sets inG includingv, i.e.,MIS(G, v) := {S ∈ MIS(G) | v ∈ S}. For a vertex setU, letMIS(G,U) be the family
of maximum independent sets inG including no vertex ofU, i.e.,MIS(G,U) := {S ∈ MIS(G) | S ∩ U = ∅}. We
note thatMIS(G, v) andMIS(G,U) are∅ when there is no maximum independent set that satisfies the conditions.

From lemmas stated in Section 3 and Equations 1, we immediately have the following equations.

Equations 2. With the same set-up as Equations 1, the following identities hold.

MIS(G(K)) = argmax(MIS(G(K), K) ∪̇
⋃̇

v∈K

MIS(G(K), v));

MIS(G(K), v) = argmax({S | S =
⋃̀

i=1

Si, Si ∈
{

MIS(G(Ki), v) if v ∈ Ki

MIS(G(Ki), Ki ∩ K) otherwise

}
, v ∈ S});

MIS(G(K), K) = argmax({S | S =
⋃̀

i=1

Si, Si ∈ MIS(G(Ki), Ki ∩ K)});

MIS(G(Ki), Ki ∩ K) = argmax(MIS(G(Ki), Ki) ∪̇
⋃̇

u∈Ki\K

MIS(G(Ki), u)).

Since the sets of each family on the left hand side have the same size in each equation, the cardinality of the set
can be computed in the same order as Algorithm#IndSets. For example,MIS(G(K)) can be computed as follows.

1. SetN := 0 and letM be the size of a maximum independent set inMIS(G(K), K) ∪
⋃

v∈K MIS(G(K), v);
2. if the size of a member ofMIS(G(K), K) is equal toM, thenN := N +

∣∣MIS(G(K), K)
∣∣;

3. for eachv ∈ K, if the size of a member ofMIS(G(K), v)) is equal toM, thenN := N + |MIS(G(K), v))|;
4. outputN.

In this way we have the following theorem.

6

Theorem 4.1. The number of maximum independent sets in a chordal graphG = (V, E) can be computed inO(|V | +
|E|) time.

5 Efficient Algorithm to Count the Independent Sets of Sizek

In this section, we modify Algorithm#IndSets to count the number of independent sets of sizek. For a graph
G and a numberk, let IS(G;k) be the family of independent sets inG of sizek. For a vertexv, let IS(G, v;k)
be the family of independent sets inG of sizek including v, i.e., IS(G, v;k) := {S ∈ IS(G;k) | v ∈ S}. For
a vertex setU, let IS(G,U;k) be the family of independent sets inG of size k including no vertex ofU, i.e.,
IS(G,U;k) = {S ∈ IS(G; k) | S ∩ U = ∅}.

From lemmas stated in Section 3 and Equations 1, we immediately obtain the following equations.

Equations 3.

IS(G(K); k) = IS(G(K), K;k) ∪̇
⋃̇

v∈K

IS(G(K), v; k);

IS(G(K), v; k) = {S | S =
⋃̀

i=1

Si, |S| = k, Si ∈
{

IS(G(Ki), v) if v ∈ Ki

IS(G(Ki), Ki ∩ K) otherwise

}
, v ∈ S};

IS(G(K), K; k) = {S | S =
⋃̀

i=1

Si, |S| = k, Si ∈ IS(G(Ki), Ki ∩ K)};

IS(G(Ki), Ki ∩ K; k) = IS(G(Ki), Ki;k) ∪̇
⋃̇

u∈Ki\K

IS(G(Ki), u;k).

In contrast to Equations 1, the second and third equations of Equations 3 do not give a straightforward way to
compute|IS(G(K), v;k)| and

∣∣IS(G(K), K;k)
∣∣, respectively, since we have to count the number of combinations of

S1, . . . , S` which generate an independent set of sizek. To compute them, we use a little more sophisticated algorithm.

Theorem 5.1. 1. The number of independent sets of sizek in a chordal graphG = (V, E) can be computed in
O(k2(|V | + |E|)) time.

2. The numbers of independent sets of all sizes from0 to |V | in a chordal graphG = (V, E) can be simultaneously
computed inO(|V |

2
(|V | + |E|)) time.

Proof. Here we show an efficient algorithm that computes
∣∣IS(G(K), K;k)

∣∣ and |IS(G(K), v;k)|. Fix an arbitrary
vertexv ∈ K.

For each̀ ′ ≤ `, we defineIS(G(K), K; k)≤` ′ := {S | S = ∪` ′

i=1Si, |S| = k, Si ∈ IS(G(Ki), Ki ∩ K)}. Then we
can compute

∣∣IS(G(K), K; k)
∣∣ =

∣∣IS(G(K), K;k)≤`

∣∣ based on the following recursive equation:

∣∣IS(G(K), K;k)≤` ′
∣∣ =

{ ∣∣IS(G(K1), K1 ∩ K;k)
∣∣ if ` ′ = 1,∑k

h=0

(∣∣IS(G(K), K;h)≤` ′−1

∣∣ ×
∣∣IS(G(K` ′), K` ′ ∩ K;k − h)

∣∣) otherwise.

Hence for a fixedk and each̀ ′ = 1, 2, . . . , `, we can compute
∣∣IS(G(K), K;k)≤` ′

∣∣ in O(k`) = O(k|CHD(K)|) time.
Simultaneously, we can compute

∣∣IS(G(K), K;k ′)≤` ′
∣∣ for all 0 ≤ k ′ ≤ k in O(k2`) time, which will be required in

a recursion.
Next we turn to the computation ofIS(G(K), v;k). Then, according to a fixedv, the children ofK are divided

into two sets such thatK1, . . . , Kp includev andKp+1, . . . , K` do not. Here we define two sets as follows.

IS(G(K), v; k)≤` ′ := {S | S =

` ′⋃

i=1

Si, |S| = k, v ∈ S, Si ∈ IS(G(Ki), v)}

7

for each̀ ′ with 1 ≤ ` ′ ≤ p, and

IS(G(K), v; k)>` ′′ := {S | S =
⋃̀

i=` ′′+1

Si, |S| = k, Si ∈ IS(G(Ki), Ki ∩ K)}

for each ` ′′ with p ≤ ` ′′ ≤ ` − 1. We note that eachS in IS(G(K), v;k)≤` ′ containsv, and eachS in
IS(G(K), v;k)>` ′′ does not. Then, it holds that

|IS(G(K), v;k)| =

k∑

h=0

(
|IS(G(K), v; h)≤p| ×

∣∣IS(G(K), v;k − h)>p

∣∣) .

Using the same technique above, we can compute|IS(G(K), v;h)≤p| from h = 0 up to h = k in O(hp) time in
total, and

∣∣IS(G(K), v;h ′)>p

∣∣ from h ′ = k down toh ′ = 0 in O(h ′(` − p)) time in total. Thus we can obtian
|IS(G(K), v; k)| for a fixedv andk in O(hp + h ′(` − p)) = O(k`) time. Simultaneously, for a fixedv, we can
compute|IS(G(K), v; k ′)| for all 0 ≤ k ′ ≤ k in O(k2`) = O(k2|CHD(K)|) time.

We further reduce the computation time. At a cliqueK with children K1, . . . , K`, we first compute∣∣IS(G(K), K; k ′)
∣∣ with 0 ≤ k ′ ≤ k in O(k2`) time. Next, for all v ∈ K and k ′ = 0, . . . , k, we com-

pute |IS(G(K), v;k ′)|. For a fixedv, we can compute|IS(G(K), v; k ′)| for all 0 ≤ k ′ ≤ k in O(k2`) time.
When we compute|IS(G(K), v;k ′)| for all v ∈ K, we can omit some computation forIS(G(K), v;k)>` ′′ =

{S | S =
⋃`

i=` ′′+1 Si, |S| = k, Si ∈ IS(G(Ki), Ki ∩ K)} since it is independent fromv. More precisely,∣∣{Si ∈ IS(G(Ki), Ki ∩ K) | |Si| = k ′}
∣∣ for eachk ′ ≤ k can be precomputed inO(k2) time in total. Hence,

we can compute
∣∣IS(G(K), K;k ′)

∣∣ and |IS(G(K), v;k ′)| for all v ∈ K and k ′ = 0, . . . , k in O(k2(` +∑
v∈K |{K ′ ∈ CHD(K) | v ∈ K ′}|)) time. Therefore, the total computation time over all iterations can be bounded

in the same way as the above section, and we have the theorem.

6 Enumeration

In this section we give enumeration algorithms using the same technique as our counting algorithms in the previous
sections.

First, we describe a simple algorithm to enumerate all independent sets in a chordal graph. Equations 1 in Section
3 give a recursive structure for the family of independent sets. Thus we can construct the following algorithm in a
straightforward way. We first setS := ∅. Then, for each maximal cliqueK of a given chordal graph, we iteratively
add a vertex ofK \ PRT(K) into S (or no vertex toS) in a depth-first-search manner. Then each vertex inK \ PRT(K)
gives us a distinct independent set. Hence we pick up each of them to enumerate all independent sets. A simple
implementation of the algorithm is as follows (for notational convenience, letK0 := ∅ andKn+1 := ∅).

Algorithm EnumIndSets
Input: A chordal graphG = (V, E);
Output: All independent sets inG;
1: construct a rooted clique treeT of G;
2: let K1, . . . , Kn be the maximal cliques ordered in a depth first manner onT ;
3: setS := ∅ andcall EnumIndSetsIter(K0, S).

ProcedureEnumIndSetsIter(Ki, S)
Input: A maximal cliqueKi and an independent setS;
Output: All independent setsS ′ such thatS ′ ∩ (K1 ∪ K2 ∪ · · · ∪ Ki) = S;
4: if i = n + 1 then // output an independent set at the bottom level
5: output S andreturn ;
6: else
7: call EnumIndSetsIter(Ki+1, S);
8: if Ki ∩ S = ∅ then // S includes no vertex ofKi

8

9: foreachu ∈ Ki \ PRT(Ki) do call EnumIndSetsIter(Ki+1, S ∪ {u});
10: endif
11: endif.

The correctness of the simple algorithm follows from Equations 1 in Section 3. SinceG is a chordal graph, the
numbern of maximal cliques is bounded by|V |. Hence the algorithm outputs each independent set inO(|V |) time.
More precisely, the algorithm consumesO(|V |) time between two consecutive independent sets. We modify the simple
algorithm to reduce the time complexity.

Theorem 6.1. After O(|V |(|V | + |E|)) time andO(|V |(|V | + |E|)) space precomputation, all independent sets in a
chordal graph can be enumerated in a (worst-case) constant time for each.

We remind that the number of independent sets can be exponential, which implies that the cost of a polynomial
time precomputation can be negligible.

Proof. Let T be a computation tree of the simple algorithm, in which each node(K, S) corresponds to a recur-
sive call toEnumIndSetsIter(K, S) generated by the algorithm5. A node(K, S) is the parent of a node(K ′, S ′) if
EnumIndSetsIter(K ′, S ′) is invoked inEnumIndSetsIter(K, S) (or EnumIndSets if K ′ = K1 andS ′ = ∅). When
K = Kn+1, each node(K, S) is a leaf and the algorithm outputs an independent set.

A node(K, S) is calledunnecessaryif it has exactly one child inT . By lines 7, 8, and 9 in the algorithm, a node
(K, S) is unnecessary if and only ifK∩S 6= ∅. We also call a node(K, S) necessaryif it is not unnecessary. In general,
T may contain many unnecessary nodes, andT cannot be traversed by the algorithm efficiently. Hence we here aim
at skipping unnecessary nodes ofT in the computation. LetT ′ be the reduced computation tree, which only contains
necessary nodes. We say that a vertexv ∈ V hitsa cliqueK if v ∈ K.

At a necessary node(Ki, S), the algorithm picks up each vertexu in Ki \ PRT(Ki). Then, sinceS contains no
vertex inKi andu ∈ Ki, the next necessary node(s) visited by the simple algorithm afterKi depends onKi andu as
we describe below.

First, we assume thatu does not hit some cliques which are descendants ofKi in the rooted clique treeT . Let
Kj0

, Kj1
, · · · , Kj`

be the descendant cliques ofKi that are the roots of the subtrees obtained by removing the maximal
cliques hit byu from the rooted clique treeT . We assume that(i <) j0 < j1 < · · · < j`. Then those roots are the
necessary nodes with respect toKi andu, and it suffices to visit them after the node(Ki, S) in the reduced computation
treeT ′ as children of the nodes(Ki, S) (with the independent setS ∪ {u}). Thus we defineNEXT(Ki, u) by the set
{Kj0

, Kj1
, · · · , Kj`

} and we implementNEXT(Ki, u) by a linked list.
Second, we assume thatu hits all cliques that are descendants ofKi in T . Then we defineNEXT(Ki, u) by ∅ unless

u hits the last cliqueKn. Whenu hitsKn, we defineNEXT(Ki, u) = {Kn+1} to jump to step 5.
The modified algorithm performs the following step 9’ instead of the step 9:

9’: foreach u ∈ Ki \ PRT(Ki) do
foreachK ∈ NEXT(Ki, u) do call EnumIndSetsIter(K, S ∪ {u});

By the above arguments, the modified algorithm correctly performs its computation along the computation treeT ′.
We now show its complexity. SinceS ∪ {u} is an independent set andu ∈ Ki, the setNEXT(Ki, u) is uniquely
determined byu and i; it consists of the nodesKj of the rooted clique treeT such thatu 6∈ Kj, j > i, and all
maximal cliquesK ′ betweenKi andKj onT containu. Sinceu ∈ Ki andn = O(|V |), the number of pairs(Ki, u) is
O(|V |+|E|). For each pair(Ki, u) with u ∈ Ki, the setNEXT(Ki, u) consists ofO(n) cliques. HenceNEXT(Ki, u) can
be computed inO(n) time by a simple depth first search onT . Therefore, all theNEXT(Ki, u) can be precomputed
in O(n(|V | + |E|)) = O(|V |(|V | + |E|)) time and space. SinceNEXT(Ki, u) is a linked list for eachKi andu, the
algorithm can obtain eachK ∈ NEXT(Ki, u) in O(1) time in step 9’.

Now we finalize the proof. Every inner node ofT ′ has at least two children. Thus the total number of the inner
nodes is bounded by the number of leaves, which is equal to the number of independent sets. Therefore, the total
number of the nodes inT ′ is O(M), whereM is the number of independent sets. Each traverse of an edge of the
computation treeT ′ takesO(1) time. Using the odd-even search technique (each output is controlled by the parity

5To distinguish a vertex inG, we sayT consists of “nodes.”

9

of the depth of the node inT ′; see, e.g., [17]) to make the output interval balanced, all independent sets can be
enumerated in a constant time for each.

Corollary 6.2. (1) After O(|V |
2
(|V | + |E|)) time andO(|V |

2
(|V | + |E|)) space precomputation, all maximum inde-

pendent sets in a chordal graph can be enumerated in a constant time for each. (2) AfterO(k|V |(|V | + |E|)) time and
O(k|V |(|V | + |E|)) space precomputation, all independent sets of sizek in a chordal graph can be enumerated in a
constant time for each.

Proof. Let T be a rooted clique tree of a chordal graphG defined by the maximal cliquesK1, K2, . . . , Kn. Then the
simple implementations of the algorithms from Equations 2 and 3 are straightforward. In the algorithms, we handle
the sizek ′ of an independent set as follows. For given maximal cliques, we can precompute the size of a maximum
independent set in the (chordal) graphG(Ki) induced by the subtree rooted atKi. Using the information, we can
define and precompute a listNEXT(Ki, u;k ′) of the next necessary maximal cliquesK with respect toKi andu such
that G(K) can provide an independent set of sizek ′. Then, we have to consider the case that step 7 of Algorithm
EnumIndSetsIter(Ki+1, S) is skipped sinceS andKi+1 do not have enough vertices to make an independent set of
sizek ′. More precisely, at node(Ki, S), the algorithm (pre)determine ifKi+1, . . . , Kn has enough size to produce
an independent set of sizek ′. If the algorithm cannot make an independent set of required sizek ′ without adding
one vertex fromKi, it skips step 7 at node(Ki, S). In the case, if|Ki \ PRT(Ki)| = 1, the node(Ki, S) has one child
in the computation tree, that is, the node(Ki, S) becomes unnecessary. Thus we have to add nodes(Ki, S) with the
conditions (one vertex has to be added fromKi \ PRT(Ki), and|Ki \ PRT(Ki)| = 1) to unnecessary nodes. Moreover,
in the case, the difference between two consecutive outputs (or independent sets) is not constant in general. Hence we
have to design a code for such outputs, which can be done in a standard technique. The modification of the algorithms
using the notionNEXT(Ki, u; k ′) is straightforward and tedious, so omitted here.

7 Hardness of Counting the Maximal Independent Sets

In this section, we show the hardness results for counting the number of maximal independent sets in a chordal graph.
First we consider the following counting problem.

Problem: # MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH

Instance: A chordal graphG = (V, E);
Output: The number of maximal independent sets ofG.

Although finding a maximal independent set is easy even in a general graph, we show that the counting version of the
problem is actually hard.

Theorem 7.1. The problem “# MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH” is #P-complete.

The proof is based on a reduction from the counting problem of the number of set covers. LetX be a finite set,
andS ⊆ 2X be a family of subsets ofX. A set coverof X is a subfamilyF ⊆ S such that

⋃
F = X. The following

problem is#P-complete [18].

Problem: # SET COVERS

Instance: A finite setX and a familyS ⊆ 2X;
Output: The number of set covers ofX.

Proof. Proof of Theorem 7.1. The membership in#P of “# MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH”
is immediate. To show the#P-hardness, we reduce “# SET COVERS” to “ # MAXIMAL INDEPENDENT SETS IN A

CHORDAL GRAPH” in polynomial time.
Let X be a finite set andS ⊆ 2X be a family of subsets ofX, and consider them as an instance of# SET COVERS.

Let us putS := {S1, . . . , St}. FromX andS, we construct a chordal graphG = (V, E) in the following way.
We setV := X ∪ S ∪ S ′, whereS ′ := {S ′

1, . . . , S ′
t}. Namely,S ′ is a copy ofS. Now, we draw edges. There are

three kinds of edges. (1) We connect every pair of vertices inX by an edge. (2) For everyS ∈ S, we connectx ∈ X

andS by an edge if and only ifx ∈ S. (3) For everyS ∈ S, we connectS andS ′ (a copy ofS) by an edge. Formally,

10

S ′
2 S ′

3

S1 S2 S3

S ′
1

1 2 3 4X

S

S ′

Figure 1: Illustration of the reduction. In this example,X = {1, 2, 3, 4}, S = {S1, S2, S3}, S1 = {1, 2}, S2 = {1, 3, 4},
andS3 = {2, 3}.

we defineE := {{x, y} | x, y ∈ X}∪ {{x, S} | x ∈ X, S ∈ S, x ∈ S}∪ {{S, S ′} | S ∈ S}. This completes our construction.
This construction can be done in polynomial time. Figure 1 illustrates the construction.

First, let us check that the constructed graphG is indeed chordal. LetC be a cycle of length at least four inG.
Since the degree of a vertex inS ′ is one, they do not take part in any cycle ofG. So forget them. SinceS is an
independent set ofG, vertices inS cannot appear alongC in a consecutive manner. Then, since the length ofC is at
least four, there have to be at least two vertices ofX which appear inC not consecutively. Then, these two vertices
give a chord sinceX is a clique ofG. Hence,G is chordal.

Now, we look at the relation between the set covers ofX and the maximal independent sets ofG. Let U be a
maximal independent set ofG. We distinguish two cases.

Case 1.Consider the case in whichU contains a vertexx ∈ X. SinceX is a clique ofG, U cannot contain any other
vertices ofX. Let Gx := G \ NG[x]. (Remember thatNG[x] is the closed neighborhood ofx, i.e., the set of
vertices adjacent tox in G andx itself.) By the construction, we have thatV(Gx) = {S ∈ S | x 6∈ S} ∪ S ′ and
E(Gx) = {{S, S ′} | S ∈ S, x 6∈ S}. Then, a vertexS ′ ∈ S ′ such thatx ∈ S is an isolated vertex ofGx. Therefore,
this vertex must belong toU by the maximality ofU. For eachS ∈ S such thatx 6∈ S, U must contain eitherS or
S ′, but not both. This means that the number of maximal independent sets containingx is exactly2|{S∈S|x6∈S}|.

Case 2.Consider the case in whichU contains no vertex ofX. Then, for eachS ∈ S, due to the maximality,U must
contain eitherS or S ′. Furthermore,U∩ S has to be a set cover ofX (otherwise an element ofX not covered by
U ∩ S could be included inU). Hence, the number of maximal independent sets containing no vertex ofX is
equal to the number of set covers ofX.

To summarize, we obtained that the number of maximal independent sets ofG is equal to the number of set
covers ofX plus

∑
x∈X 2|{S∈S|x6∈S}|. Since the last sum can be computed in polynomial time, this concludes the

reduction.

As a variation, let us consider the following problem.

Problem: # MINIMUM MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH

Instance: A chordal graphG = (V, E);
Output: The number of minimum maximal independent sets ofG.

Note that a minimum maximal independent set in a chordal graph can be found in polynomial time [9]. In contrast to
that, it is hard to count the number of minimum maximal independent sets in a chordal graph:

Theorem 7.2.The problem “# MINIMUM MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH” is #P-complete.

11

Proof. We use the same reduction as in the proof of Theorem 7.1. Look at the case distinction in that proof again. The
maximal independent sets arising from Case 1 have|S | + 1 elements, while the maximal independent sets from Case
2 have|S | elements. Therefore, the minimum maximal independent sets of the graphG constructed in that proof are
exactly the maximal independent sets arising from Case 2, which precisely correspond to the set covers ofX.

We note that the chordal graphG in this section is very close to asplit graphG ′ which consists of the cliqueX and
an independent setS in G. However, for a split graph, it is easy to solve the problems of this section in polynomial
time since a split graph contains only two types of maximal independent sets; one type consists of one vertexv in X

and all vertices inS \ N(v), and the other possible one isS itself.

8 Hardness of Finding a Minimum Weighted Maximal Independent Set

In this section, we consider an optimization problem to find a minimum weighted maximal independent set in a chordal
graph.

Problem: M INIMUM WEIGHTED MAXIMAL INDEPENDENTSET IN A CHORDAL GRAPH

Instance: A chordal graphG = (V, E) and a vertex weightw : V → IN;
Output: A minimum weighted maximal independent set ofG.

Here, the weight of a vertex subset is the sum of the weights of its vertices.
Notice that there is a linear-time algorithm when the weight of each vertex is zero or one [9]. On the contrary, we

show that the problem is actually hard when the weight is arbitrary.

Theorem 8.1. The problem “M INIMUM WEIGHTED MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH” is
NP-hard.

The proof is similar to what we saw in the previous section. We use the optimization version of the set cover
problem.

Problem: M INIMUM SET COVER

Instance: A finite setX and a familyS ⊆ 2X;
Output: A minimum-size set cover ofX.

It is known thatM INIMUM SET COVER is NP-hard.

Proof. Proof of Theorem 8.1. For a given instance ofM INIMUM SET COVER, we use the same construction of a
graphG as in the proof of Theorem 7.1. We define a weight functionw as follows:w(x) := 2|S | + 1 for everyx ∈ X;
w(S) := 2 for everyS ∈ S; w(S ′) := 1 for everyS ′ ∈ S ′. This completes the construction.

Now, observe thatS is a maximal independent set of the constructed graphG, and the weight ofS is 2|S |. There-
fore, no element ofX takes part in any minimum weighted maximal independent set ofG. Then, from the discussion
in the proof of Theorem 7.1, ifM is a maximal independent set ofG satisfyingM ∩ X = ∅, thenM ∩ S is a set
cover ofX. The weight ofM is |M ∩ S | + |S |. Therefore, ifM is a minimum weighted independent set ofG, then
M minimizes|M ∩ S |, which is the size of a set cover. Hence,M ∩ S is a minimum set cover. This concludes the
reduction.

We can further show the hardness to get an approximation algorithm running in polynomial time. The precise
statement is as follows.

Theorem 8.2. There is no polynomial-time algorithm forM INIMUM MAXIMAL WEIGHTED INDEPENDENTSET IN

A CHORDAL GRAPH with approximation ratioc ln |V |, for some fixed constantc, unlessNP ⊆ DTIME(nO(log logn)).

Note thatDTIME(t) is the class of languages which have a deterministic algorithm running in timet.
It was shown by Feige [10] that there is no polynomial-time algorithm forM INIMUM SET COVER with approxi-

mation ratioc ′ ln |V |, for any fixed constantc ′ ≤ 1, unlessNP ⊆ DTIME(nO(log logn)). This holds even if the size
of the familyS is bounded by a polynomialp(|X|) of |X|.

Now we are ready to prove Theorem 8.2.

12

Proof. Proof of Theorem 8.2. Suppose that there exists a polynomial-time algorithmA with approximation ratio
c ln |V | for M INIMUM WEIGHTED MAXIMAL INDEPENDENTSET IN A CHORDAL GRAPH. (The constantc will be
determined later.) We use the algorithmA to get a polynomial-time algorithm with approximation ratioc ′ ln |X| for
M INIMUM SET COVER. Then, this will imply thatNP ⊆ DTIME(nO(log logn)).

Let X be a finite set andS ⊆ 2X be a family of subsets ofX. We assume that|X| ≥ 3 and1 ≤ |S | ≤ |X|
d for some

natural numberd. From them, we construct a graphG exactly in the same way as in the proof of Theorem 7.1. Setting
α := dc ln(2|X|

d
))e|S |, we define a weightw as follows:w(x) := 2α2 + 1 for everyx ∈ X; w(S) := 2α for every

S ∈ S; w(S ′) := 1 for everyS ′ ∈ S ′. This is our construction. (Note that this construction can be done in polynomial
time.)

Denote by OPT an arbitrary (fixed) minimum weighted maximal independent set ofG, by APX an output of the
algorithmA for G, and byw(OPT) andw(APX) the weights of them. Since the number of vertices inG is |X| + 2|S |,
which is at most|X| + 2|X|

d ≤ 3|X|
d, it follows thatw(APX) ≤ c ln(3|X|

d
)w(OPT).

As in the proof of Theorem 8.1,S is a maximal independent set ofG and its weight is2α|S |. Therefore, it holds
thatw(OPT) ≤ 2α|S |.

Now, suppose that there exists an elementx ∈ X which is contained in APX. Then,w(APX) ≥ w(x) = 2α2 + 1.
This implies that2α2 < w(APX) ≤ c ln(3|X|

d
)w(OPT) ≤ dc ln(3|X|

d
)e × 2α|S | = 2α2. This is a contradiction.

Thus, no elementx ∈ X belongs to APX. This means that APX∩ S is a set cover ofX. Let C := APX ∩ S and we
show thatC approximates the optimal value forM INIMUM SET COVER within a factor ofc ′ ln |X|.

Again, by the same argument as in the proof of Theorem 8.1, we getw(APX) = (2α − 1)|C| + |S |. Let C∗ be a
minimum set cover ofX. Then, similarly we getw(OPT) = (2α−1)|C∗|+ |S |. Sincew(APX) ≤ c ln(3|X|

d
)w(OPT),

it follows that(2α − 1)|C| + |S | ≤ c ln(3|X|
d
)((2α − 1)|C∗| + |S |) ≤ c ln(3|X|

d
)(2α − 1)|C∗| + α. Hence, we obtain

|C| ≤ c ln(3|X|
d
)|C∗| +

α − |S |

2α − 1

≤ c ln(3|X|
d
)|C∗| +

α − 1
2

2α − 1

= c ln(3|X|
d
)|C∗| +

1

2

≤ c ln(3|X|
d
)|C∗| +

1

2
ln(3|X|

d
)|C∗|

= (c +
1

2
) ln(3|X|

d
)|C∗|

≤ (c +
1

2
) ln(|X|

d+1
)|C∗|

= ((d + 1)(c +
1

2
) ln |X|)|C∗|.

Settingc = c ′

d+1
− 1

2
gives approximation ratioc ′ ln |X|.

In the proof, we did not aim at optimizing the constantc ′.
Note: After this work, we found that Chang proved theNP-completeness of the weighted independent domination
problem on a chordal graph [7] which is essentially equivalent to Theorem 8.1. However, we leave Theorem 8.1 with
its proof since the reduction in the proof is extended to show Theorem 8.2.

Acknowledgements

The authors thank Masashi Kiyomi for enlightening discussions and pointing out the work by Chang [7]. The authors
are grateful to L. Shankar Ram for pointing out a paper [5]. The authors also thank the anonymous referees for their
detailed comments and suggestions that improved the presentation significantly.

13

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desirability of Acyclic Database Schemes.Journal of
the ACM, 30:479–513, 1983.

[2] J. R. S. Blair and B. Peyton. An Introduction to Chordal Graphs and Clique Trees. InGraph Theory and Sparse
Matrix Computation, volume 56 ofIMA, pages 1–29. (Ed. A. George and J.R. Gilbert and J.W.H. Liu), Springer,
1993.

[3] A. Brandsẗadt, V. B. Le, and J. P. Spinrad.Graph Classes: A Survey. SIAM, 1999.

[4] P. Buneman. A Characterization of Rigid Circuit Graphs.Discrete Mathematics, 9:205–212, 1974.

[5] L. S. Chandran. A Linear Time Algorithm for Enumerating All the Minimum and Minimal Separators of a
Chordal Graph. InCOCOON 2001, pages 308–317. Lecture Notes in Computer Science Vol. 2108, Springer-
Verlag, 2001.

[6] L. S. Chandran, L. Ibarra, F. Ruskey, and J. Sawada. Generating and Characterizing the Perfect Elimination
Orderings of a Chordal Graph.Theoretical Computer Science, 307:303–317, 2003.

[7] G. J. Chang. The Weighted Independent Domination Problem Is NP-Complete for Chordal Graphs.Discrete
Applied Mathematics, 143:351–352, 2004.

[8] D. Eppstein. All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs. InProc. 16th Ann.
ACM-SIAM Symp. on Discrete Algorithms, pages 451–459. ACM, 2005.

[9] M. Farber. Independent Domination in Chordal Graphs.Operations Research Letters, 1(4):134–138, 1982.

[10] U. Feige. A Threshold of lnn for Approximating Set Cover.Journal of the ACM, 45(4):634–652, 1998.

[11] J. Flum and M. Grohe. The Parameterized Complexity of Counting Problems.SIAM Journal on Computing,
33(4):892–922, 2004.

[12] D. R. Fulkerson and O. A. Gross. Incidence Matrices and Interval Graphs.Pacific J. Math., 15:835–855, 1965.

[13] F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum
Independent Set of a Chordal Graph.SIAM Journal on Computing, 1(2):180–187, 1972.

[14] M. C. Golumbic.Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics 57. Elsevier,
2nd edition, 2004.

[15] P. N. Klein. Efficient Parallel Algorithms for Chordal Graphs.SIAM Journal on Computing, 25(4):797–827,
1996.

[16] J. Y.-T. Leung. Fast Algorithms for Generating All Maximal Independent Sets of Interval, Circular-Arc and
Chordal Graphs.Journal of Algorithms, 5:22–35, 1984.

[17] S. Nakano and T. Uno. Constant Time Generation of Trees with Specified Diameter. InGraph-Theoretic Con-
cepts in Computer Science (WG 2004), pages 33–45. Lecture Notes in Computer Science Vol. 3353, Springer-
Verlag, 2005.

[18] J. S. Provan and M. O. Ball. The Complexity of Counting Cuts and of Computing the Probability that a Graph is
Connected.SIAM Journal on Computing, 12:777–788, 1983.

[19] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic Aspects of Vertex Elimination on Graphs.SIAM Journal
on Computing, 5(2):266–283, 1976.

[20] J. P. Spinrad.Efficient Graph Representations. American Mathematical Society, 2003.

14

[21] R. E. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity
of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs.SIAM Journal on Computing, 13(3):566–579,
1984.

[22] S. P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar Graphs.SIAM Journal on Computing,
31(2):398–427, 2001.

15

