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Abstract

In this paper, we approach the quality of a greedy algorithm for the maximum weighted clique problem from the
viewpoint of matroid theory. More precisely, we consider the clique complex of a graph (the collection of all cliques
of the graph) which is also called a flag complex, and investigate the minimum numberk such that the clique complex
of a given graph can be represented as the intersection ofk matroids. This numberk can be regarded as a measure
of “how complex a graph is with respect to the maximum weighted clique problem” since a greedy algorithm is a
k-approximation algorithm for this problem. For anyk > 0, we characterize graphs whose clique complexes can
be represented as the intersection ofk matroids. As a consequence, we can see that the class of clique complexes
is the same as the class of the intersections of partition matroids. Moreover, we determine how many matroids are
necessary and sufficient for the representation of all graphs withn vertices. This number turns out to ben − 1. Other
related investigations are also given.
Keywords: Abstract simplicial complex, Clique complex, Flag complex, Independence system, Matroid intersec-
tion, Partition matroid

1 Introduction

An independence system is a family of subsets of a nonempty finite set such that all subsets of a member of the family
are also members of the family. A lot of combinatorial optimization problems can be seen as optimization problems on
the corresponding independence systems. For example, in the minimum cost spanning tree problem, we want to find
a maximal set with minimum total weight in the collection of all forests of a given graph, which is an independence
system. Other problems like the maximum weighted matching problem and the maximum weighted clique problem
are also such problems. More examples are provided by Korte & Vygen [18]. In this paper, we study independence
systems arising from the maximum weighted clique problem.

A clique in a graph is a subset of the vertex set which induces a complete graph. In the maximum weighted clique
problem, we are given a graph and a weight function on the vertex set, and we want to find a clique which maximizes
the total weight of its vertices. As is well known, the maximum weighted clique problem is NP-hard even if the weight
function is constant [11]. This means that there exists no polynomial-time algorithm for this problem unless P= NP.
Moreover, H̊astad [13] proved that there exists no polynomial-time algorithm for this problem which approximates
the optimal value within a factorn1−ε for anyε > 0 unless NP= ZPP. (Here,n stands for the number of vertices
in a given graph.) Therefore, the maximum clique problem is deeply inapproximable. Thus, one wants to determine
classes of graphs for which we can perform well. To do that, we adapt the viewpoint from independence systems
and matroids. For the maximum weighted clique problem, we consider the family of all cliques of a graph as an
independence system. Such an independence system is called a clique complex.
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It is known that every independence system can be represented as the intersection of a finite number of matroids.
Jenkyns [14] and Korte & Hausmann [17] showed that, for the maximum weighted base problem on an independence
system which can be represented as the intersection ofk matroids, a natural greedy algorithm approximates the optimal
value within a factork. (Their result can be seen as a generalization of the validity of the greedy algorithm for matroids,
shown by Rado [24] and Edmonds [7], although their results showed that the validity of the greedy algorithm even
characterizes matroids.) Thus, this numberk is a measure of “how complex an independence system is with respect
to the corresponding optimization problem.”

Here, we want to state the importance of clique complexes in fields other than combinatorial optimization. In
extremal combinatorics, thef-vector of a clique complex (namely, the sequence(f−1, f0, f1, . . . , fn−1) wherefi−1 is
the number of cliques of sizei in a graph) is studied in connection with Turán’s problem. (See Bollobás [2].) Related
to that, in algebraic combinatorics, problems on the roots of thef-polynomial of a clique complex are studied. For
example, Hamidoune [12] asked whether thef-polynomial of the clique complex of a graph whose complement is
claw-free has only real roots.1 Also, Charney & Davis [4] made a conjecture on a clique complex which triangulates
a homology sphere of odd dimension. For this topic, see Stanley’s survey article [25]. Finally, in topological com-
binatorics, when we refer to the topology of a graph, sometimes it means the topology of the clique complex of the
graph. The topology of clique complexes plays an important role especially when one investigates Hall-type theorems
in hypergraphs [1, 19, 20]. Similarly, when we refer to the topology of a partially ordered set, it usually means the
topology of the order complex of the partially ordered set, which turns out to be a clique complex.

In this paper, we investigate how many matroids we need for the representation of the clique complex of a graph
as their intersection. We show that the clique complex of a given graphG is the intersection ofk matroids if and only
if there exists a family ofk stable-set partitions ofG such that every edge ofG (the complement ofG) is contained in
a stable set of some stable-set partition in the family. This theorem implies that the problem of determining whether
or not the clique complex of a given graph has a representation byk matroids belongs to NP (for anyk > 0). This is
not a trivial fact since in general the size of an independence system can be exponential. As another consequence, we
show that the class of clique complexes is the same as the class of the intersections of partition matroids. This may
give a new direction of research to attack some open problems on clique complexes.

Formerly, Fekete, Firla & Spille [9] investigated the same problem for matching complexes, and they characterized
a graph whose matching complex is the intersection ofk matroids, for every natural numberk. Since the matching
complexes form a subclass of the class of clique complexes, we can observe that some of their results can be derived
from our theorems as corollaries.

With our main theorem, we deduce more results. First of all, we consider an extremal problem related to our
theorem. Namely, we determine how many matroids are necessary and sufficient for the representation of all graphs
with n vertices. This number turns out to ben−1. Secondly, we investigate the case of two matroids more thoroughly.
This case is especially important since the maximum weighted base problem can be solved exactly in polynomial time
for the intersection of two matroids [10]. (Namely, in this case, the maximum weighted clique problem can be solved in
polynomial time for any non-negative weight vector by Frank’s algorithm [10].) There, we find out that the algorithm
by Protti & Szwarcfiter [23] checks whether a given clique complex has a representation by two matroids or not in
polynomial time. Additionally, we show that the clique complex of a graphG is the intersection ofk matroids if and
only if G itself is the intersection ofk matroids. (Here, we regard graphs themselves as independence systems of rank
2.) Thus, this reveals the intimate relationship between a graph and its clique complex in terms of matroid intersection.

The organization of this paper is as follows. In Section 2, we introduce a terminology on independence systems.
The proof of the main theorem is given in Section 3. Some of the immediate consequences of the main theorem are
also given there. In Section 4, we consider an extremal problem related to our theorem. In Section 5, we investigate
the case of two matroids. In Section 6, we study a graph itself as an independence system and relate it to our theorem.
In Section 7, we deduce some results by Fekete, Firla & Spille [9] from our theorems. We conclude with Section 8.

1Recently, this conjecture has been settled affirmatively by Chudnovsky & Seymour [5].
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2 Preliminaries

2.1 Graphs

We assume the basic concepts in graph theory (see, e.g., Diestel’s book [6]). Here, we fix our notations. In this paper,
all graphs are finite and simple unless stated otherwise. For a graphG = (V, E) we denote the subgraph induced by
V ′ ⊆ V by G[V ′]. The complement ofG is denoted byG. The vertex set and the edge set of a graphG = (V, E) are
denoted byV(G) andE(G), respectively. A complete graph and a cycle withn vertices are denoted byKn andCn,
respectively. The maximum degree, the chromatic number and the edge-chromatic number (or the chromatic index)
of a graphG are denoted by∆(G), χ(G) andχ ′(G), respectively. Acliqueof a graphG = (V, E) is a subsetC ⊆ V

such that the induced subgraphG[C] is complete. Astable setof a graphG = (V, E) is a subsetS ⊆ V such that the
induced subgraphG[S] has no edge.

2.2 Independence systems and matroids

Now we introduce the notions of independence systems and matroids. For details of them, see Oxley’s book [22].
Given a non-empty finite setV , an independence systemon V is a non-empty familyI of subsets ofV satisfying:
X ∈ I impliesY ∈ I for all Y ⊆ X ⊆ V . The setV is called theground setof this independence system. In the
literature, an independence system is also called anabstract simplicial complex. A matroidis an independence system
I additionally satisfying the followingaugmentation axiom: for X, Y ∈ I with |X| > |Y| there existsz ∈ X\Y such that
Y∪{z} ∈ I. For an independence systemI, a setX is calledindependentif X ∈ I, andX is calleddependentotherwise.
A baseof an independence system is a maximal independent set, and acircuit of an independence system is a minimal
dependent set. (Notice that, in this paper, we use the word “circuit” only for independence systems, not for graphs. A
circuit of a graph in a usual sense is referred to as a “cycle.”) We denote the family of bases of an independence system
I and the family of circuits ofI byB(I) andC(I), respectively. Note that we can reconstruct an independence system
I from B(I) or C(I) asI = {X ⊆ V | X ⊆ B for someB ∈ B(I)} andI = {X ⊆ V | C 6⊆ X for all C ∈ C(I)}. In
particular,B(I1) = B(I2) if and only if I1 = I2; similarly C(I1) = C(I2) if and only if I1 = I2. We can see that
all the bases of a matroid have the same size from the augmentation axiom, but it is not the case for an independence
system in general.

Let I be a matroid onV . An elementx ∈ V is called aloop of I if {x} is a circuit ofI. We say thatx, y ∈ V are
parallel in I if {x, y} is a circuit of the matroidI. The next fact is well known.

Lemma 2.1 (see [22]).For a matroid without a loop, the relation that “x is parallel toy” is an equivalence relation.

Proof. Let I be a matroid onV without loop. Furthermore, letx andy be parallel inI, andy andz be also parallel in
I. Then we claim thatx andz are parallel inI as well (namely{x, z} is a circuit ofI).

Suppose that{x, z} ∈ I. SinceI has no loop, it holds that{y} ∈ I. By the augmentation axiom for matroids,
we have that{x, y} ∈ I or {y, z} ∈ I. However, this contradicts the assumption thatx andy are parallel (implying
{x, y} 6∈ I) andy andz are parallel (implying{y, z} 6∈ I). Therefore, it follows that{x, z} 6∈ I. SinceI has no loop, it
holds that{x} ∈ I and{z} ∈ I. This means that{x, z} is a minimal dependent set (namely a circuit) ofI.

Let I1, I2 be independence systems on the same ground setV. The intersectionof I1 andI2 is just I1 ∩ I2.
The intersection of more independence systems is defined in a similar way. Note that the intersection of independence
systems is also an independence system. In addition, note that the family of circuits ofI1 ∩ I2 is the family of the
minimal sets inC(I1) ∪ C(I2), i.e.,

C(I1 ∩ I2) = MIN(C(I1) ∪ C(I2)).

(Here, the notation MIN(F) means that

MIN(F) := {X ∈ F | Y 6⊆ X for everyY ∈ F \ {X}}

for a set systemF .) The following well-known observation is crucial in this paper.
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Lemma 2.2 (see [8, 9, 18]).Every independence system can be represented as the intersection of a finite number of
matroids on the same ground set.

Proof. Denote the circuits of an independence systemI by C(1), . . . , C(m) (i.e., C(I) = {C(1), . . . , C(m)}), and
consider the independence systemIi with a unique circuitC(Ii) = {C(i)} for eachi ∈ {1, . . . , m}. Note thatIi

is a matroid for eachi ∈ {1, . . . ,m}. Then, the family of the circuits of the intersection
⋂m

i=1 Ii is nothing but
{C(1), . . . , C(m)}. Namely,C(

⋂m

i=1 Ii) = {C(1), . . . , C(m)}. Thus, we obtain thatC(I) = C(
⋂m

i=1 Ii). Since the
family of circuits determines an independence system uniquely, it follows thatI =

⋂m

i=1 Ii.

Note that the matroidsI1, . . . , Im in the proof are actually graphic matroids. (A graphic matroid is an indepen-
dence system isomorphic to the family of forests in a multigraph.) Therefore, Lemma 2.2 itself can be strengthened as
“every independence system can be represented as the intersection of a finite number of graphic matroids on the same
ground set,” although it is not important for the discussion in the rest of the paper.

Due to Lemma 2.2, we are interested in the representation of an independence system as their intersection of
matroids. From the construction in the proof of Lemma 2.2, we can see that the number of matroids which we need to
represent an independence systemI by the intersection is at most|C(I)|. However, we might do better. In this paper,
we investigate such a number for a clique complex.

3 Clique complexes and the main theorem

A graph gives rise to various independence systems. Among them, we study clique complexes.
Theclique complexof a graphG = (V, E) is the collection of all cliques ofG. We denote the clique complex of

G by C(G). Note that the empty set is a clique and{v} is also a clique for eachv ∈ V . So we can see that the clique
complex is actually an independence system onV . We also say that an independence system is a clique complex if it
is isomorphic to the clique complex of some graph. Notice that a clique complex is also called aflag complexin the
literature.

Here, we give some subclasses of the clique complexes. (We omit standard definitions.) (1) The family of the
stable sets of a graphG is nothing but the clique complex ofG. (2) The family of the matchings of a graphG is the
clique complex of the complement of the line graph ofG, which is called thematching complexof G. (3) The family of
the chains of a partially ordered setP is the clique complex of the comparability graph ofP, which is called theorder
complexof P. (4) The family of the antichains of a partially ordered setP is the clique complex of the cocomparability
graph (i.e., the complement of the comparability graph) ofP.

The next lemma may be a folklore.

Lemma 3.1. Let I be an independence system on a finite setV . Then,I is a clique complex if and only if the
size of every circuit inI is two. In particular, the circuits of the clique complex ofG are the edges ofG (i.e.,
C(C(G)) = E(G)).

Proof. Let I be the clique complex ofG = (V, E). Since a single vertexv ∈ V forms a clique, the size of each circuit
in I is greater than one. Each dependent set of size two inI is an edge of the complement ofG. Observe that they are
minimal dependent sets since the size of each dependent set inI is greater than one. In order to show that they are the
only minimal dependent sets, suppose that there exists a circuitC of size more than two inI, for the contradiction.
Then each two elements inC form an edge ofG because of the minimality ofC. HenceC is a clique inG. However,
this is a contradiction to the assumption thatC is dependent inI (i.e., not a clique inG).

Conversely, letI be an independence system onV and assume that the size of every circuit ofI is two. Now
construct a graphG ′ = (V, E ′) with E ′ = {{u, v} ∈

(
V

2

)
| {u, v} 6∈ C(I)}, and consider the clique complexC(G ′).

By the opposite direction which we have just shown, we can see that a circuit ofC(G ′) is an edge ofG ′, which is
a circuit of I. On the other hand, a circuit ofI, which is of size two, is an edge ofG ′. Therefore we have that
C(C(G ′)) = C(I). This concludes thatI is the clique complex ofG ′.

Now, we start studying the number of matroids which we need for the representation of a clique complex as their
intersection. For a graphG, denote byµ(G) the minimum number of matroids such that the clique complexC(G) is
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Figure 1: The correspondence of a partition matroid and a complete multipartite graph.

the intersection of them. Namely,

µ(G) := min

{
k | C(G) =

k⋂

i=1

Ii whereI1, . . . , Ik are matroids

}
.

First, we characterize the graphsG satisfyingµ(G) = 1 (namely the graphs whose clique complexes are indeed
matroids). To do this, we define a partition matroid. Apartition matroidis a matroidI(P) associated with a partition
P = {P1, P2, . . . , Pr} of V (that is,V =

⋃r

i=1 Pi andPi ∩ Pj = ∅ for all i 6= j), which is defined as

I(P) := {I ⊆ V | |I ∩ Pi| ≤ 1 for all i ∈ {1, . . . , r}}.

Observe thatI(P) is indeed a matroid. Being an independence system is clear. For the augmentation axiom, choose
arbitrary two setsX, Y ∈ I(P) such that|X| > |Y|. Then, there must exist an indexi ∈ {1, . . . , r} such thatX∩ Pi 6= ∅
andY ∩ Pi = ∅. Therefore, for a unique elementz ∈ X ∩ Pi, it holds thatY ∪ {z} ∈ I(P).

Furthermore, observe thatI(P) is a clique complex. Indeed we can see thatI(P) = C(GP) as soon as we
construct the following graphGP = (V, E) from P: two verticesu, v ∈ V are adjacent inGP if and only if u, v are
elements of distinct partition classes inP. See Figure 1 for an illustration.

An alternative argument is to observe that

C(I(P)) = {{u, v} ∈
(

V

2

)
| {u, v} ⊆ Pi for somei ∈ {1, . . . , r}}.

Then, we can find out thatI(P) satisfies the condition in Lemma 3.1, which showsI(P) is a clique complex. Note
that GP constructed above is a completer-partite graph with the partitionP. (In Figure 1,GP is a complete tri-
partite graph.) Particularly, this means that, ifG is a complete multipartite graph, thenµ(G) = 1. In the following
characterization of a matroidal clique complex, we claim that the converse also holds.

Lemma 3.2. LetG be a graph. Then the following are equivalent.

(1) The clique complex ofG is a matroid.

(2) The clique complex ofG is a partition matroid.

(3) G is completer-partite for somer.

Note that the equivalence of (1) and (3) in the lemma is also noticed by Okamoto [21].

Proof. “(2) ⇒ (1)” is clear, and “(3)⇒ (2)” is immediate from the discussion above. So we only have to show “(1)
⇒ (3).” Assume that the clique complexC(G) is a matroid. By Lemma 3.1, every circuit ofC(G) is of size two,
which corresponds to an edge ofG. Therefore, the elements of each circuit are parallel inC(G). Since for every
vertexv ∈ V(G) we have{v} ∈ C(G), we can see thatC(G) has no loop. Therefore, by Lemma 2.1, the parallel
elements induce an equivalence relation onV(G), which yields a partitionP = {P1, . . . , Pr} of V(G) for somer. This
equivalence relation can be said as “x andy are equivalent if and only if there is no edge betweenx andy in G.” Thus,
we can see thatG is a completer-partite graph with the vertex partitionP.
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Figure 2: An example for Theorem 3.3.

For the case of more matroids, we use a stable-set partition. Astable-set partitionof a graphG = (V, E) is a
partitionP = {P1, . . . , Pr} of V such that eachPi is a stable set ofG. (Note that a stable-set partition is nothing else
a proper coloring of a graph. However, here we are not interested in how many colors we need (i.e., the size ofP) as
we do not study the proper coloring problem here.) The following theorem is the main result of this paper. It tells us
how many matroids we need for the representation of a given clique complex.

Theorem 3.3. LetG = (V, E) be a graph. Then, the following are equivalent.

(1) The clique complexC(G) can be represented as the intersection ofk matroids (i.e.,µ(G) ≤ k).

(2) There existk stable-set partitionsP(1), . . . ,P(k) of G which fulfill the following condition.

Condition P:

{u, v} ∈
(
V

2

)
is an edge ofG if and only if {u, v} ⊆ S for someS ∈

⋃k

i=1 P(i).

In particular, whenCondition Pis fulfilled, it holds thatC(G) =
⋂k

i=1 I(P(i)).

Before proving Theorem 3.3, we illustrate the theorem by a pictorial example. Look at Figure 2. In the graph
G = ({v1, . . . , v6}, E), there are seven edges, and

P(1) = {{v1, v4}, {v2, v3}, {v5, v6}},

P(2) = {{v1, v3, v5}, {v2}, {v4, v6}},

P(3) = {{v1, v3}, {v2, v4}, {v5}, {v6}}

are stable-set partitions ofG. We can see that these stable-set partitions meet Condition P, that is, for each{u, v} ∈
E(G), it holds that{u, v} ⊆ S for someS ∈ P(1) ∪ P(2) ∪ P(3). For example, look at{v1, v5} ∈ E(G). Then we
have{v1, v3, v5} ∈ P(2) such that{v1, v5} ⊆ {v1, v3, v5}. Indeed, the clique complexC(G) can be written as the
intersectionI(P(1)) ∩ I(P(2)) ∩ I(P(3)) of three partition matroids, or in other words, the intersectionC(GP(1)) ∩
C(GP(2)) ∩ C(GP(3)) of the clique complexes of complete multipartite graphs, which are partition matroids (Lemma
3.2).

The intuition behind Condition P in Theorem 3.3 is as follows. When we consider the clique complexC(G)
of a given graphG, we want to gather some complete multipartite graphsG1, . . . , Gk so that we can ensure that
C(G) =

⋂k

i=1 C(Gi). Then an edge ofG should not be an edge ofGi for all i ∈ {1, . . . , k}, and actually Condition P
in Theorem 3.3 makes it sure that this requirement is satisfied.

To prove Theorem 3.3, we use the following lemmas.
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Lemma 3.4. Let G = (V, E) be a graph. If the clique complexC(G) can be represented as the intersection ofk

matroids (i.e.,µ(G) ≤ k), then there existk stable-set partitionsP(1), . . . ,P(k) such thatC(G) =
⋂k

i=1 I(P(i)).

Proof. Assume thatC(G) is represented as the intersection ofk matroidsI1, . . ., Ik. ChooseIi arbitrarily (i ∈
{1, . . . , k}). Then observe that there is no loop inIi. (Otherwise

⋂
Ii cannot be a clique complex.) Therefore, by

Lemma 2.1, the parallel elements ofIi induce an equivalence relation onV . Let P(i) be the partition ofV arising
from this equivalence relation. Then, we can see that the two-element circuits ofIi are the circuits of the partition
matroidI(P(i)), (i.e.,{C ∈ C(Ii) | |C| = 2} = C(I(P(i)))). Furthermore, by Lemma 3.1, it holds that

C(C(G)) = MIN

(
k⋃

i=1

C(Ii)

)
= MIN

(
k⋃

i=1

{C ∈ C(Ii) | |C| = 2}

)

=

k⋃

i=1

{C ∈ C(Ii) | |C| = 2} =

k⋃

i=1

C(I(P(i))).

Thus, we have obtained thatC(C(G)) =
⋃k

i=1 C(I(P(i))). This concludes thatC(G) =
⋂k

i=1 I(P(i)).

Here is another lemma.

Lemma 3.5. LetG = (V, E) be a graph andP be a partition ofV . ThenC(G) ⊆ I(P) if and only ifP is a stable-set
partition ofG.

Proof. Assume thatP is a stable-set partition ofG. ChooseI ∈ C(G) arbitrarily. Then we have that|I ∩ P| ≤ 1

for eachP ∈ P by the definitions of a clique and a stable set. Hence it follows thatI ∈ I(P). Thus we have that
C(G) ⊆ I(P).

Conversely, assume thatC(G) ⊆ I(P) for a partitionP of V(G). ChooseP ∈ P and a cliqueK ∈ C(G) of G

arbitrarily. From our assumption, we have thatK ∈ I(P). Therefore, it holds that|K ∩ P| ≤ 1 from the definition of a
partition matroid. This means thatP is a stable set ofG. Hence,P is a stable-set partition ofG.

Now it is time to prove Theorem 3.3.

Proof of Theorem 3.3.Assume that the clique complexC(G) of a given graphG = (V, E) is represented as the in-
tersection ofk matroidsI1, . . . , Ik. From Lemma 3.4,C(G) can be represented as the intersection ofk matroids
associated with some stable-set partitionsP(1), . . . ,P(k) of G. We show that these partitionsP(1), . . . ,P(k) fulfill
Condition P. By Lemma 3.1,{u, v} is an edge ofG if and only if {u, v} is a circuit of the clique complexC(G). Then,
we have that

{u, v} ∈ C(C(G)) = MIN

(
k⋃

i=1

C(I(P(i)))

)
=

k⋃

i=1

C(I(P(i))).

(The last identity relies on the fact that the size of each circuit of a partition matroid is two.) This means that there
exists at least onei ∈ {1, . . . , k} such that{u, v} ∈ C(I(P(i))). SinceC(I(P(i))) = {{u, v} ∈

(
V

2

)
| {u, v} ⊆

S for someS ∈ P(i)}, we can see that{u, v} ⊆ S for someS ∈ P(i) if and only if {u, v} is an edge ofG.
Conversely, assume that we are givenk stable-set partitionsP(1), . . . ,P(k) of V satisfying Condition P. We show

thatC(G) =
⋂k

i=1 I(P(i)). By Lemma 3.5, we can see thatC(G) ⊆ I(P(i)) for eachi ∈ {1, . . . , k}. This shows
that C(G) ⊆

⋂k

i=1 I(P(i)). In order to show thatC(G) ⊇
⋂k

i=1 I(P(i)), we only have to show thatC(C(G)) ⊆⋃k

i=1 C(I(P(i))). Pick C ∈ C(C(G)) arbitrarily. By Lemma 3.1 we can see thatC is an edge ofG. SetC =

{u, v} ∈ E(G). From Condition P, there exists someS ∈
⋃k

i=1 P(i) such that{u, v} ⊆ S. This means that{u, v} ∈⋃k

i=1 C(I(P(i))). Thus we complete the proof.

Now, let us look at some consequences of the discussion in this section. First of all, Theorem 3.3 implies that
the clique complexC(G) of a graphG can be represented as the intersection ofk matroids if and only ifC(G) can
be represented as the intersection ofk partition matroids arising from stable-set partitions ofG. Therefore, in order
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to find µ(G), it is sufficient to consider partition matroids arising from stable-set partitions ofG. This considerably
reduces the time/cost of the search.

In Lemma 3.4, we showed that, for a given graphG on the vertex setV whose clique complexC(G) is the
intersection ofk matroids, we can findk partition matroids whose intersection isC(G). Moreover, we can show the
following “converse” statement.

Corollary 3.6. For any collection ofk partitionsP(1),P(2), . . . ,P(k) of a finite setV , there exists a graphG on V

such thatC(G) is the intersection of the partition matroidsI(P(1)), I(P(2)), . . . , I(P(k)).

Proof. From a given collection of partitionsP(1), . . . ,P(k) of V , we construct a graphG as follows. The vertex set
of G is V . Two verticesu andv are connected by an edge inG if and only if they do not lie in a common class of
P(i) for any i ∈ {1, . . . , k} (i.e., there exists noS ∈ P(i) such that{u, v} ⊆ S for any i ∈ {1, . . . , k}). Then we can
see thatP(1), . . . ,P(k) are stable-set partitions ofG. Moreover, they satisfy Condition P in the statement of Theorem
3.3. Therefore, by Theorem 3.3, we can conclude thatC(G) =

⋂k

i=1 I(P(i)).

This leads to the following important consequence.

Corollary 3.7. For everyk > 0, the class of clique complexes which are the intersections ofk matroids is the same
as the class of the intersections ofk partition matroids; in particular, the class of clique complexes is the same as the
class of the intersections of partition matroids.

Proof. Combine Lemma 3.4 and Corollary 3.6.

At the end of this section, we want to note that Theorem 3.3 implies that the following decision problem belongs
to NP.

Problem: CLIQUE COMPLEX k-MATROID REPRESENTATION

Instance: A graphG and a positive integerk
Question: Isµ(G) ≤ k?

Let us state this fact as a corollary.

Corollary 3.8. CLIQUE COMPLEX k-MATROID REPRESENTATIONbelongs toNP.

Proof. This is not trivial since a matroid itself can have an exponential number of independent sets. However, from
the viewpoint of Theorem 3.3,k stable-set partitions satisfying Condition P can be a certificate for the positive answer
to the problem above. Since the size of stable-set partition is a polynomial of the size of a graphG andk is at most the
number of vertices inG, thesek stable-set partitions constitute a polynomial-size certificate. Furthermore, Condition
P can be checked in polynomial time for a given graph and givenk stable-set partitions of the graph. That is why the
decision problemCLIQUE COMPLEX k-MATROID REPRESENTATIONbelongs to NP.

However, we do not know thatCLIQUE COMPLEX k-MATROID REPRESENTATIONbelongs to P, or even to coNP.
Possibly it could be NP-complete. Whenk is fixed, the status is somehow changed. Fork = 1, due to Lemma 3.2 the
problem can be solved in polynomial time because it is easy to check whether a graph is complete multipartite. The
case ofk = 2 is discussed in Section 5, and we prove that in this case the problem can also be solved in polynomial
time.

4 An extremal problem for clique complexes

Remember thatµ(G) is the minimum number of matroids which we need for the representation of the clique complex
of G as their intersection. Furthermore, letµ(n) be the maximum ofµ(G) over all graphsG with n vertices. Namely,

µ(n) := max{µ(G) | G hasn vertices}.

In this section, we determineµ(n) exactly. It is straightforward to observe thatµ(1) = 1. For the case ofn ≥ 2,
we can immediately obtainµ(n) ≤

(
n

2

)
from Lemmas 2.2 and 3.1. However, the following theorem tells us that the

truth is in fact much better.

8



K1 ∪ K5

Figure 3: The graphK1 ∪ K5.

Theorem 4.1. For everyn ≥ 2, it holds thatµ(n) = n − 1.

First, we prove thatµ(n) ≥ n − 1. Consider the graphK1 ∪ Kn−1. (Figure 3 showsK1 ∪ K5.)

Lemma 4.2. For n ≥ 2, we have thatµ(K1 ∪ Kn−1) = n − 1. Particularly it follows thatµ(n) ≥ n − 1.

Proof. First, observe thatK1 ∪ Kn−1 hasn − 1 edges. Therefore, Lemma 3.1 implies that the number of the circuits
of C(K1 ∪ Kn−1) is n − 1. Then, by the argument below the proof of Lemma 2.2, it follows thatµ(K1 ∪ Kn−1) ≤
|C(C(K1 ∪ Kn−1))| = n − 1.

Now, suppose thatµ(K1 ∪ Kn−1) ≤ n − 2. By Theorem 3.3, there exist at mostn − 2 stable-set partitions
P(1), . . . ,P(n−2) of K1 ∪ Kn−1 satisfying Condition P, namely, each edgee of K1 ∪ Kn−1 is contained in some set
S ∈

⋃n−2

i=1 P(i). Then, the pigeon hole principle tells us that there exists an indexi∗ ∈ {1, . . . , n − 2} such that at
least two edges ofK1 ∪ Kn−1 are contained in sets ofP(i∗). Let e, e ′ be such (distinct) edges ofK1 ∪ Kn−1 and
Pe, Pe ′ ∈ P(i∗) be unique sets such thate ⊆ Pe ande ′ ⊆ Pe ′ . (The uniqueness follows from the fact thatP(i∗)

is a partition.) Now, remember thate ande ′ share a vertex (sincee, e ′ are edges ofK1 ∪ Kn−1). This implies that
Pe ∩ Pe ′ 6= ∅. Therefore, it holds thatPe = Pe ′ sinceP(i∗) is a partition. Sete = {u, v} ande ′ = {u, v ′}. (Here,
u is the vertex shared bye ande ′.) This implies that{v, v ′} is also contained inPe. However,{v, v ′} is an edge of
K1 ∪ Kn−1. This contradicts the fact thatP(i∗) is a stable-set partition (i.e.,Pe is a stable set ofK1 ∪ Kn−1). Thus, it
follows thatµ(K1 ∪ Kn−1) = n − 1.

For the second part, we just follow the definition ofµ(n). Then we conclude thatµ(n) ≥ µ(K1 ∪ Kn−1) =
n − 1.

Next we prove thatµ(n) ≤ n−1. To do that, first we look at the relation ofµ(G) with the edge-chromatic number
χ ′(G) of the complement.

Lemma 4.3. It holds thatµ(G) ≤ χ ′(G) for every graphG with n vertices. Particularly, ifn is even then we have
that µ(G) ≤ n − 1, and if n is odd then we have thatµ(G) ≤ n. Moreover, ifµ(G) = n thenn is odd and the
maximum degree ofG is n − 1 (i.e.,G has an isolated vertex).

Proof. Consider a minimum proper edge-coloring ofG, and letk = χ ′(G). Now, we constructk stable-set partitions
of a graphG with n vertices from this edge-coloring.

We have the color classesC(1), . . . , C(k) of the edges from the minimum proper edge-coloring. Let us take a color
classC(i) = {e

(i)
1 , . . . , e

(i)
li

} (i ∈ {1, . . . , k}) and construct a stable-set partitionP(i) of G from C(i) as follows:S is a

member ofP(i) if and only if either (1)S is a two-element set belonging toC(i) (i.e.,S = e
(i)
j for somej ∈ {1, . . . , li})

or (2) S is a one-element set{v} which is not used inC(i) (i.e., v 6∈ e
(i)
j for any j ∈ {1, . . . , li}). Notice thatP(i) is

actually a stable-set partition. Then we collect all the stable-set partitionsP(1), . . . ,P(k) constructed by the procedure
above. Moreover, we can check that these stable-set partitions satisfy Condition P in Theorem 3.3 (since each edge of
G appears in exactly one of theC(i)’s). Hence, we have thatµ(G) ≤ k = χ ′(G) by Theorem 3.3. Figure 4 illustrates
the construction. In this example, we have thatχ ′(G) = 3. The first row shows a given graphG and its complement
G. In the second row, we can find a minimum proper edge-coloring ofG, and eachC(i) depicts a color class of this
coloring. The constructed stable-set partitions are put in the third row.

Now, notice thatχ ′(G) ≤ χ ′(Kn) for any graphG with n vertices. Thus, ifn is even, then we can conclude that
µ(G) ≤ n − 1 sinceχ ′(Kn) = n − 1. Similarly, if n is odd, then we can conclude thatµ(G) ≤ n sinceχ ′(Kn) is n.

For the last part of the lemma, assume thatµ(G) = n. From the discussion above,n should be odd. Note that
Vizing’s theorem (see [6] for example) says that for a graphH with maximum degree∆(H) we have thatχ ′(H) =
∆(H) or ∆(H) + 1. Since∆(G) ≤ n − 1, we have thatµ(G) ≤ χ ′(G) ≤ ∆(G) + 1 ≤ n. Therefore,µ(G) = n holds
only if ∆(G) + 1 = n.
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Figure 4: The construction in the proof of Lemma 4.3.

Now, we show that if a graphG with n vertices (wheren is odd) has an isolated vertex thenµ(G) ≤ n − 1. This
completes the proof of Theorem 4.1.

Lemma 4.4. Let n be odd andG be a graph withn vertices which has an isolated vertex. Then it holds that
µ(G) ≤ n − 1.

Proof. Let v∗ be an isolated vertex ofG. Consider the subgraph ofG induced byV(G) \ {v∗}. Denote this induced
subgraph byG ′ (i.e.,G ′ = G[V(G) \ {v∗}]). SinceG ′ hasn− 1 vertices, which is even, we haveµ(G ′) ≤ n− 2 from
Lemma 4.3.

Now we constructn− 1 stable-set partitions ofG which satisfy Condition P fromn− 2 stable-set partitions ofG ′

which also satisfy Condition P. Denote the vertices ofG ′ by v1, . . . , vn−1, and stable-set partitions ofG ′ satisfying
Condition P byP ′(1)

, . . . ,P ′(n−2) (where some of them may be identical in caseµ(G ′) < n − 2). Then construct
stable-set partitionsP(1), . . . ,P(n−2),P(n−1) of G as follows. For eachi ∈ {1, . . . , n − 2}, putP ∈ P(i) if and only
if either (1)P ∈ P ′(i) andvi 6∈ P or (2) v∗ ∈ P, P \ {v∗} ∈ P ′(i) andvi ∈ P. Furthermore, putP ∈ P(n−1) if and
only if either (1)P = {vi} (i ∈ {1, . . . , n − 2}) or (2) P = {v∗, vn−1}. Figure 5 illustrates the construction ofP(i)

(i ∈ {1, . . . , n − 1}). The first row shows a given graphG where the topmost vertexv∗ is isolated. In the second row,
we can find three stable-set partitions ofG ′ = G[{v1, v2, v3, v4}] satisfying Condition P. In this row, the symbol◦ is
used for the indication of the neglected vertexv∗. In the third row (lowest), the constructed stable-set partitions ofG

are shown according to the considered vertices.
For conclusion, it is enough to check that the stable-set partitionsP(1), . . . ,P(n−1) constructed above satisfy

Condition P. Choose any edgee of G. If e is also an edge ofG ′, then we can find a setS ′ ∈
⋃n−2

i=1 P ′(i) such that

e ⊆ S ′ sinceP ′(1)
, . . . ,P ′(n−2) satisfy Condition P. From the construction ofP(1), . . . ,P(n−2), we can observe

that for eachi ∈ {1, . . . , n − 2} and eachP ′ ∈ P ′(i) there exists a setP ∈ P(i) such thatP ′ ⊆ P. Therefore, forS ′

above, we also haveS ∈
⋃n−2

i=1 P(i) such thatS ′ ⊆ S, which implies thate ⊆ S. If e is not an edge ofG ′, thene has
a form ase = {v∗, vi} for somei ∈ {1, . . . , n − 1}. Then it turns out thate is contained in a member ofP(i) which
was put inP(i) due to the condition (2). In this way, we have verified thatP(1), . . . ,P(n−1) satisfy Condition P.
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P ′(3)P ′(2)P ′(1)

P(3)P(2) P(4)P(1)

G

v∗

v4

v3v2

v1

Figure 5: The construction of stable-set partitions from an edge-coloring.

v5

v1

v2v6

v3

G
v4

{v4, v6}

{v1, v3, v5}

{v2, v3}

{v2, v4}

{v5, v6}

S(G){v1, v4}

Figure 6: An example of stable-set graphs.

5 Characterizations for two matroids

In this section, we look more closely at a clique complex which can be represented as the intersection of two matroids.
Note that Fekete, Firla & Spille [9] gave a characterization of the graphs whose matching complexes can be represented
as the intersections of two matroids. So the theorem in this section is a generalization of their result. (Their result will
be discussed in Section 7.)

To do this, we invoke another concept. Thestable-set graphof a graphG = (V, E) is a graph whose vertices are
the maximal stable sets ofG and two vertices of which are adjacent if and only if the corresponding two maximal
stable sets ofG share a vertex inG. We denote the stable-set graph of a graphG by S(G). Figure 6 is an example of
stable-set graphs.

The next lemma establishes the relationship betweenµ(G) and the chromatic numberχ(S(G)) of the stable-set
graph.

Lemma 5.1. Let G be a graph. If the stable-set graphS(G) is k-colorable, then the clique complexC(G) can be
represented as the intersection ofk matroids. In other words, it holds thatµ(G) ≤ χ(S(G)).

Proof. Assume that we are given a properk-coloringc of S(G), i.e.,c : V(S(G)) → {1, . . . , k} wherec(S) 6= c(T) if
S ∩ T 6= ∅. Then gather the maximal stable sets ofG which have the same color with respect to the coloringc, that is,
putCi = {S ∈ V(S(G)) | c(S) = i} for eachi ∈ {1, . . . , k}. We can see that the members ofCi are disjoint maximal
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color 3
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{v1, v4} S(G)
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{v2, v4}

G1 G2 G3

Figure 7: The construction ofGi in the proof of Lemma 5.1.

stable sets ofG for eachi ∈ {1, . . . , k}.
Now we construct a graphGi from Ci as follows. The vertex set ofGi is the same as that ofG, and two vertices

of Gi are adjacent if and only if either (1) one belongs to a maximal stable set inCi and the other belongs to another
maximal stable set inCi, or (2) one belongs to a maximal stable set inCi and the other belongs to no maximal stable
set inCi. Figure 7 explains the construction ofGi. In Figure 7, three colors ofS(G) are depicted by•, ¥ and◦, and
in the second row, the shaded groups show maximal independent sets corresponding to the vertices inS(G) colored
by the identical colors.

Note thatGi is completer-partite, wherer is equal to|Ci| plus the number of the vertices which do not belong to
any maximal stable set inCi. (This holds in general, not just in the picture above.) Then considerC(Gi), the clique
complex ofGi. By Lemma 3.2, we can see thatC(Gi) is actually a matroid. Since an edge ofG is also an edge ofGi

(or by Lemma 3.5), we have thatC(G) ⊆ C(Gi).
Now we consider the intersectionI =

⋂k

i=1 C(Gi). SinceC(G) ⊆ C(Gi) for every i ∈ {1, . . . , k}, we have
C(G) ⊆ I. Since each circuit ofC(G) is also a circuit ofC(Gi) for somei ∈ {1, . . . , k} (recall Lemma 3.1), we also
haveC(C(G)) ⊆ C(I), which impliesC(G) ⊇ I. Thus we haveC(G) = I.

Note that the converse of Lemma 5.1 does not hold in general even ifk = 3. A counterexample is the graph
G = (V, E) defined asV = {v1, v2, v3, v4, v5, v6} andE = {{v1, v2}, {v3, v4}, {v5, v6}}. See Figure 8. In the graph
shown in Figure 8, consider the following stable-set partitions ofG:

P(1) = {{v1, v3, v5}, {v2, v4, v6}},

P(2) = {{v1, v3, v6}, {v2, v4, v5}},

P(3) = {{v1, v4, v5}, {v2, v3, v6}}.

We can check that these stable-set partitions fulfill Condition P in Theorem 3.3. Therefore, by Theorem 3.3, we can
see thatC(G) is the intersection of three partition matroidsI(P(1)), I(P(2)) andI(P(3)). However,S(G) is not
3-colorable but4-colorable. (In Figure 8, a proper4-coloring ofS(G) is also indicated.)

By a similar argument, we can also see that, if we consider a graphG consisting ofn/2 independent edges only
(i.e. a graph itself being a perfect matching), thenµ(G) = Θ(n) andχ(S(G)) = Θ(2n/2). Therefore, the difference
betweenµ(G) andχ(S(G)) can be arbitrarily large.

However, the converse holds ifk = 2.

Theorem 5.2. Let G be a graph. The clique complexC(G) can be represented as the intersection of two matroids if
and only if the stable-set graphS(G) is 2-colorable (i.e., bipartite).
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S(G)
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v5 v3

v1

v2

v4 G

Figure 8: A counterexample for the converse of Lemma 5.1.

Proof. The if-part is straightforward from Lemma 5.1. Now we prove the only-if-part. Assume thatC(G) is repre-
sented as the intersection of two matroids. Due to Theorem 3.3, we may assume that these two matroids are associated
with stable-set partitionsP(1),P(2) of G satisfying Condition P.

Let S be a maximal stable set ofG. Now we claim thatS ∈ P(1) ∪P(2). To prove this claim, from the maximality
of S, we only have to show thatS ⊆ P for someP ∈ P(1) ∪ P(2). (Then, the maximality ofS tells us thatS = P.)
SinceP(1) andP(2) are partitions ofV(G), this claim clearly holds if|S| = 1. If |S| = 2, the claim holds from
Condition P.

Assume that|S| ≥ 3. Then consider the following independence system:

I = {I ⊆ S | I ⊆ P for someP ∈ P(1) ∪ P(2)}.

Choose a baseB of I arbitrarily. SinceB ⊆ S andS is a stable set ofG, we can see thatB is also a stable set ofG.
This means thatB is a dependent set ofC(G). Therefore,B contains a circuit ofC(G). By Lemma 3.1, we have that
|B| ≥ 2. If S = B holds then we are done (sinceB ⊆ P for someP ∈ P(1) ∪ P(2)). SinceB ⊆ S, it suffices to show
thatB ⊇ S.

Now, suppose thatS \ B 6= ∅ for a contradiction. Picku ∈ S \ B arbitrarily. Then{u, v} is a circuit ofC(G) for
anyv ∈ B sinceS is a stable set ofG and{u, v} ⊆ S. Without loss of generality, we may assume thatB ⊆ P for some
P ∈ P(1). Then it holds that{u} ∪ B 6⊆ P. (otherwise, it would violate the maximality ofB in I). Therefore, from
Condition P, we can see that there should exist someP ′ ∈ P(2) such that{u, v} ⊆ P ′ for all v ∈ B. This implies that
{u}∪B ⊆ P ′, which is a contradiction to the maximality ofB. Hence it follows thatS = B. Thus, the claim is verified.

Now we color the vertices ofS(G), i.e., the maximal stable sets ofG, according toP(1) andP(2). If a maximal
stable setS belongs toP(1), thenS is colored by1. Similarly, if S belongs toP(2), thenS is colored by2. (If S

belongs to both, thenS can be colored by either1 or 2 arbitrarily.) This coloring certainly provides a proper2-coloring
of S(G) sinceP(1) andP(2) are partitions ofV(G).

Figure 9 is an illustration of what we saw in the proof. The graphG in Figure 9 has three maximal stable sets, and
they form the vertex set of the stable-set graphS(G). In the second row, we can see two stable-set partitions satisfying
Condition P. According to these stable-set partitions, we can color the vertices inS(G). In this example,{v1, v3, v5}

is colored by• (color 1) since{v1, v3, v5} appears inP(1), and{v5, v6} is colored by◦ (color 2) since{v5, v6} appears
in P(2). Then,{v2, v4} appears in both ofP(1) andP(2). Therefore we can color it by either• or ◦ arbitrarily. In the
picture above, we just chose◦.

Some researchers already noticed that the bipartiteness ofS(G) is characterized by other properties. We gather
them in the following proposition. Here, theline graphof a multigraphG is a graphL(G) such that the vertex set of
L(G) is the edge set ofG and two vertices inL(G) are adjacent through an edge if and only if the corresponding two
edges inG share a vertex inG.

Proposition 5.3. LetG be a graph. Then the following are equivalent.

(1) The stable-set graphS(G) is bipartite.

(2) G is the complement of the line graph of a bipartite multigraph.
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Figure 9: An illustration of the proof of Theorem 5.2.

K1 ∪ P3K1 ∪ K2 ∪ K2K1 ∪ K3

Figure 10: The forbidden induced subgraphs for Proposition 5.3.

(3) G has no induced subgraph isomorphic toK1 ∪K3, K1 ∪K2 ∪K2, K1 ∪P3 or C2k+3 (k = 1, 2, . . .). See Figure
10.

Proof. The equivalence “(1)⇔ (2)” is immediate from a result by Cai, Corneil & Proskurowski [3]. Also, the equiva-
lence “(1)⇔ (3)” is immediate from a result by Protti & Szwarcfiter [23].

Note that we can decide whether the stable-set graph of a graph is bipartite or not in polynomial time using
the algorithm described by Protti & Szwarcfiter [23]. Here, we mention their algorithm in short. To establish their
algorithm, first we have to observe that ifS(G) is bipartite thenG contains at most2n maximal stable sets. (This is
not trivial. For a proof, see the original paper [23].) Using this observation, they provided the following algorithm. At
the first step, we list up the maximal stable sets ofG using an algorithm with polynomial delay by Tsukiyama, Ide,
Ariyoshi & Shirakawa [26], for example. If the algorithm starts to generate more than2n maximal stable sets then we
stop the algorithm and answer “NO” (sinceS(G) cannot be bipartite from the observation above). If it generates at
most2n maximal stable sets, then we proceed to the second step. At the second step, we explicitly constructS(G),
which can be done in polynomial time since the number of vertices ofS(G) is at most2n. Then, as the third step, we
check thatS(G) is bipartite or not, which can also be done in polynomial time. If it is bipartite then answer “YES,”
otherwise “NO.” In total, this procedure runs in polynomial time.

As for the maximum weighted clique problem, for the class of graphs satisfying the conditions in Proposition 5.3
we can solve the maximum weighted clique problem exactly in polynomial time by Frank’s algorithm [10] for the
maximum weighted base problem in the intersection of two matroids. Notice that in Frank’s algorithm we need to
have a description of the two matroids. However, since the above algorithm by Protti & Szwarcfiter [23] explicitly
gives a proper2-coloring of the stable-set graph if the answer is “YES,” from the argument in the proof of Theorem
5.2 we can find the corresponding stable-set partitions of the graph, which are sufficient for running Frank’s algorithm.

Speaking of the case of three matroids, we leave the complexity of deciding whether a clique complex is the
intersection of three matroids as an open problem. As for the maximum weighted clique problem, the problem of
finding a maximum weighted clique in a graph whose clique complex is the intersection of three matroids turns out
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to be NP-hard, even for the unweighted case. Here, we want to describe the reason briefly. In Corollary 3.7, we
mentioned that the class of clique complexes which are the intersections of three matroids is the same as the class of
the intersections of three partition matroids. Therefore, our problem is nothing but finding a maximum weighted base
in the intersection of three partition matroids. However this problem contains the maximum3-dimensional matching
problem as a special case, which is known to be NP-hard [11] (and even MAX-SNP-hard [15]). That is why our
problem is intractable for three matroids.

6 Graphs as independence systems and the intersection of matroids

We can regard a graph as an independence system such that a subset of the vertex set is independent if and only if
it is either (1) the empty set, (2) a vertex of the graph or (3) an edge of the graph. In this section we consider how
many matroids we need for the representation of a graph (as an independence system) by their intersection. First, we
establish a lemma on the matroidal case.

Lemma 6.1. LetG be a graph. Then the following are equivalent.

(1) G is a matroid.

(2) C(G) is a matroid.

(3) G is completer-partite for somer.

For the proof, we need a truncation. LetI be an independence system onV . Fork ≥ 0, thek-th truncationof I
is the subfamilyI≤k of I defined asI≤k = {X ∈ I | |X| ≤ k}. We can see that the truncation of an independence
systemI is also an independence system, and ifI is a matroid thenI≤k is also a matroid for everyk ≥ 0. Note that
thek-th truncation is also called the(k − 1)-skeleton, especially in some papers which study “simplicial complexes”
instead of “independence systems.”

Proof of Lemma 6.1.“(2) ⇔ (3)” is precisely Lemma 3.2. “(2)⇒ (1)” is immediate from the facts thatG is the2-
truncation ofC(G) and that the truncation of a matroid is also a matroid. Now we prove “(1)⇒ (3).” Suppose that
G is not completer-partite for anyr. Then,G has three verticesu, v,w such that{u, v} is an edge but neither{u, w}

nor {v, w} is an edge ofG. However, since{u, v} and{w} are independent sets, by the augmentation axiom{u,w} or
{v,w} should be an edge ofG. This is a contradiction.

The following theorem says that the minimum number of matroids for a graph is the same as that for the clique
complex of this graph.

Theorem 6.2. LetG be a graph. ThenG can be represented as the intersection ofk matroids if and only if the clique
complexC(G) can be represented as the intersection ofk matroids.

Proof. First, we show that if the clique complexC(G) is the intersection ofk matroids thenG can be represented as
the intersection ofk matroids.

Let C(G) be represented as the intersection of the matroidsI1, . . . , Ik, i.e.,C(G) =
⋂k

i=1 Ii. Due to Theorem
3.3, without loss of generality, we may assume thatIi is a partition matroid for eachi ∈ {1, . . . , k}. Then consider
the truncationsI≤2

1 , . . . , I≤2

k , and observe that
⋂k

i=1 I
≤2

i = (
⋂k

i=1 Ii)
≤2. On the other hand, we have thatG =

C(G)≤2 = (
⋂k

i=1 Ii)
≤2. Thus we conclude thatG = (

⋂k

i=1 Ii)
≤2.

Next we show that ifG can be represented as the intersection ofk matroids thenC(G) can also be represented as
the intersection ofk matroids.

Let G be represented as the intersection of the matroidsJ1, . . . ,Jk, namelyG =
⋂k

i=1 Ji. Without loss of
generality, we may assume that the size of every base ofJi is at most two for eachi ∈ {1, . . . , k}. (If not, then
consider the truncationJ≤2

i , which does not change the intersection that we are considering since the size of every
base inG is at most two.) Then we can regardJi as a graph for eachi ∈ {1, . . . , k}. Let us denote this graph byG ′

i.
From Lemma 6.1, the clique complex ofG ′

i is a matroid (sinceG ′
i is a matroid). Now we have thatG =

⋂k

i=1 G ′
i.

Therefore, it holds thatC(G) = C(
⋂k

i=1 G ′
i) =

⋂k

i=1 C(G ′
i). Since we have just observed thatC(G ′

i) is a matroid for
eachi ∈ {1, . . . , k}, this completes the proof.
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7 Matching complexes

In this section, we apply our theorems to the matching complexes of graphs, and observe that some results by Fekete,
Firla & Spille [9] can be obtained from our more general theorems.

A matchingof a graphG = (V, E) is a subsetM ⊆ E of the edge set in which the edges are pairwise disjoint, that
is, e ∩ e ′ = ∅ for eache, e ′ ∈ M. A matching complexof a graphG is the family of matchings ofG, and denoted by
M(G). We can see that the matching complexM(G) is indeed an independence system onE. Note that the matching
complexM(G) is identical to the clique complex of the complement of the line graph ofG, i.e.,M(G) = C(L(G)).
Recall that theline graphof a graphG is a graphL(G) such that the vertex set ofL(G) is the edge set ofG and two
vertices inL(G) are adjacent through an edge if and only if the corresponding two edges inG share a vertex inG. We
also call a graphG a line graph if there exists some graph whose line graph isG. For a line graphG, a graphH is
called aroot graphof the line graphG if G = L(H). Note that a root graph of a line graph is not unique in general.
For example,K3 is the line graph ofK3 and also ofK1,3, i.e., bothK3 andK1,3 are the root graphs ofK3. Also, note
that not every graph is a line graph; for example,K1,3 is not a line graph.

First, let us deduce the characterization of matroidal matching complexes from Lemma 3.2.

Corollary 7.1. Let G be a graph. The matching complexM(G) is a matroid if and only ifG is a disjoint union of
stars and triangles.

Proof. Assume thatM(G) is a matroid. SinceM(G) = C(L(G)) holds, we have thatL(G) is a completer-partite
graph for somer by Lemma 3.2. This means thatL(G) is a disjoint union of complete graphs. LetK be a connected
component ofL(G), which is a complete graph. Now, we want to find the root graphs ofK. Then we can observe that
the root graph ofK1 is K2(= K1,1), and this is a unique root graph ofK1; the root graph ofK2 is K1,2, and this is a
unique root graph ofK2; the root graphs ofK3 areK3 andK1,3, and they are the only root graphs ofK3; the root graph
of Kn (n ≥ 4) is K1,n, and this is a unique root graph ofKn. (Note that our graph is always simple, i.e., without a
loop or a multiple edge.) Therefore,G is a disjoint union of stars and triangles.

Let us show the converse. Assume thatG is a disjoint union of stars and triangles. Then we can see thatL(G) is a
complete multipartite graph. From Lemma 3.2, it follows thatM(G) = C(L(G)) is a matroid.

Fekete, Firla & Spille [9] studied the matching complex in the same spirit as we did in this paper. They proved the
following statement for the intersection of two matroids. In this paper, we derive this result as a corollary from our
theorem.

Corollary 7.2 ([9]). LetG be a graph. The matching complexM(G) is the intersection of two matroids if and only if
G contains no subgraph (not necessarily induced) isomorphic toC2k+3 (k = 1, 2, . . .), and each triangle inG has at
most one vertex of degree more than two.

To prove Corollary 7.2, we use the fact on a line graph.

Lemma 7.3. Let G be a graph,H be a line graph, andR1, . . . , Rk be the root graphs ofH. ThenL(G) contains no
induced subgraph isomorphic toH if and only ifG contains no subgraph (not necessarily induced) isomorphic to any
of R1, R2, . . . , Rk.

Proof. Straightforward from the definitions of a line graph and a root graph.

With use of Lemma 7.3, we can prove Corollary 7.2.

Proof of Corollary 7.2.Assume that there exist two matroidsI1, I2 on E(G) such thatM(G) = I1 ∩ I2. From the
observation above, this is equivalent to thatC(L(G)) = I1 ∩ I2. By Theorem 5.2, this is also equivalent to thatL(G)
contains no induced subgraph isomorphic toK1 ∪ K3, K1 ∪ K2 ∪ K2, K1 ∪ P3 or C2k+3 (k = 1, 2, . . .). Therefore,
by Lemma 7.3, we can see that this is also equivalent to thatL(G) contains no subgraph (not necessarily induced)
isomorphic toK1,3 = K1 ∪ K3, W4 = K1 ∪ K2 ∪ K2, W−

4 = K1 ∪ P3 or C2k+3 (k = 1, 2, . . .). See Figure 11 for the
shapes of these graphs.

Now, we want to know the root graphs ofK1,3, W4, W−
4 , andC2k+3 (k = 1, 2, . . .). Then we can observe the

following. (1) There is no root graph ofK1,3 (i.e., K1,3 is not a line graph). (2) The root graph ofW4 is C+
4 (in the
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K1,3 W4 W−
4

Figure 11: Graphs appearing in the proof of Corollary 7.2.

AC+
4

Figure 12: The root graphs appearing in the proof of Corollary 7.2.

picture below) and this is a unique root graph ofW4. (3) The root graph ofW−
4 is A (in the picture below) and this

is a unique root graph ofW−
4 . (4) For eachk = 1, 2, . . ., the root graph ofC2k+3 is C2k+3 and this is a unique root

graph ofC2k+3. See Figure 12.
Thus, we can see that Lemma 7.3 implies that the matching complexM(G) is the intersection of two matroids

if and only if G contains no subgraph isomorphic toC+
4 , A or C2k+3 (k = 1, 2, . . .). Hence, for the proof of the

corollary, it is enough to observe thatG contains no subgraph isomorphic toC+
4 or A if and only if each triangle inG

has at most one vertex of degree more than two.
To observe that, first assume thatG contains no subgraph isomorphic toC+

4 or A and also suppose that there exists
a triangle inG which has at least two vertices of degree more than two. Letu andv be such vertices in the triangle
(u 6= v). Then the above assumption means that there exist edges{u, x} and{v, y} in G. In casex = y, we can see that
G containsC+

4 as a subgraph. In casex 6= y, we can see thatG containsA as a subgraph. Therefore, in both cases
this is a contradiction.

Conversely, assume that each triangle inG has at most one vertex of degree more than two. Pick a triangleT in
G arbitrarily. Then we can see thatT cannot be contained in a subgraph isomorphic toC+

4 or A in G sinceC+
4 and

A have two vertices of degree more than two. This means thatG contains no subgraph isomorphic toC+
4 or A. This

concludes the proof.

Fekete, Firla & Spille [9] also gave a characterization of the matching complex which can be represented as the
intersection ofk matroids for a generalk. Their characterization involves an integer programming formulation of the
problem to find the rightk. We observe that their characterization is also a corollary of our theorem. To do that, we
need to introduce their formulation.

First, we introduce the variables in the formulation. Since the circuits ofM(G) are the paths of length 2 (this is an
immediate consequence from Lemma 3.1 and the fact thatM(G) = C(L(G))), it makes sense that we use a variable
x ∈ {0, 1}{1,...,k}×P(G) whereP(G) is the family of all paths of length 2 inG. We denote a path of length 2 inG
by (u, v, w) whenv is the midpoint of the path andu, w are the endpoints of the path. Note that the path(w, v, u)
is identified with(u, v, w). The interpretation of the variablex is as follows. Assume thatM(G) is the intersection
of matroidsI1, . . . , Ik. For i ∈ {1, . . . , k} and(u, v, w) ∈ P(G), x[i, (u, v, w)] = 1 if (u, v, w) is a circuit ofIi;
otherwisex[i, (u, v, w)] = 0. Then Fekete, Firla & Spille [9] considered the following set of constraints.

Cover condition:
∑k

i=1 x[i, (u, v,w)] ≥ 1 for all (u, v, w) ∈ P(G),

Claw condition: x[i, (u, v, w)] + x[i, (u, v, t)] + x[i, (w, v, t)] 6= 2 for all i ∈ {1, . . . , k} and (u, v,w), (u, v, t),
(w, v, t) ∈ P(G),

Triangle condition: x[i, (u, v, w)]+x[i, (v,w, u)]+x[i, (w,u, v)] 6= 2 for all i ∈ {1, . . . , k} and(u, v, w), (v,w, u),
(w,u, v) ∈ P(G),

Matching condition: x[i, (u, v, w)] + x[i, (v,w, t)] ≤ 1 for all i ∈ {1, . . . , k} and(u, v, w), (v,w, t) ∈ P(G).
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(See Fekete, Firla & Spille [9] for the detail of these constraints.) Note that Claw condition and Triangle condition can
be written as linear inequality constraints as well.

Corollary 7.4 ([9]). LetG be a graph. ThenM(G) is the intersection ofk matroids if and only if there exists a vector
x ∈ {0, 1}{1,...,k}×P(G) which satisfies all of the four conditions above (namely, Cover condition, Claw condition,
Triangle condition and Matching condition).

Proof. Let G = (V, E) be a given graph. First, let us assume thatM(G) = C(L(G)) is the intersection ofk matroids.
Then, by Theorem 3.3, there existk stable-set partitionsP(1), . . . ,P(k) of L(G) which satisfy the following condition:
{e, f} ∈

(
E

2

)
is an edge ofL(G) if and only if {e, f} ⊆ S for someS ∈

⋃k

i=1 P(i). Pute = {u, v} andf = {w, t} for
someu, v,w, t ∈ V. Then, we can see that this condition is equivalent to that{e, f} ∈

(
E

2

)
forms a path(u, v = t,w)

of length 2 inG if and only if {e, f} ⊆ S for someS ∈
⋃k

i=1 P(i). In the sequel, we write “(u, v,w) ⊆ S” instead of
“ {e, f} ⊆ S” whene = {u, v} andf = {w, t} form the path(u, v = t,w) of length2. Let us summarize this condition
as follows and call it Condition P′.

Condition P′:

{e, f} ∈
(
E

2

)
forms a path(u, v = t,w) of length 2 inG (wheree = {u, v} andf = {w, t}) if and only if

(u, v, w) ⊆ S for someS ∈
⋃k

i=1 P(i).

Now, we constructx ∈ {0, 1}{1,...,k}×P(G) from our stable-set partitions. Fori ∈ {1, . . . , k} and(u, v, w) ∈ P(G),
setx[i, (u, v, w)] = 1 if (u, v,w) ⊆ S for someS ∈ P(i); setx[i, (u, v,w)] = 0 otherwise. Then, we show that the
vectorx constructed above satisfies the four conditions.

First, check Cover condition. Fix a path(u, v, w) of length 2 inG arbitrarily. Then, from Condition P′, there exists
at least one indexi∗ such that(u, v, w) ⊆ S for someS ∈ P(i∗). Our construction implies thatx[i∗, (u, v,w)] = 1.
Therefore, we have that

∑k

i=1 x[i, (u, v, w)] ≥ 1. Since this inequality holds for all paths of length 2 inG, we can see
thatx satisfies Cover condition.

Second, we check Claw condition. Suppose that Claw condition is violated, namely there exist an indexi ∈
{1, . . . , k} and paths(u, v,w), (u, v, t), (w, v, t) ∈ P(G) such thatx[i, (u, v, w)]+ x[i, (u, v, t)]+ x[i, (w, v, t)] = 2.
By the symmetry of(u, v, w), (u, v, t), (w, v, t), we may assume thatx[i, (u, v, w)] = 1, x[i, (u, v, t)] = 1 and
x[i, (w, v, t)] = 0 without loss of generality. The construction ofx implies that there existSuw, Sut ∈ P(i) such that
(u, v, w) ⊆ Suw and(u, v, t) ⊆ Sut. Therefore,{u, v} ∈ Suw and{u, v} ∈ Sut. This means thatSuv ∩ Sut 6= ∅.
On the other hand, sinceP(i) is a partition ofE, andSuw, Sut ∈ P(i), it holds thatSuw ∩ Sut = ∅. So, we have a
contradiction. Thus, we have shown thatx satisfies Claw condition.

Next, we check Triangle condition. Suppose that Triangle condition is violated, i.e., there exist an indexi ∈
{1, . . . , k} and paths(u, v,w), (v,w, u), (w,u, v) ∈ P(G) such thatx[i, (u, v, w)]+x[i, (v, w, u)]+x[i, (w,u, v)] =
2. By the symmetry of(u, v, w), (v,w, u), (w, u, v), we may assume thatx[i, (u, v, w)] = 1, x[i, (v,w, u)] = 1

andx[i, (w,u, v)] = 0, without loss of generality. Then, our construction implies that there existSu, Sv ∈ P(i) such
that (u, v,w) ⊆ Su and(v,w, u) ⊆ Sv. Therefore, we can see that{v,w} ∈ Su and{v, w} ∈ Sv. This means that
Su ∩ Sv 6= ∅. On the other hand, sinceP(i) is a partition ofE, andSu, Sv ∈ P(i), it holds thatSu ∩ Sv = ∅. So, they
contradict each other. Thus, we have shown thatx satisfies Triangle condition.

Finally, we check Matching condition. Suppose that Matching condition is violated, i.e., there existi ∈ {1, . . . , k}

and (u, v, w), (v,w, t) ∈ P(G) such thatx[i, (u, v, w)] + x[i, (v,w, t)] > 1. Sincex is a {0, 1}-vector, we have
that x[i, (u, v, w)] = 1 andx[i, (v,w, t)] = 1. Because of our construction, there existSu, Sv ∈ P(i) such that
(u, v, w) ⊆ Su and(v,w, t) ⊆ Sv. Therefore, we can see that{v,w} ∈ Su and{v,w} ∈ Sv. Then, by the same reason
as the case for Triangle condition, we obtain a contradiction. Thus, we have checked thatx meets Matching condition.

As a conclusion of the discussion above, we have obtained the only-if part of the corollary. So it remains to show
the if part.

To do that, assume that there exists a vectorx ∈ {0, 1}{1,...,k}×P(G) which satisfies Cover condition, Claw condi-
tion, Triangle condition and Matching condition. From this vector, we constructk stable-set partitionsQ(1), . . . ,Q(k)

of L(G) which satisfy Condition P′ above. Since Condition P′ is equivalent to Condition P in Theorem 3.3, this
concludes the proof.
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Fix i ∈ {1, . . . , k}. Then we put{{u, v}} ∈ Q(i) if there exists no(u, v, w) ∈ P(G) such thatx[i, (u, v, w)] = 1

and also there exists no(v, u, t) ∈ P(G) such thatx[i, (v, u, t)] = 1. Furthermore, we put{{u, v}, {v,w}} ∈ Q(i) if
x[i, (u, v, w)] = 1.

Now, we must check thatQ(i) is indeed a stable-set partition ofL(G) for eachi ∈ {1, . . . , k} as desired. Fixi ∈
{1, . . . , k} arbitrarily. First, let us check thatQ(i) is a partition ofV(L(G)), i.e., a partition ofE(G). ClearlyE(G) =⋃
Q(i) for eachi ∈ {1, . . . , k}. Suppose, for contradiction, that there exist two distinct setsS, T ∈ Q(i) such that

S∩T 6= ∅. Since each set inQ(i) is of size 1 or 2, we have the following two cases. As the first case, assume that|S| = 1

and|T | = 2, sayS = {{u, v}} andT = {{u, v}, {v,w}}. However, this contradicts our construction ofQ(i). The second
case is where|S| = |T | = 2. We have two subcases. Assume that, say,S = {{u, v}, {v, w}} andT = {{u, v}, {v, t}}

wherew 6= t. Then from our construction we have thatx[i, (u, v, w)] = 1 andx[i, (u, v, t)] = 1. By Claw condition,
we should havex[i, (t, v, w)] = 1. However, Matching condition requiresx[i, (u, v, t)] + x[i, (t, v, w)] ≤ 1. This
is a contradiction. Next, assume that, say,S = {{u, v}, {v,w}} and T = {{v, u}, {u, t}}. In this case, again from
the construction we have thatx[i, (u, v,w)] = 1 andx[i, (v, u, t)] = 1. If w 6= t, then this contradicts Matching
condition. If w = t, then from Triangle condition we should have thatx[i, (u, w, v)] = 1. However, this again
contradicts Matching condition. Thus,Q(i) partitionsE(G).

Secondly, we check that each setS ∈ Q(i) is a stable set ofL(G). If |S| = 1, then clearlyS is stable. Assume that
|S| = 2, sayS = {{u, v}, {v,w}}. Since(u, v, w) is a path of length 2 inG, {u, v} and{v, w} are adjacent inL(G). This
means that they are not adjacent inL(G). Therefore{{u, v}, {v,w}} is stable inL(G). Thus, we proved thatQ(i) is a
stable-set partition ofL(G) for eachi ∈ {1, . . . , k}.

Now, we check the constructed stable-set partitionsQ(1), . . . ,Q(k) satisfy Condition P’ above. However, this can
be easily checked with Cover condition. This concludes the whole proof.

8 Concluding remarks

In this paper, motivated by the quality of a natural greedy algorithm for the maximum weighted clique problem, we
characterized the numberk such that the clique complex of a graph can be represented as the intersection ofk matroids
(Theorem 3.3). This implies that the problem of determining the clique complex of a given graph has a representation
by k matroids or not belongs to NP (Corollary 3.8). Furthermore, in Section 5 we observed that the corresponding
problem for two matroids can be solved in polynomial time. However, the problem for three or more matroids is not
known to be solved in polynomial time. We leave the further issue on computational complexity of this problem as
an open problem. In addition, we showed thatn − 1 matroids are necessary and sufficient for the representation of
the clique complexes of all graphs withn vertices (Theorem 4.1), and looked at the relationship between the clique
complex of a graph and the graph itself as an independence system (Theorem 6.2).

We proved that the class of clique complexes is the same as the class of the intersections of partition matroids
(Corollary 3.7). This result sheds more light on the structure of clique complexes, and may give a new research
direction to attack some open problems on them.

Before, Fekete, Firla & Spille [9] studied matching complexes from the viewpoint of matroid intersections. In
Section 7, we have observed that some of their results can be derived from our more general theorems.

Finally, we would like to mention open problems arising from the paper. As mentioned at the end of Section 5, we
are not aware of a polynomial-time algorithm to decide whether the clique complex of a given graph is the intersection
of three matroids or not. This is open. As another open question, we want to mention the following. In Theorem 4.1,
we showed thatµ(n) = n − 1 for n ≥ 2. There, a graph showingµ(n) ≥ n − 1 is based on a disconnected graph.
Therefore, we can investigate the maximum possible value forµ(G) whenG is k-connected fork ≥ 1. This problem
remains open.
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