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Abstract

In this paper, we approach the quality of a greedy algorithm for the maximum weighted clique problem from the
viewpoint of matroid theory. More precisely, we consider the clique complex of a graph (the collection of all cliques
of the graph) which is also called a flag complex, and investigate the minimum nérsbeh that the clique complex

of a given graph can be represented as the intersectiskmudtroids. This numbeék can be regarded as a measure

of “how complex a graph is with respect to the maximum weighted clique problem” since a greedy algorithm is a
k-approximation algorithm for this problem. For aky> 0, we characterize graphs whose cligue complexes can
be represented as the intersectiorkahatroids. As a consequence, we can see that the class of clique complexes
is the same as the class of the intersections of partition matroids. Moreover, we determine how many matroids are
necessary and sufficient for the representation of all graphsnaitrtices. This number turns out to he- 1. Other
related investigations are also given.

Keywords: Abstract simplicial complex, Clique complex, Flag complex, Independence system, Matroid intersec-
tion, Partition matroid

1 Introduction

An independence system is a family of subsets of a nonempty finite set such that all subsets of a member of the family
are also members of the family. A lot of combinatorial optimization problems can be seen as optimization problems on
the corresponding independence systems. For example, in the minimum cost spanning tree problem, we want to find
a maximal set with minimum total weight in the collection of all forests of a given graph, which is an independence
system. Other problems like the maximum weighted matching problem and the maximum weighted clique problem
are also such problems. More examples are provided by Korte & Vygen [18]. In this paper, we study independence
systems arising from the maximum weighted clique problem.

A cligue in a graph is a subset of the vertex set which induces a complete graph. In the maximum weighted clique
problem, we are given a graph and a weight function on the vertex set, and we want to find a clique which maximizes
the total weight of its vertices. As is well known, the maximum weighted clique problem is NP-hard even if the weight
function is constant [11]. This means that there exists no polynomial-time algorithm for this problem ualé¢B.P
Moreover, Hastad [13] proved that there exists no polynomial-time algorithm for this problem which approximates
the optimal value within a factar'—¢ for any e > 0 unless NP= ZPP. (Heren stands for the number of vertices
in a given graph.) Therefore, the maximum clique problem is deeply inapproximable. Thus, one wants to determine
classes of graphs for which we can perform well. To do that, we adapt the viewpoint from independence systems
and matroids. For the maximum weighted clique problem, we consider the family of all cliques of a graph as an
independence system. Such an independence system is called a clique complex.
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It is known that every independence system can be represented as the intersection of a finite number of matroids.
Jenkyns [14] and Korte & Hausmann [17] showed that, for the maximum weighted base problem on an independence
system which can be represented as the intersectibmaitroids, a natural greedy algorithm approximates the optimal
value within a factok. (Their result can be seen as a generalization of the validity of the greedy algorithm for matroids,
shown by Rado [24] and Edmonds [7], although their results showed that the validity of the greedy algorithm even
characterizes matroids.) Thus, this numbkés a measure of “how complex an independence system is with respect
to the corresponding optimization problem.”

Here, we want to state the importance of clique complexes in fields other than combinatorial optimization. In
extremal combinatorics, thievector of a clique complex (namely, the sequeffce, fo, f1,...,fn_1) Wheref; 1 is
the number of cliques of siZein a graph) is studied in connection with aur's problem. (See Bollds [2].) Related
to that, in algebraic combinatorics, problems on the roots offthelynomial of a clique complex are studied. For
example, Hamidoune [12] asked whether fhgolynomial of the clique complex of a graph whose complement is
claw-free has only real rootsAlso, Charney & Davis [4] made a conjecture on a cliqgue complex which triangulates
a homology sphere of odd dimension. For this topic, see Stanley’s survey article [25]. Finally, in topological com-
binatorics, when we refer to the topology of a graph, sometimes it means the topology of the clique complex of the
graph. The topology of cligue complexes plays an important role especially when one investigates Hall-type theorems
in hypergraphs [1, 19, 20]. Similarly, when we refer to the topology of a partially ordered set, it usually means the
topology of the order complex of the partially ordered set, which turns out to be a clique complex.

In this paper, we investigate how many matroids we need for the representation of the clique complex of a graph
as their intersection. We show that the clique complex of a given géaighihe intersection ot matroids if and only
if there exists a family ok stable-set partitions a& such that every edge & (the complement o6) is contained in
a stable set of some stable-set partition in the family. This theorem implies that the problem of determining whether
or not the clique complex of a given graph has a representatidnrbgtroids belongs to NP (for arky> 0). This is
not a trivial fact since in general the size of an independence system can be exponential. As another consequence, we
show that the class of cligue complexes is the same as the class of the intersections of partition matroids. This may
give a new direction of research to attack some open problems on clique complexes.

Formerly, Fekete, Firla & Spille [9] investigated the same problem for matching complexes, and they characterized
a graph whose matching complex is the intersectiok pfatroids, for every natural numbkr Since the matching
complexes form a subclass of the class of clique complexes, we can observe that some of their results can be derived
from our theorems as corollaries.

With our main theorem, we deduce more results. First of all, we consider an extremal problem related to our
theorem. Namely, we determine how many matroids are necessary and sufficient for the representation of all graphs
with n vertices. This number turns out to he-1. Secondly, we investigate the case of two matroids more thoroughly.
This case is especially important since the maximum weighted base problem can be solved exactly in polynomial time
for the intersection of two matroids [10]. (Namely, in this case, the maximum weighted clique problem can be solved in
polynomial time for any non-negative weight vector by Frank’s algorithm [10].) There, we find out that the algorithm
by Protti & Szwarcfiter [23] checks whether a given clique complex has a representation by two matroids or not in
polynomial time. Additionally, we show that the clique complex of a grépis the intersection ok matroids if and
only if G itself is the intersection df matroids. (Here, we regard graphs themselves as independence systems of rank
2.) Thus, this reveals the intimate relationship between a graph and its clique complex in terms of matroid intersection.

The organization of this paper is as follows. In Section 2, we introduce a terminology on independence systems.
The proof of the main theorem is given in Section 3. Some of the immediate consequences of the main theorem are
also given there. In Section 4, we consider an extremal problem related to our theorem. In Section 5, we investigate
the case of two matroids. In Section 6, we study a graph itself as an independence system and relate it to our theorem.
In Section 7, we deduce some results by Fekete, Firla & Spille [9] from our theorems. We conclude with Section 8.

IRecently, this conjecture has been settled affirmatively by Chudnovsky & Seymour [5].



2 Preliminaries
2.1 Graphs

We assume the basic concepts in graph theory (see, e.g., Diestel's book [6]). Here, we fix our notations. In this paper,
all graphs are finite and simple unless stated otherwise. For a @raplV, E) we denote the subgraph induced by

V' C V by G[V']. The complement o is denoted byG. The vertex set and the edge set of a gréph (V, E) are

denoted by (G) andE(G), respectively. A complete graph and a cycle witlvertices are denoted k¥, andC,,,
respectively. The maximum degree, the chromatic number and the edge-chromatic number (or the chromatic index)
of a graphG are denoted bA(G), x(G) andx’(G), respectively. Acliqueof a graphG = (V,E) is a subse€ C V

such that the induced subgra@iiC] is complete. Astable setf a graphG = (V,E) is a subse§ C V such that the
induced subgrapls[S] has no edge.

2.2 Independence systems and matroids

Now we introduce the notions of independence systems and matroids. For details of them, see Oxley’s book [22].
Given a non-empty finite sé&t, anindependence systeom V is a non-empty familyZ of subsets oV satisfying:
X € Z impliesY € ZforallY C X C V. The setV is called theground setof this independence system. In the
literature, an independence system is also calleabatract simplicial complexA matroidis an independence system
7 additionally satisfying the followingugmentation axionfor X, Y € Z with |[X| > |Y| there existgz € X\'Y such that
YU{z} € Z. For an independence syst@ma seiX is calledindependenif X € Z, andX is calleddependenvtherwise.
A baseof an independence system is a maximal independent set,ardi of an independence system is a minimal
dependent set. (Notice that, in this paper, we use the word “circuit” only for independence systems, not for graphs. A
circuit of a graph in a usual sense is referred to as a “cycle.”) We denote the family of bases of an independence system
7 and the family of circuits of by B(Z) andC(Z), respectively. Note that we can reconstruct an independence system
ZfromB(Z)orC(Z)asZ ={X CV | X CBforsomeB € B(Z)}andZ ={X C V| C ¢ XforallC € C(Z)}. In
particular,B(Z;) = B(Z,) if and only if Z; = Z; similarly C(Z7) = C(Z,) if and only if Z;y = Z,. We can see that
all the bases of a matroid have the same size from the augmentation axiom, but it is not the case for an independence
system in general.

LetZ be a matroid orV. An elementx € V is called aloop of 7 if {x} is a circuit ofZ. We say thak,y € V are
parallelin Z if {x,y} is a circuit of the matroid. The next fact is well known.

Lemma 2.1 (see [22]).For a matroid without a loop, the relation thatx'is parallel toy” is an equivalence relation.

Proof. LetZ be a matroid oV without loop. Furthermore, letandy be parallel inZ, andy andz be also parallel in
Z. Then we claim that andz are parallel irZ as well (namelyx, z} is a circuit ofZ).

Suppose thafx,z} € Z. SinceZ has no loop, it holds thdy} € Z. By the augmentation axiom for matroids,
we have thafx,y} € Z or{y, z} € Z. However, this contradicts the assumption thandy are parallel (implying
{x,y} € 7) andy andz are parallel (implyindy, z} ¢ 7). Therefore, it follows thafx, z} ¢ Z. SinceZ has no loop, it
holds thax} € 7 and{z} € Z. This means thdk, z} is a minimal dependent set (namely a circuitfof O

Let 77,7, be independence systems on the same groun¥l.s@the intersectionof Z; andZ; is justZ; N 7.
The intersection of more independence systems is defined in a similar way. Note that the intersection of independence
systems is also an independence system. In addition, note that the family of circhijts1df, is the family of the
minimal sets irC(Z:) UC(Z2), i.e.,

C(Z1NZ2) =MIN(C(Z7) UC(Z2)).
(Here, the notation MINF) means that
MIN (F) :={X e F|Y Z XforeveryY € F\{X}}

for a set systerd.) The following well-known observation is crucial in this paper.



Lemma 2.2 (see [8, 9, 18])Every independence system can be represented as the intersection of a finite number of
matroids on the same ground set.

Proof. Denote the circuits of an independence systeiy C(V) ... Cc(™ (e, c(z) = (¢, ...,Cc(™), and
consider the independence syst&mwith a unique circuitC(Z;) = {C'V)} for eachi € {1,...,m}. Note thatZ;
is a matroid for each € {1,...,m}. Then, the family of the circuits of the intersectifi} ; Z; is nothing but
{c ... ,ctm} Namely,C(N", Z:) = {CV,...,C™}. Thus, we obtain that(Z) = C(", Z:). Since the
family of circuits determines an independence system uniquely, it followgthaf);" ; Z;. O

Note that the matroid%., ..., Z,, in the proof are actually graphic matroids. (A graphic matroid is an indepen-
dence system isomorphic to the family of forests in a multigraph.) Therefore, Lemma 2.2 itself can be strengthened as
“every independence system can be represented as the intersection of a finite number of graphic matroids on the same
ground set,” although it is not important for the discussion in the rest of the paper.

Due to Lemma 2.2, we are interested in the representation of an independence system as their intersection of
matroids. From the construction in the proof of Lemma 2.2, we can see that the number of matroids which we need to
represent an independence sysEhy the intersection is at mogi(Z)|. However, we might do better. In this paper,
we investigate such a number for a clique complex.

3 Clique complexes and the main theorem

A graph gives rise to various independence systems. Among them, we study clique complexes.

Thecligue complexf a graphG = (V, E) is the collection of all cliques o&. We denote the clique complex of
G by €(G). Note that the empty set is a clique andis also a clique for each € V. So we can see that the clique
complex is actually an independence systenVoWe also say that an independence system is a cligue complex if it
is isomorphic to the clique complex of some graph. Notice that a clique complex is also cidlgccamplexn the
literature.

Here, we give some subclasses of the clique complexes. (We omit standard definitions.) (1) The family of the
stable sets of a graph is nothing but the clique complex @. (2) The family of the matchings of a grajghis the
clique complex of the complement of the line grapltGofvhich is called thenatching complegf G. (3) The family of
the chains of a partially ordered dets the cligue complex of the comparability graphRyfwhich is called therder
complexof P. (4) The family of the antichains of a partially ordered Bés the clique complex of the cocomparability
graph (i.e., the complement of the comparability graphj.of

The next lemma may be a folklore.

Lemma 3.1. Let 7 be an independence system on a finite\éetThen, 7 is a clique complex if and only if the
size of every circuit ir is two. In particular, the circuits of the clique complex @fare the edges o6 (i.e.,
C(€(G)) = E(G)).

Proof. LetZ be the clique complex d& = (V, E). Since a single vertex € V forms a clique, the size of each circuit
in Z is greater than one. Each dependent set of size t@dsran edge of the complement 6f Observe that they are
minimal dependent sets since the size of each dependent&Bét greater than one. In order to show that they are the
only minimal dependent sets, suppose that there exists a ctafisize more than two i, for the contradiction.
Then each two elements i form an edge ofs because of the minimality a@. HenceC is a clique inG. However,
this is a contradiction to the assumption tkais dependent id (i.e., not a clique irG).

Conversely, letZ be an independence system @rand assume that the size of every circuitZofs two. Now
construct a grapls’ = (V,E’) with B/ = {{u,v} € (‘2/) | {u,v} € C(7)}, and consider the clique comple€XxG’).
By the opposite direction which we have just shown, we can see that a ciratiftadf is an edge oz, which is
a circuit of Z. On the other hand, a circuit @, which is of size two, is an edge @’. Therefore we have that
C(€(G’)) = C(Z). This concludes thaf is the clique complex of’. O

Now, we start studying the number of matroids which we need for the representation of a clique complex as their
intersection. For a grap@, denote by(G) the minimum number of matroids such that the clique comgigx) is
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Figure 1: The correspondence of a partition matroid and a complete multipartite graph.
the intersection of them. Namely,

k
1(G) := min {k | €(G) = ﬂ T, whereZ,, ..., Iy are matroid% )

i=1

First, we characterize the grapBssatisfyingu(G) = 1 (namely the graphs whose clique complexes are indeed
matroids). To do this, we define a partition matroidpdrtition matroidis a matroidZ (P) associated with a partition
P ={Py,Pa,...,P:}of V (thatis,V = | Ji_, P; andP; N P; = () for all i # j), which is defined as

Z(P)={ICV]||InP<Tforallie{l,...,}}.

Observe thaf (P) is indeed a matroid. Being an independence system is clear. For the augmentation axiom, choose
arbitrary two set¥, Y € Z(P) such thatX| > |Y|. Then, there must exist an indéx {1,...,r}such thaX N P; #£ 0
andY N P; = (). Therefore, for a unique element X N Py, it holds thaty U {z} € Z(P).

Furthermore, observe th@{P) is a clique complex. Indeed we can see théP) = ¢(Gp) as soon as we
construct the following grapk» = (V, E) from P: two verticesu,v € V are adjacent isp if and only if u,v are
elements of distinct partition classesfn See Figure 1 for an illustration.

An alternative argument is to observe that

C(Z(P)) ={{u,v} e <\2/> | {u,v} C P; forsomei € {1,...,7}.

Then, we can find out th&(P) satisfies the condition in Lemma 3.1, which shdN$) is a clique complex. Note
that Gp constructed above is a completgartite graph with the partitio®. (In Figure 1,Gp is a complete tri-
partite graph.) Particularly, this means thatGifis a complete multipartite graph, theitG) = 1. In the following
characterization of a matroidal clique complex, we claim that the converse also holds.

Lemma 3.2. Let G be a graph. Then the following are equivalent.
(1) The clique complex d& is a matroid.
(2) The clique complex d& is a partition matroid.
(3) G is completer-partite for somer.
Note that the equivalence of (1) and (3) in the lemma is also noticed by Okamoto [21].

Proof. “(2) = (1)” is clear, and “(3)= (2)” is immediate from the discussion above. So we only have to show “(1)
= (3).” Assume that the clique compleX G) is a matroid. By Lemma 3.1, every circuit 6{G) is of size two,
which corresponds to an edge Gf Therefore, the elements of each circuit are parallet(G). Since for every
vertexv € V(G) we have{v} € €(G), we can see that(G) has no loop. Therefore, by Lemma 2.1, the parallel

elements induce an equivalence relatiolMiis ), which yields a partitiorP = {P4, ..., P,} of V(G) for somer. This
equivalence relation can be said asshdy are equivalent if and only if there is no edge betweemdy in G.” Thus,
we can see thdt is a complete-partite graph with the vertex partition. O
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Figure 2: An example for Theorem 3.3.

For the case of more matroids, we use a stable-set partitiostal®le-set partitiorof a graphG = (V,E) is a
partition? = {Py,..., P} of V such that eacR; is a stable set o&. (Note that a stable-set partition is nothing else
a proper coloring of a graph. However, here we are not interested in how many colors we need (i.e., thE)s&e of
we do not study the proper coloring problem here.) The following theorem is the main result of this paper. It tells us
how many matroids we need for the representation of a given clique complex.

Theorem 3.3. LetG = (V, E) be a graph. Then, the following are equivalent.
(1) The clique compleg(G) can be represented as the intersectiofk ofiatroids (i.e.u(G) < k).
(2) There exisk stable-set partition® ") ..., P(%) of G which fulfill the following condition.

Condition P
{u,v} € (¥) is an edge of if and only if {u, v} C S for someS € UL, P,

In particular, whenCondition Pis fulfilled, it holds thai(G) = Nt_, Z(PV).

Before proving Theorem 3.3, we illustrate the theorem by a pictorial example. Look at Figure 2. In the graph
G = ({v1,...,ve}, E), there are seven edges, and

P = {{vi,va}, [v2,v3}, (vs,ve)},
PR ={{v1,v3,v5}H {va), {va, vell,

,P(g) = {{‘” ,V3}, {\)2,\)4},{\)5}, {\)6}}

are stable-set partitions &f. We can see that these stable-set partitions meet Condition P, that is, fqueagke

E(G), it holds that{u,v} C S for someS € PV U P uPB). For example, look afvy,vs} € E(G). Then we
have{vy,vs,vs} € P such thafvy,vs} C {vi,v3,vs). Indeed, the clique compleX(G) can be written as the
intersectiorZ (P(M) N Z(P?)) N Z(P3)) of three partition matroids, or in other words, the interseci6@ (1)) N
€(Gp2)) NE(Gps)) of the cligue complexes of complete multipartite graphs, which are partition matroids (Lemma
3.2).

The intuition behind Condition P in Theorem 3.3 is as follows. When we consider the clique coéiéx
of a given graphG, we want to gather some complete multipartite gra@ghs. .., Gx so that we can ensure that
¢(G) = ﬂl; ¢(Gi). Then an edge of should not be an edge & for alli € {1,. ..k}, and actually Condition P
in Theorem 3.3 makes it sure that this requirement is satisfied.

To prove Theorem 3.3, we use the following lemmas.



Lemma 3.4. Let G = (V,E) be a graph. If the cligue compleX(G) can be represented as the intersectiorkof
matroids (i.e.u(G) < k), then there exist stable-set partition®"), ..., P(*) such thate(G) = NE_, Z(PV).

Proof. Assume that®(G) is represented as the intersectionkofatroidsZy, ..., Zx. ChooseZ; arbitrarily i €
{1,...,k}). Then observe that there is no loopZn (Otherwise()Z; cannot be a clique complex.) Therefore, by
Lemma 2.1, the parallel elements Bf induce an equivalence relation 3 Let PV be the partition oV arising
from this equivalence relation. Then, we can see that the two-element circditsaoé the circuits of the partition
matroidZ(PV)), (i.e.,{C € C(Zy) | |C| = 2} = C(Z(P'V))). Furthermore, by Lemma 3.1, it holds that

k k
Cle@) = MN (U CW) = MIN (U{C ec(z)|[C] z})
i=1 i=1
k .
= Ulcecmlic=21=JezrP).
i=1 i=1
Thus, we have obtained thate(G)) = Ut_, C(Z(PV)). This concludes that(G) = (i, Z(P). -

Here is another lemma.

Lemma 3.5. LetG = (V, E) be a graph andP be a partition ofV. Then&(G) C Z(P) if and only ifP is a stable-set
partition of G.

Proof. Assume thatP is a stable-set partition db. Choosel € ¢(G) arbitrarily. Then we have that N P| < 1
for eachP € P by the definitions of a clique and a stable set. Hence it followskhatZ (P). Thus we have that
&(G) CIZ(P).

Conversely, assume th@{G) C Z(P) for a partitionP of V(G). ChooseP € P and a cliqueK € €(G) of G
arbitrarily. From our assumption, we have tifat Z(P). Therefore, it holds thaK N P| < 1 from the definition of a
partition matroid. This means thAtis a stable set o&. Hence,P is a stable-set partition di. O

Now it is time to prove Theorem 3.3.

Proof of Theorem 3.3Assume that the cligue compl&( G) of a given graphG = (V, E) is represented as the in-
tersection ofk matroidsZ;,...,Zx. From Lemma 3.4¢(G) can be represented as the intersectiofk ofiatroids
associated with some stable-set partitigts), ..., P*) of G. We show that these partitior®") ... P fulfill
Condition P. By Lemma 3.4y, v} is an edge of if and only if {u, v} is a circuit of the clique compleg(G). Then,
we have that

k k
{u,v} € C(€(G)) = MIN <U C(I(Pm))) = | Je@ry.
i=1 i=1

(The last identity relies on the fact that the size of each circuit of a partition matroid is two.) This means that there

exists at least oné € {1,...,k} such thatiu,v} € C(Z(PW)). SinceC(Z(PW)) = {fu,v} € (¥) | fu,v} C
S for someS € PV}, we can see thdtt, v} C S for someS e PV if and only if {u, v} is an edge oE.
Conversely, assume that we are gikestable-set partition®!) ... P(¥) of V satisfying Condition P. We show

that¢(G) = N, Z(PV). By Lemma 3.5, we can see thatG) C Z(PV)) for eachi € {1,...,k}. This shows
thate(G) C N, Z(PY). In order to show tha€(G) D N, Z(PV), we only have to show that(¢(G)) C
UL, c(z(PW)). Pick C € ¢(€(G)) arbitrarily. By Lemma 3.1 we can see th@tis an edge ofG. SetC =
{u,v} € E(G). From Condition P, there exists sorfie Ul; P such thafu, v} C S. This means thatu, v} €
UX_, ¢(Z(P)). Thus we complete the proof. 0O

i=1

Now, let us look at some consequences of the discussion in this section. First of all, Theorem 3.3 implies that
the cligue complex(G) of a graphG can be represented as the intersectiok afatroids if and only if¢(G) can
be represented as the intersectiork gfartition matroids arising from stable-set partitions Gf Therefore, in order



to find w(G), it is sufficient to consider partition matroids arising from stable-set partitiort. oFhis considerably
reduces the time/cost of the search.

In Lemma 3.4, we showed that, for a given graphon the vertex seV whose clique compleX(G) is the
intersection ofk matroids, we can finét partition matroids whose intersectiond$G). Moreover, we can show the
following “converse” statement.

Corollary 3.6. For any collection ok partitions (), P(2) Pk of a finite setV, there exists a grapks onV
such that®(G) is the intersection of the partition matroidg (1)), Z(P2)), ... Z(P¥).

Proof. From a given collection of partitior®"), ... P*) of V, we construct a grap@ as follows. The vertex set
of G is V. Two verticesu andv are connected by an edge @if and only if they do not lie in a common class of
PW foranyi € {1,...,k]} (i.e., there exists n6 € PV such thafu,v} C S for anyi € {1,...,k}). Then we can
seethaP!) ... P are stable-set partitions 6f. Moreover, they satisfy Condition P in the statement of Theorem
3.3. Therefore, by Theorem 3.3, we can concludedta) = N, Z(PV). O

This leads to the following important consequence.

Corollary 3.7. For everyk > 0, the class of clique complexes which are the intersectioksnoétroids is the same
as the class of the intersectionslopartition matroids; in particular, the class of clique complexes is the same as the
class of the intersections of partition matroids.

Proof. Combine Lemma 3.4 and Corollary 3.6. O

At the end of this section, we want to note that Theorem 3.3 implies that the following decision problem belongs
to NP.

Problem: CLIQUE COMPLEX k-MATROID REPRESENTATION
Instance: A graplG and a positive integek
Question: Isu(G) < k?

Let us state this fact as a corollary.
Corollary 3.8. CLIQUE COMPLEX k-MATROID REPRESENTATIONbelongs taNP.

Proof. This is not trivial since a matroid itself can have an exponential number of independent sets. However, from
the viewpoint of Theorem 3.%, stable-set partitions satisfying Condition P can be a certificate for the positive answer
to the problem above. Since the size of stable-set partition is a polynomial of the size of &gragk is at most the
number of vertices irG, thesek stable-set partitions constitute a polynomial-size certificate. Furthermore, Condition
P can be checked in polynomial time for a given graph and givstable-set partitions of the graph. That is why the
decision problenCLIQUE COMPLEX k-MATROID REPRESENTATIONbelongs to NP. O

However, we do not know th&LI1QUE COMPLEX k-MATROID REPRESENTATIONbelongs to P, or even to coNP.
Possibly it could be NP-complete. Wheris fixed, the status is somehow changed. IFer 1, due to Lemma 3.2 the
problem can be solved in polynomial time because it is easy to check whether a graph is complete multipartite. The
case ofk = 2 is discussed in Section 5, and we prove that in this case the problem can also be solved in polynomial
time.

4 An extremal problem for clique complexes

Remember that(G) is the minimum number of matroids which we need for the representation of the clique complex
of G as their intersection. Furthermore, l€tn) be the maximum ofi(G) over all graphss with n vertices. Namely,

u(n) := maxu(G) | G hasn vertices.

In this section, we determing(n) exactly. It is straightforward to observe thatl) = 1. For the case ofi > 2,
we can immediately obtaip(n) < (;) from Lemmas 2.2 and 3.1. However, the following theorem tells us that the
truth is in fact much better.
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Figure 3: The grapf; U Ks.

Theorem 4.1. For everyn > 2, it holds thatu(n) =n — 1.
First, we prove thafi(n) > n — 1. Consider the grapk; U K,, 7. (Figure 3 show¥; UKs.)
Lemma 4.2. For n > 2, we have thatt(K; UK,,_1) =n — 1. Particularly it follows thatu(n) > n —1.

Proof. First, observe tha; U K,,_; hasn — 1 edges. Therefore, Lemma 3.1 implies that the number of the circuits
of €(K; UK,_1) isn — 1. Then, by the argument below the proof of Lemma 2.2, it follows tH#t; U K1) <
IC(E€(Ky UKn—1))l=n—1.

Now, suppose tha(K; U K,,_1) < n — 2. By Theorem 3.3, there exist at mast— 2 stable-set partitions
P .. P2 of K; UK, satisfying Condition P, namely, each edgef K; U K,,_; is contained in some set
S € U?;Z P, Then, the pigeon hole principle tells us that there exists an ifidex{1,...,n — 2} such that at
least two edges ok; UK,,_; are contained in sets @(1"). Lete, e’ be such (distinct) edges &f;, UK,,_; and
Pe,Per € P17 be unique sets such thatC P, ande’ C P... (The uniqueness follows from the fact thyat'")
is a partition.) Now, remember thatande’ share a vertex (sinog e’ are edges oKy U K;,_1). This implies that
P. N P., # (. Therefore, it holds thakt. = P.. sincePV") is a partition. Set = {u,v} ande’ = {u,v’}. (Here,
u is the vertex shared by ande’.) This implies thatfv,v’} is also contained i®.. However,{v,v’} is an edge of
K7 UKn_1. This contradicts the fact th@(t") is a stable-set partition (i.P, is a stable set df; UK, _1). Thus, it
follows thatp(K; UKy_1) =n—1.

For the second part, we just follow the definitionofn). Then we conclude that(n) > u(K; UK,_1) =
n—1. O

Next we prove thati(n) < n—1. To do that, first we look at the relation pf G) with the edge-chromatic number

x'(G) of the complement.

Lemma 4.3. It holds thatu(G) < x'(G) for every graphG with n vertices. Particularly, ifn is even then we have
that u(G) < n —1, and ifn is odd then we have that(G) < n. Moreover, ifu(G) = n thenn is odd and the
maximum degree @ isn — 1 (i.e., G has an isolated vertex).

Proof. Consider a minimum proper edge-coloring@fand letk = x’(G). Now, we construck stable-set partitions
of a graphG with n vertices from this edge-coloring.

We have the color class€s'’ ..., C(¥) of the edges from the minimum proper edge-coloring. Let us take a color
classCY) = {e%”, o e{j)} (i €{1,...,k}) and construct a stable-set partiti®') of G from C(V) as follows:S is a
member ofPV) if and only if either (1)S is a two-element set belonging@? (i.e.,S = e)m forsomej € {1,..., 1))
or (2) S is a one-element sét} which is not used irC'V) (i.e.,v ¢ e]m for anyj € {1,...,1;}). Notice thatPV) is
actually a stable-set partition. Then we collect all the stable-set partifiohs. .., P(¥) constructed by the procedure
above. Moreover, we can check that these stable-set partitions satisfy Condition P in Theorem 3.3 (since each edge of
G appears in exactly one of tf&V)’s). Hence, we have that(G) < k = x’(G) by Theorem 3.3. Figure 4 illustrates
the construction. In this example, we have th&tG) = 3. The first row shows a given graghand its complement
G. In the second row, we can find a minimum proper edge-coloring,afnd eacrC'') depicts a color class of this
coloring. The constructed stable-set partitions are put in the third row.

Now, notice that’(G) < x’(K,) for any graphG with n vertices. Thus, if1 is even, then we can conclude that
w(G) < n —1sincex’(K,) =n— 1. Similarly, if n is odd, then we can conclude thatG) < n sincex’(K;,) isn.

For the last part of the lemma, assume that) = n. From the discussion above,should be odd. Note that
Vizing’s theorem (see [6] for example) says that for a graptvith maximum degreé\(H) we have thak’(H) =

A(H) or A(H) + 1. SinceA(G) < n—1, we have thafi(G) < x'(G) < A(G) + 1 < n. Thereforey(G) = n holds
only if A(G) +1=mn. O
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Figure 4: The construction in the proof of Lemma 4.3.

Now, we show that if a grapt with n vertices (wheren is odd) has an isolated vertex thefiG) < n — 1. This
completes the proof of Theorem 4.1.

Lemma 4.4. Letn be odd andG be a graph withn vertices which has an isolated vertex. Then it holds that
wG) <n—1.

Proof. Letv* be an isolated vertex di. Consider the subgraph &f induced byV(G) \ {v*}. Denote this induced
subgraph byg’ (i.e.,G’ = G[V(G) \ {v*}]). SinceG’ hasn — 1 vertices, which is even, we haygG’') < n—2 from
Lemma 4.3.

Now we construch — 1 stable-set partitions d& which satisfy Condition P frona. — 2 stable-set partitions df’

which also satisfy Condition P. Denote the vertice&dfby vq,...,v,_1, and stable-set partitions & satisfying
Condition P byP’“ o prd) (where some of them may be identical in ca$&’) < n — 2). Then construct
stable-set partition®(!) | ..., P("—=2) P(n—1) of G as follows. For eache {1,...,n—2}, putP € PV if and only

if either (1)P € P’ andv; ¢ P or 2)v* € P, P\ {v*} € P’V andv; € P. Furthermore, puP € P("~1) if and
only if either (1)P = (vi} A € {1,...,n—2) or (2) P = {v*,v,,_1}. Figure 5 illustrates the construction Bf ")
(ie{1,...,n—1}). The first row shows a given gragghwhere the topmost vertex is isolated. In the second row,
we can find three stable-set partitions®f = G[{v;,v;, v3,v4}] satisfying Condition P. In this row, the symbois
used for the indication of the neglected vertéx In the third row (lowest), the constructed stable-set partitions of
are shown according to the considered vertices.

For conclusion, it is enough to check that the stable-set parti#®ns, ..., P("~1) constructed above satisfy
Condition P. Choose any edgeof G. If e is also an edge o&’, then we can find a s&’ ¢ U{‘:]z P’V such that
e C S’ sinceP’V ... P'""%) satisfy Condition P. From the construction®f!’, ..., P("=2) we can observe
that for each. € {1,...,n — 2} and eaclP’ ¢ P"" there exists a st € PV such thaP’ C P. Therefore, foIS’
above, we also havg € U’f;z PU such thaS” C S, which implies that C S. If e is not an edge o6, thene has
a form ase = {v*,v;} for somei € {1,...,n — 1}. Then it turns out that is contained in a member @Y} which
was put inPV) due to the condition (2). In this way, we have verified tRat’, ..., P(™~1) satisfy Condition P. [J
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Figure 5: The construction of stable-set partitions from an edge-coloring.

Vi {v1,v3,vs}
V6 V2 {vs,ve} {v2,v3}
Vs V3 {va,ve} V2,V4}
v g vi,val g6

Figure 6: An example of stable-set graphs.

5 Characterizations for two matroids

In this section, we look more closely at a clique complex which can be represented as the intersection of two matroids.
Note that Fekete, Firla & Spille [9] gave a characterization of the graphs whose matching complexes can be represented
as the intersections of two matroids. So the theorem in this section is a generalization of their result. (Their result will
be discussed in Section 7.)

To do this, we invoke another concept. Tétable-set graplof a graphG = (V, E) is a graph whose vertices are
the maximal stable sets @& and two vertices of which are adjacent if and only if the corresponding two maximal
stable sets o6 share a vertex it. We denote the stable-set graph of a gréphy S(G). Figure 6 is an example of
stable-set graphs.

The next lemma establishes the relationship betwg&h) and the chromatic numbet(S(G)) of the stable-set
graph.

Lemma 5.1. Let G be a graph. If the stable-set gra#(G) is k-colorable, then the clique compl&G) can be
represented as the intersectionlomatroids. In other words, it holds that{ G) < x(S(G)).

Proof. Assume that we are given a propecoloringc of S(G), i.e.,c: V(S(G)) — {1,...,k} wherec(S) # c(T) if
SNT # (. Then gather the maximal stable setsSofvhich have the same color with respect to the colodintpat is,
putC; ={S € V(S(G)) | ¢c(S) = i} for eachi € {1,...,k}. We can see that the membersfare disjoint maximal

11
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Figure 7: The construction @; in the proof of Lemma 5.1.

stable sets o6 for eachi € {1,...,k}.

Now we construct a grapi; from C; as follows. The vertex set @; is the same as that &, and two vertices
of G; are adjacent if and only if either (1) one belongs to a maximal stable §gtamd the other belongs to another
maximal stable set i€;, or (2) one belongs to a maximal stable se€inand the other belongs to no maximal stable
set inC;. Figure 7 explains the construction @f. In Figure 7, three colors &(G) are depicted by, m ando, and
in the second row, the shaded groups show maximal independent sets corresponding to the véitegsatored
by the identical colors.

Note thatG; is completer-partite, wherer is equal toC;| plus the number of the vertices which do not belong to
any maximal stable set i@;. (This holds in general, not just in the picture above.) Then congifigg), the clique
complex ofG;. By Lemma 3.2, we can see th&{G;) is actually a matroid. Since an edge®fs also an edge df;

(or by Lemma 3.5), we have théfG) C €(G;).

Now we consider the intersectich = ﬂ'i‘:] ¢(Gi). Since¢(G) C ¢(G;) for everyi € {1,...,k}, we have
¢(G) C Z. Since each circuit of (G) is also a circuit of£(G;) for somei € {1,...,k} (recall Lemma 3.1), we also
haveC(€(G)) C C(Z), which implies€(G) D Z. Thus we hav&(G) = 7. O

Note that the converse of Lemma 5.1 does not hold in general evenr=if3. A counterexample is the graph
G = (V,E) defined asv = {vi,v2,v3,v4,vs5,vs} andE = {{vq,v2},{v3,va}, {vs,ve}}. See Figure 8. In the graph
shown in Figure 8, consider the following stable-set partitionS of

P“) = {{V1 ,Vg,V5},{V2,V4,V6}},
P(Z) = {{‘” ,V3,V6},{VZ,V4,V5}},

P(S) = {{V1 ,V4,V5}, {VZ,V3,V6}}.

We can check that these stable-set partitions fulfill Condition P in Theorem 3.3. Therefore, by Theorem 3.3, we can
see tha®(G) is the intersection of three partition matroi@éP ('), Z(P(?)) andZ(P3)). However,S(G) is not
3-colorable butt-colorable. (In Figure 8, a propércoloring of S(G) is also indicated.)

By a similar argument, we can also see that, if we consider a geapinsisting ofn/2 independent edges only
(i.e. a graph itself being a perfect matching), théiG) = @(n) andy(S(G)) = @(2™/2). Therefore, the difference
betweenu(G) andx(S(G)) can be arbitrarily large.

However, the converse holdskf= 2.

Theorem 5.2. Let G be a graph. The clique compl&€XG) can be represented as the intersection of two matroids if
and only if the stable-set graph(G) is 2-colorable (i.e., bipartite).

12
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Figure 8: A counterexample for the converse of Lemma 5.1.

Proof. The if-part is straightforward from Lemma 5.1. Now we prove the only-if-part. Assumetti@t is repre-
sented as the intersection of two matroids. Due to Theorem 3.3, we may assume that these two matroids are associated
with stable-set partition®') P(?) of G satisfying Condition P.

Let S be a maximal stable set 6. Now we claim that € P UP(?). To prove this claim, from the maximality
of S, we only have to show th& C P for someP € P! U P(2), (Then, the maximality of tells us thatS = P.)
SinceP!!) andP(?) are partitions ofV(G), this claim clearly holds ifS| = 1. If |S| = 2, the claim holds from
Condition P.

Assume thafS| > 3. Then consider the following independence system:

T={ICS|ICPforsomeP e P up}

Choose a basB of 7 arbitrarily. SinceB C S andS is a stable set o, we can see tha is also a stable set @.
This means thab is a dependent set @f G). ThereforeB contains a circuit of(G). By Lemma 3.1, we have that
IB| > 2. If S = B holds then we are done (sinBeC P for someP € P(1) U P(?)). SinceB C S, it suffices to show
thatB O S.

Now, suppose thef \ B # ) for a contradiction. Pick. € S \ B arbitrarily. Then{u, v} is a circuit of&(G) for
anyv € B sinceS is a stable set o6 and{u, v} C S. Without loss of generality, we may assume tBat P for some
P € P, Then it holds thafu} U B Z P. (otherwise, it would violate the maximality & in Z). Therefore, from
Condition P, we can see that there should exist sBme P(?) such thafu,v} C P’ for all v € B. This implies that
{u}UB C P’, which is a contradiction to the maximality Bf Hence it follows thaf = B. Thus, the claim is verified.

Now we color the vertices af(G), i.e., the maximal stable sets Gf according toaP'") andP(2). If a maximal
stable se6 belongs toP(!), thens$ is colored byl. Similarly, if S belongs toP(2), thenS$ is colored by2. (If S
belongs to both, thesi can be colored by eithdror 2 arbitrarily.) This coloring certainly provides a propecoloring
of S(G) sincePV) andP?) are partitions ol (G). O

Figure 9 is an illustration of what we saw in the proof. The gr&pin Figure 9 has three maximal stable sets, and
they form the vertex set of the stable-set gr&jls ). In the second row, we can see two stable-set partitions satisfying
Condition P. According to these stable-set partitions, we can color the verti&¢&in In this example{v;,vs,vs}
is colored bye (color 1) sincgvy, v3,vs} appears irP'!), and{vs, v} is colored byo (color 2) sincgvs, ve} appears
in P(2). Then,{v,,v,4} appears in both oP") andP(2). Therefore we can color it by eitheror o arbitrarily. In the
picture above, we just chose

Some researchers already noticed that the bipartiteneS§®fis characterized by other properties. We gather
them in the following proposition. Here, thiee graphof a multigraphG is a graphL(G) such that the vertex set of
L(G) is the edge set of and two vertices ifL(G) are adjacent through an edge if and only if the corresponding two
edges inG share a vertex ifs.

Proposition 5.3. Let G be a graph. Then the following are equivalent.
(1) The stable-set grap&(G) is bipartite.

(2) G isthe complement of the line graph of a bipartite multigraph.
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Figure 9: An illustration of the proof of Theorem 5.2.
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Figure 10: The forbidden induced subgraphs for Proposition 5.3.

(38) G has no induced subgraph isomorphickpU K3, K; UK, UKy, Ky UP3 or Coxys (k=1,2,...). See Figure
10.

Proof. The equivalence “(13 (2)” is immediate from a result by Cai, Corneil & Proskurowski [3]. Also, the equiva-
lence “(1)& (3)” is immediate from a result by Protti & Szwarcfiter [23]. O

Note that we can decide whether the stable-set graph of a graph is bipartite or not in polynomial time using
the algorithm described by Protti & Szwarcfiter [23]. Here, we mention their algorithm in short. To establish their
algorithm, first we have to observe thatdfG) is bipartite thenG contains at mostn maximal stable sets. (This is
not trivial. For a proof, see the original paper [23].) Using this observation, they provided the following algorithm. At
the first step, we list up the maximal stable setssafising an algorithm with polynomial delay by Tsukiyama, Ide,
Ariyoshi & Shirakawa [26], for example. If the algorithm starts to generate more2hamaximal stable sets then we
stop the algorithm and answer “NO” (siné€G) cannot be bipartite from the observation above). If it generates at
most2n maximal stable sets, then we proceed to the second step. At the second step, we explicitly cBfStruct
which can be done in polynomial time since the number of verticéq Gf) is at mosn. Then, as the third step, we
check thatS(G) is bipartite or not, which can also be done in polynomial time. If it is bipartite then answer “YES,”
otherwise “NO.” In total, this procedure runs in polynomial time.

As for the maximum weighted clique problem, for the class of graphs satisfying the conditions in Proposition 5.3
we can solve the maximum weighted clique problem exactly in polynomial time by Frank’s algorithm [10] for the
maximum weighted base problem in the intersection of two matroids. Notice that in Frank’s algorithm we need to
have a description of the two matroids. However, since the above algorithm by Protti & Szwarcfiter [23] explicitly
gives a propel-coloring of the stable-set graph if the answer is “YES,” from the argument in the proof of Theorem
5.2 we can find the corresponding stable-set partitions of the graph, which are sufficient for running Frank’s algorithm.

Speaking of the case of three matroids, we leave the complexity of deciding whether a clique complex is the
intersection of three matroids as an open problem. As for the maximum weighted clique problem, the problem of
finding a maximum weighted clique in a graph whose clique complex is the intersection of three matroids turns out
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to be NP-hard, even for the unweighted case. Here, we want to describe the reason briefly. In Corollary 3.7, we
mentioned that the class of clique complexes which are the intersections of three matroids is the same as the class of
the intersections of three partition matroids. Therefore, our problem is nothing but finding a maximum weighted base
in the intersection of three partition matroids. However this problem contains the max3rdimensional matching

problem as a special case, which is known to be NP-hard [11] (and even MAX-SNP-hard [15]). That is why our
problem is intractable for three matroids.

6 Graphs as independence systems and the intersection of matroids

We can regard a graph as an independence system such that a subset of the vertex set is independent if and only if
it is either (1) the empty set, (2) a vertex of the graph or (3) an edge of the graph. In this section we consider how
many matroids we need for the representation of a graph (as an independence system) by their intersection. First, we
establish a lemma on the matroidal case.

Lemma 6.1. Let G be a graph. Then the following are equivalent.
(1) G is a matroid.
(2) €(G) is a matroid.
(3) G is completer-partite for somer.

For the proof, we need a truncation. LEbe an independence systemdnFork > 0, thek-th truncationof Z
is the subfamilyZ<* of 7 defined agZ<* = {X € T | [X| < k}. We can see that the truncation of an independence
systemZ is also an independence system, arifl i€ a matroid therT = is also a matroid for everly > 0. Note that
the k-th truncation is also called thé& — 1)-skeletonespecially in some papers which study “simplicial complexes”
instead of “independence systems.”

Proof of Lemma 6.1(2) & (3)” is precisely Lemma 3.2. “(2)> (1)” is immediate from the facts th& is the2-
truncation of¢(G) and that the truncation of a matroid is also a matroid. Now we prove={1B).” Suppose that
G is not completer-partite for anyr. Then,G has three vertices, v, w such thafu, v} is an edge but neithét, w}
nor{v,w} is an edge ofs. However, sincgu, v} and{w} are independent sets, by the augmentation axioyw} or
{v,w} should be an edge &. This is a contradiction. O

The following theorem says that the minimum number of matroids for a graph is the same as that for the clique
complex of this graph.

Theorem 6.2. Let G be a graph. TheiG can be represented as the intersectioi ohatroids if and only if the clique
complex€(G) can be represented as the intersectiom ohatroids.

Proof. First, we show that if the cligue compl&G) is the intersection ok matroids therG can be represented as
the intersection ok matroids.

Let €(G) be represented as the intersection of the matrdids. ., Zy, i.e., &(G) = ﬂle Z;. Due to Theorem
3.3, without loss of generality, we may assume thais a partition matroid for each e {1,...,k}. Then consider
the truncationg%, ..., Z¢>, and observe the{ﬂ]f:1 1% = (ﬂ'.f:1 Z;)<%. On the other hand, we have that=
€(G)=% = (NL_, Z:)=2. Thus we conclude tha = (N}, Z;)=2.

Next we show that ifs can be represented as the intersectiok ofatroids ther€(G) can also be represented as
the intersection ok matroids.

Let G be represented as the intersection of the matrgids. ., Jx, nhamelyG = ﬂf:] Ji. Without loss of
generality, we may assume that the size of every basg a§ at most two for each € {1,...,k}. (If not, then
consider the truncatioﬂfz, which does not change the intersection that we are considering since the size of every
base inG is at most two.) Then we can regafd as a graph for eache {1, ..., k}. Let us denote this graph k..

From Lemma 6.1, the clique complex 6f is a matroid (sinces! is a matroid). Now we have th& = ﬂ]f:] G/.

1

Therefore, it holds that(G) = Ql(ﬂk Gl) = ﬂf:1 €(G{). Since we have just observed tltd1G/) is a matroid for

i=1+1

eachi € {1,...,k}, this completes the proof. O
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7 Matching complexes

In this section, we apply our theorems to the matching complexes of graphs, and observe that some results by Fekete,
Firla & Spille [9] can be obtained from our more general theorems.

A matchingof a graphG = (V, E) is a subseM C E of the edge set in which the edges are pairwise disjoint, that
is,eNe’ = () for eache,e’ € M. A matching complerf a graphG is the family of matchings o6, and denoted by
M(G). We can see that the matching compléXG) is indeed an independence systemEomote that the matching
complex?(G) is identical to the clique complex of the complement of the line grap@,dfe., M (G) = €(L(G)).
Recall that thdine graphof a graphG is a graphL(G) such that the vertex set &f G) is the edge set o and two
vertices inL(G) are adjacent through an edge if and only if the corresponding two ed@eshare a vertex is. We
also call a graplt aline graphif there exists some graph whose line grapltisFor a line graphG, a graphH is
called aroot graphof the line graphG if G = L(H). Note that a root graph of a line graph is not unique in general.
For exampleK; is the line graph oK3 and also o, 3, i.e., bothK; andK; ; are the root graphs d€;. Also, note
that not every graph is a line graph; for exame,; is not a line graph.

First, let us deduce the characterization of matroidal matching complexes from Lemma 3.2.

Corollary 7.1. Let G be a graph. The matching compl8R(G) is a matroid if and only ifG is a disjoint union of
stars and triangles.

Proof. Assume thatt(G) is a matroid. Sincé@i(G) = ¢€(L(G)) holds, we have that(G) is a complete-partite
graph for some by Lemma 3.2. This means tha{G) is a disjoint union of complete graphs. Uétbe a connected
component of (G), which is a complete graph. Now, we want to find the root graph&. dthen we can observe that
the root graph oK is K, (= Ky 1), and this is a unique root graph Kf ; the root graph oK is K; ,, and this is a
unique root graph ok;; the root graphs o3 areKz andK; 3, and they are the only root graphslof; the root graph
of K, (n > 4) is Ky ,,, and this is a unique root graph Kf,. (Note that our graph is always simple, i.e., without a
loop or a multiple edge.) Therefor6,is a disjoint union of stars and triangles. -

Let us show the converse. Assume tias a disjoint union of stars and triangles. Then we can sed {l@&fis a

complete multipartite graph. From Lemma 3.2, it follows thétG) = ¢(L(G)) is a matroid. O

Fekete, Firla & Spille [9] studied the matching complex in the same spirit as we did in this paper. They proved the
following statement for the intersection of two matroids. In this paper, we derive this result as a corollary from our
theorem.

Corollary 7.2 ([9]). LetG be a graph. The matching comp®(G) is the intersection of two matroids if and only if
G contains no subgraph (not necessarily induced) isomorphi&ig. 3 (k =1, 2,...), and each triangle irG has at
most one vertex of degree more than two.

To prove Corollary 7.2, we use the fact on a line graph.

Lemma 7.3. Let G be a graphH be a line graph, an®;, ..., Ry be the root graphs dfl. ThenL(G) contains no
induced subgraph isomorphic td if and only if G contains no subgraph (not necessarily induced) isomorphic to any
0fR1,R2,. .., Rg.

Proof. Straightforward from the definitions of a line graph and a root graph. O
With use of Lemma 7.3, we can prove Corollary 7.2.

Proof of Corollary 7.2. Assume that there exist two matroids, Z, on E(G) such thati(G) = Z; N Z,. From the
observation above, this is equivalent to tlak (G)) = Z; N Z,. By Theorem 5.2, this is also equivalent to th&6 )
contains no induced subgraph isomorphi&tou K3, K; U Ky UKy, Ky UP3 or Corysz (k= 1,2,...). Therefore,
by Lemma 7.3, we can see that this is also equivalent tolth@} contains no subgraph (not necessarily induced)
isomorphic toK; 3 = K UKz, Wy =Ky UK UKy, W, =K UP3orCorysz (k=1,2,...). See Figure 11 for the
shapes of these graphs.

Now, we want to know the root graphs &f 3, W4, W, , andCy,3 (k = 1,2,...). Then we can observe the

following. (1) There is no root graph d&f; 3 (i.e.,K; 3 is not a line graph). (2) The root graph W, is C; (in the
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Figure 11: Graphs appearing in the proof of Corollary 7.2.

E

Figure 12: The root graphs appearing in the proof of Corollary 7.2.

picture below) and this is a unique root graphVegf. (3) The root graph oW, is A (in the picture below) and this
is a unique root graph ofV, . (4) For eactk = 1,2, ..., the root graph o3 is Cx43 and this is a unique root
graph ofC;y 3. See Figure 12.

Thus, we can see that Lemma 7.3 implies that the matching corfiléXx) is the intersection of two matroids
if and only if G contains no subgraph isomorphic @&, A or Caoxy3 (k = 1,2,...). Hence, for the proof of the
corollary, it is enough to observe th@tcontains no subgraph isomorphic@q or A if and only if each triangle irf6
has at most one vertex of degree more than two.

To observe that, first assume ti@tontains no subgraph isomorphic@g or A and also suppose that there exists
a triangle inG which has at least two vertices of degree more than two.ulLadv be such vertices in the triangle
(u #v). Then the above assumption means that there exist ¢dgesand{v,y}in G. In casex = y, we can see that
G containsC; as a subgraph. In case# y, we can see thab containsA as a subgraph. Therefore, in both cases
this is a contradiction.

Conversely, assume that each trianglésiinas at most one vertex of degree more than two. Pick a tridngie
G arbitrarily. Then we can see th@itcannot be contained in a subgraph isomorphi€foor A in G sinceC; and
A have two vertices of degree more than two. This meansGtaintains no subgraph isomorphic@g or A. This
concludes the proof. O

Fekete, Firla & Spille [9] also gave a characterization of the matching complex which can be represented as the
intersection ok matroids for a generd. Their characterization involves an integer programming formulation of the
problem to find the righk. We observe that their characterization is also a corollary of our theorem. To do that, we
need to introduce their formulation.

First, we introduce the variables in the formulation. Since the circui#806) are the paths of length 2 (this is an
immediate consequence from Lemma 3.1 and the factiti@@) = €(L(G))), it makes sense that we use a variable
x € {0,111 kxXP(G) whereP(G) is the family of all paths of length 2 iG. We denote a path of length 2 @&
by (u,v,w) whenv is the midpoint of the path and, w are the endpoints of the path. Note that the gathv, u)
is identified with(u, v, w). The interpretation of the variableis as follows. Assume thaft(G) is the intersection
of matroidsZ,,...,Zy. Fori € {1,...,k} and(u,v,w) € P(G), x[i, (u,v,w)] = 1if (u,v,w) is a circuit of Z;;
otherwisex[i, (1, v,w)] = 0. Then Fekete, Firla & Spille [9] considered the following set of constraints.

Cover condition: Z'fﬂ x[i, (w,v,w)] > 1forall (u,v,w) € P(G),

Claw condition: x[i, (u,v,w)] + x[i, (u,v,t)] + x[i, (w,v,t)] # 2 foralli € {1,...,k} and (u,v,w), (u,v,t),
(w,v,t) € P(G),

Triangle condition: x[i, (w,v,w)]+x[i, (v, w,u)]+x[i, (w,u,v)] # 2foralli € {1,...,k}and(u,v,w), (v,w,u),
(w,u,v) € P(G),

Matching condition: x[i, (u,v,w)] +x[i, (v,w,t)] < 1forallie{1,..., k}and(u,v,w), (v,w,t) € P(G).
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(See Fekete, Firla & Spille [9] for the detail of these constraints.) Note that Claw condition and Triangle condition can
be written as linear inequality constraints as well.

Corollary 7.4 ([9]). LetG be a graph. Theft(G) is the intersection of matroids if and only if there exists a vector
x € {0, 1)1, kIxP(G) which satisfies all of the four conditions above (namely, Cover condition, Claw condition,
Triangle condition and Matching condition).

Proof. Let G = (V, E) be a given graph. First, let us assume HHiG) :@) is the intersection ok matroids.
Then, by Theorem 3.3, there exisstable-set partition®'"), ... P(%) of L(G) which satisfy the following condition:
{e,f} € (5) is an edge oL (G) if and only if {e, f} C S for someS € (Ji_, PV, Pute = {u,v} andf = {w, t} for
someu,v,w,t € V. Then, we can see that this condition is equivalent to{ihaf (E) forms a pathu,v = t,w)
of length 2 inG if and only if {e, f} C S for someS € Uf:1 P In the sequel, we write(ft, v, w) C S” instead of
“{e, f} C S"whene = {u,v}andf = {w, t} form the path(u,v = t,w) of length2. Let us summarize this condition
as follows and call it Condition P

Condition P:
{e,f} € (%) forms a path{u,v = t,w) of length 2 inG (wheree = {u,v} andf = {w, t}) if and only if
(w,v,w) C S for someS e [ J&_, P(V).

Now, we construck € {0, T}{T-*xP(G) from our stable-set partitions. Foe {1,..., k} and(w,v,w) € P(G),
setx[i, (u,v,w)] = Tif (u,v,w) C S for someS € PV; setx[i, (u,v,w)] = 0 otherwise. Then, we show that the
vectorx constructed above satisfies the four conditions.

First, check Cover condition. Fix a path, v, w) of length 2 inG arbitrarily. Then, from Condition Rthere exists
at least one indek* such thatu,v,w) C S for someS € P, Our construction implies tha&ti*, (u,v, w)] = 1.
Therefore, we have thé_Tlle X[, (u,v,w)] > 1. Since this inequality holds for all paths of length 23nwe can see
thatx satisfies Cover condition.

Second, we check Claw condition. Suppose that Claw condition is violated, namely there exist ab index
{1,...,k}and pathgu, v,w), (u,v, t), (w,v,t) € P(G) such thak[i, (u,v,w)] +X[i, (u,v, t)] + X[, (w, v, t)] = 2.

By the symmetry of(u,v,w), (u,v,t), (w,v,t), we may assume thati, (u,v,w)] = 1, x[i, (u,v,t)] = 1 and
x[i, (w,v,t)] = 0 without loss of generality. The constructiom®ofmplies that there exit.,, Sut € PV such that
(u,v,w) C S, and(u,v,t) C S,;. Thereforefu,v} € S, and{u,v} € S;. This means that,,, N Sy # 0.
On the other hand, sind8(!) is a partition ofE, andS.,.,, Swt € PV, it holds thatS,,,, N Su¢ = 0. So, we have a
contradiction. Thus, we have shown tixadatisfies Claw condition.

Next, we check Triangle condition. Suppose that Triangle condition is violated, i.e., there exist an iadex
{1,...,k}and pathgu, v, w), (v,w,u), (w,u,v) € P(G) such thak[i, (u, v, w)] +X[i, (v, w,u)] +x[i, (w,u,v)] =
2. By the symmetry ofu,v,w), (v,w,u), (w,u,v), we may assume thati, (u,v,w)] = 1, x[i, (v,w,u)] = 1
andx[i, (w,u,v)] = 0, without loss of generality. Then, our construction implies that there 8xis§, € P(Y) such
that (u,v,w) C S, and(v,w,u) C S,. Therefore, we can see that w} € S, and{v,w} € S,. This means that
S. NS, # (. On the other hand, sind@V) is a partition oft, andS,,, S, € PV, it holds thatS,, N S, = 0. So, they
contradict each other. Thus, we have shown ¥hsdtisfies Triangle condition.

Finally, we check Matching condition. Suppose that Matching condition is violated, i.e., theré exXi$f. . ., k}
and (u,v,w), (v,w,t) € P(G) such thatl[i, (u,v,w)] + x[i, (v,w,t)] > 1. Sincex is a{0, 1}-vector, we have
thatx[i, (u,v,w)] = 1 andX[i, (v,w,t)] = 1. Because of our construction, there exst S, € PV such that
(u,v,w) C S, and(v,w, t) C S,,. Therefore, we can see tHat w} € S, and{v,w} € S,,.. Then, by the same reason
as the case for Triangle condition, we obtain a contradiction. Thus, we have checkednails Matching condition.

As a conclusion of the discussion above, we have obtained the only-if part of the corollary. So it remains to show

the if part.
To do that, assume that there exists a vegter {0, 1}{1:---kIxP(G) whijch satisfies Cover condition, Claw condi-
tion, Triangle condition and Matching condition. From this vector, we conskratable-set partition®@') ... Q¥

of L(G) which satisfy Condition Pabove. Since Condition’Rs equivalent to Condition P in Theorem 3.3, this
concludes the proof.
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Fixi e {1,...,k}. Then we put{u,v}} € QY if there exists ndu,v,w) € P(G) such thai[i, (u,v,w)] =1
and also there exists @, u,t) € P(G) such thatx[i, (v, u,t)] = 1. Furthermore, we pufu,v},{v,w}} € Q) if
x[i, (u,v,w)] = 1.

Now, we must check tha®(!) is indeed a stable-set partition@ foreachi € {1,...,k} as desired. Fix €
{1,...,k} arbitrarily. First, let us check tha!) is a partition ofV(L(G)), i.e., a partition off (G). ClearlyE(G) =
U QW for eachi € {1,...,k}. Suppose, for contradiction, that there exist two distinct Sgts € Q'V) such that
SNT # (. Since each set i@V is of size 1 or 2, we have the following two cases. As the first case, assunf thalt
and|T| = 2, sayS = {{u,v}} andT = {1, v}, {v, w}}. However, this contradicts our construction®f"). The second
case is wheréS| = |T| = 2. We have two subcases. Assume that, Say; {{u,v},{v,w}} andT = {{u,v},{v,t}}
wherew = t. Then from our construction we have thdt, (u, v, w)] = 1 andx[i, (u, v, t)] = 1. By Claw condition,
we should haveli, (t,v,w)] = 1. However, Matching condition requiredi, (u,v,t)] + x[i, (t,v,w)] < 1. This
is a contradiction. Next, assume that, s@y—= {{u,v},{v,w}} andT = {{v,u},{u,t}}. In this case, again from
the construction we have thafi, (u,v,w)] = 1 andx[i, (v,u,t)] = 1. If w # t, then this contradicts Matching
condition. Ifw = t, then from Triangle condition we should have thdt, (1w, w,v)] = 1. However, this again
contradicts Matching condition. Thu@") partitionst(G).

Secondly, we check that each Se¢ QV) is a stable set df(G). If |S| = 1, then clearlys is stable. Assume that
S| = 2, sayS = {{u, v}, {v,w}}. Since(u,v,w) is a path of length 2 i, {u, v} and{v, w} are adjacent if.(G). This
means that they are not adjacentifG). Therefore{{u,v},{v,w}} is stable inL(G). Thus, we proved tha(V) is a
stable-set partition of (G) for eachi € {1,...,k}.

Now, we check the constructed stable-set partiti@hy, . . ., Q%) satisfy Condition P’ above. However, this can
be easily checked with Cover condition. This concludes the whole proof. O

8 Concluding remarks

In this paper, motivated by the quality of a natural greedy algorithm for the maximum weighted clique problem, we
characterized the numbkisuch that the clique complex of a graph can be represented as the intersektioatodids
(Theorem 3.3). This implies that the problem of determining the clique complex of a given graph has a representation
by k matroids or not belongs to NP (Corollary 3.8). Furthermore, in Section 5 we observed that the corresponding
problem for two matroids can be solved in polynomial time. However, the problem for three or more matroids is not
known to be solved in polynomial time. We leave the further issue on computational complexity of this problem as
an open problem. In addition, we showed that 1 matroids are necessary and sufficient for the representation of
the clique complexes of all graphs withvertices (Theorem 4.1), and looked at the relationship between the clique
complex of a graph and the graph itself as an independence system (Theorem 6.2).

We proved that the class of clique complexes is the same as the class of the intersections of partition matroids
(Corollary 3.7). This result sheds more light on the structure of clique complexes, and may give a new research
direction to attack some open problems on them.

Before, Fekete, Firla & Spille [9] studied matching complexes from the viewpoint of matroid intersections. In
Section 7, we have observed that some of their results can be derived from our more general theorems.

Finally, we would like to mention open problems arising from the paper. As mentioned at the end of Section 5, we
are not aware of a polynomial-time algorithm to decide whether the cligue complex of a given graph is the intersection
of three matroids or not. This is open. As another open question, we want to mention the following. In Theorem 4.1,
we showed that(n) = n — 1 forn > 2. There, a graph showing(n) > n — 1 is based on a disconnected graph.
Therefore, we can investigate the maximum possible valug(f@) whenG is k-connected fok > 1. This problem
remains open.
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