
An Efficient Polynomial Space and Polynomial
Delay Algorithm for Enumeration of Maximal

Motifs in a Sequence

Hiroki Arimura1? and Takeaki Uno2

1 Hokkaido University, Kita 14-jo, Nishi 9-chome, Sapporo 060-0814, JAPAN
arim@ist.hokudai.ac.jp

2 National Institute of Informatics, Tokyo 101–8430, JAPAN
uno@nii.jp

Abstract. In this paper, we consider the problem of enumerating all
maximal motifs in an input string for the class of repeated motifs with
wild cards. A maximal motif is such a representative motif that is not
properly contained in any larger motifs with the same location lists. Al-
though the enumeration problem for maximal motifs with wild cards has
been studied in (Parida et al., CPM’01), (Pisanti et al.,MFCS’03) and
(Pelfrene et al., CPM’03), its output-polynomial time computability has
been still open. The main result of this paper is a polynomial space poly-
nomial delay algorithm for the maximal motif enumeration problem for
the repeated motifs with wild cards. This algorithm enumerates all max-
imal motifs in an input string of length n in O(n3) time per motif with
O(n) space, in particular O(n3) delay. The key of the algorithm is depth-
first search on a tree-shaped search route over all maximal motifs based
on a technique called prefix-preserving closure extension. We also show
an exponential lower bound and a succinctness result on the number of
maximal motifs, which indicate the limit of a straightforward approach.
The results of the computational experiments show that our algorithm
can be applicable to huge string data such as genome data in practice,
and does not take large additional computational cost compared to usual
frequent motif mining algorithms.

1 Introduction

Pattern discovery is to find all patterns within a class of combinatorial patterns
that appear in an input data satisfying a specified constraint, and is a central
task in computational biology, temporal sequence analysis, sequence and text
mining [3]. We consider the pattern discovery problem for the class of patterns
with wild cards, which are strings consisting of constant symbols (called solid
letters) drawn from an alphabet and variables ’◦’ (called wildcards) that matches
any symbol [9, 13]. For instance, B ◦ AB and B ◦ AB ◦ ◦B are examples of patterns.
? This work is done during the first author’s visit in LIRIS, University Claude-Bernard

Lyon 1, France.

[BooBooB] 3
[BooooAB] 3
[ABoooooB] 3
[BoooooB]* 4
[BoABoooooB]* 3
[AooooooB] 3
[BoAooooooB] 3
[BooBoooooB] 3
[BooooooooB] 3

[AooA] 4
[BRA] 3
[BRAB] 3
[BRoB] 3
[BoAB]* 5
[BooB] 5
[ABoAB]* 4
[ABooB] 4
[AooAB] 4
[AoooB] 4

[BoA] 5
[BoABoA] 3
[BoAooA] 3
[BooBoA] 3
[BooooA] 3
[BoABoAB]*3
[BoABooB] 3
[BoAooAB] 3
[BoAoooB] 3
[BooBoAB] 3

[]* 21
[B]* 9
[AB]* 7
[BC]* 3
[ABRAB]* 3
[BoAB]* 5
[ABoAB]* 4
[BoABoAB]* 3
[BoooooB]* 4
[BoABoooooB]* 3

49 motifs (frequent motifs)10 maximal motifs

A B B C A B R A B R A B C A B A B R A B B C
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

10 2000

input string s quorum θθθθ = 3

[]* 21
[B]* 9
[AB]* 7
[A] 7
[BC]* 3
[C] 3
[ABRAB]* 3
[R] 3
[RA] 3
[RAB] 3

[RoB] 3
[BR] 3
[ABR] 3
[ABRA] 3
[ABRoB] 3
[ABoA] 4
[AoR] 3
[AoRA] 3
[AoRAB] 3
[AoRoB] 3

Fig. 1. Examples of maximal motifs (left) and motifs (right) for an input string s and
a quorum θ, where * indicates a maximal motif and the number associated to each
motif indicates its frequency. These 10 maximal motifs are representatives containing
the whole information on the occurrences of all motifs in s.

A pattern p is said to appear at the jth position of a string s if any ith letter of
p matches to (j + i− 1)th letter of s, i.e., they are the same, or the ith letter is
◦. Given a positive integer θ called quorum and for an input string s, a frequent
motif (or motif , for short) in s is a pattern that appears at least θ times in s.

Frequent motif discovery has a drawback that a huge number of motifs are
often generated from an input string without conveying any useful information.
To overcome this problem, we focus on discovery of maximal motifs [9, 12, 13].
The semantics of a pattern x is given by the location list L(x) consisting of
the positions in an input string s at which the pattern occurs. A motif is said
to be maximal if it is not properly contained by other motifs with the equiv-
alent location lists allowing position shift. For example, we show in Figure 1
all maximal motifs and all motifs on input sting s = ABBCABRABRABCABABRABBC

for quorum θ = 3. Then, the pattern x1 = R ◦ B is a motif having location
list L(x1) = {6, 9, 17} in s but not a maximal one since there is another motif
x2 = ABRAB which contains x1 and whose location list L(x2) = {4, 7, 15} is ob-
tained from the location list L(x1) by shifting leftward with two. In this example,
we can also observe that there are only 10 maximal motifs among 50 motifs. In
general, the number of maximal motifs can be exponentially smaller than the
number of motifs, while the former can be exponential in the input size.

In this paper, we study the problem of enumerating all maximal motifs in
an input string of length n. In particular, from a practical viewpoint, we are
interested in those algorithms that have small space and delay complexities in-
dependent from the output size in addition to polynomial amortized time per
maximal motif. Although an output-polynomial time algorithm for this prob-
lem is known[?], its time complexity is square of the output size, and the space

complexity is not polynomial in the input size. The computability for maximal
motifs discovery with polynomial space and delay has been still open.

We first show an exponential lower bound and a succinctness result on
the number of maximal motifs, which show the limit of straightforward ap-
proaches. Next, by examining the previous approaches [9, 13, 12], we present
a simple output-polynomial time algorithm for maximal motif enumeration by
breadth-first search, which possibly requires exponential space and delay. Then,
we present an efficient algorithm that enumerates all maximal motifs in an input
string of length n with O(n3) time per motif with O(n) space and O(n3) delay.
A key of the algorithm is depth-first search on a tree-shaped search route for all
maximal motifs build by prefix-preserving closure extension, which enable us to
enumerate all maximal motifs without storing discovered motifs which are used
for detecting duplications and maximality tests. To the best of our knowledge,
this is the first result on a polynomial space polynomial delay algorithm for
maximal pattern discovery for sequences.

The organization of this paper is as follows. In Section 2, we give definitions
and basic results. Section 3 gives lower bounds on the number of maximal motifs.
Section 2.2 prepares tools for studying maximal motifs and Section 4 reviews
the previous results. In Section 5, we present our algorithm MaxMotif that
enumerates all maximal motifs. Section 6 shows the result of computational
experiments. In Section 7, we conclude this paper.

2 Preliminaries

2.1 Maximal Motifs

We briefly introduce basic definitions and results on maximal pattern enumera-
tion according to [13, 12]. For definitions not found here, see text books on string
algorithms, e.g., [6, 8]. Given an alphabet ∆, a string of length n ≥ 0 is a consec-
utive sequence of letters s = a[0] · · · a[n−1] ∈ ∆∗, where a[i] ∈ ∆, 0 ≤ i ≤ n−1.
For every 0 ≤ i ≤ j ≤ n−1, s[i..j] denotes the substring aiai+1 · · · aj . ∆∗ denotes
the set of all possibly empty strings over ∆, and ε denotes the empty string. If
s = uvw for some u, v, w ∈ ∆∗, then we say that u is a prefix and w is a suffix
of s. For a set S ⊆ ∆∗ of strings, we denote by |S| the cardinality of S and by
||S|| = ∑

s∈S |s| the total length of S.
Let Σ be an alphabet of solid characters (or constant letters). Let ◦ 6∈ Σ be

a distinguished letter not belonging to Σ, called the wild card (or don’t care).
A wild card ◦ matches any solid character c ∈ Σ and also matches ◦ itself. An
input string is a string s = s[1] · · · s[n] ∈ Σ∗ consisting of solid characters of
length n ≥ 0.

Definition 1 (pattern [9, 13, 12]). A pattern over Σ is a string x in Σ ∪ (Σ·
(Σ ∪ {◦})∗·Σ) that starts and ends with a solid character, or an empty string ε.

We denote the class of patterns by P = {ε} ∪ Σ ∪ (Σ ·(Σ ∪ {◦})∗ ·Σ). For
example, ABC and B ◦ C are patterns, but ◦BC and ◦ ◦ B◦ are not. Note that ε is a
pattern in our definition. We define a binary relation ¹ over letters and patterns,
called the specificity relation.3 For letters a, b ∈ Σ∪{◦}, we define a ¹ b if either
a = b or a = ◦ holds. For patterns x and y, We say that x occurs at position
p in y if there exists some index 0 ≤ p ≤ |y| − |x| such that for every index
0 ≤ i ≤ |x| − 1, x[i] ¹ y[p + i] holds. Then, we also say that p is an occurrence
of x in y, and that x matches the substring y[p..p + |x| − 1].

Example 1. Pattern x = B ◦ D occurs in pattern y = AB ◦ DA at position 1, and x

occurs three times in string s = EABCDABEDBCDE at positions 2, 6 and 9.

We extend the binary relation ¹ from letters to patterns as follows. Let x

and y be patterns in P. If x occurs at some position p in y, then we define x ¹ y

and say that either x is contained by y or y is more specific to x. For any pattern
x, we define ε ¹ x. If x ¹ y but y 6¹ x, then we define x ≺ y and say that either
x is properly contained by y or y is properly more specific to x. We can see that
if x ¹ y and y ¹ x hold, then x and y are identical each other. Furthermore, ¹
is a partial order over P.

Definition 2 (location list [9, 13, 12]). For an input string s ∈ Σ∗ of length
n ≥ 0, the location list of pattern x is the set L(x) ⊆ {0, . . . , n − 1} of all the
positions in s at which x occurs. The frequency of x on s is |L(x)|.
Example 2. The location list of pattern x = B ◦ D in the input string s =
EA BCD A BED BCD E is L(x) = {2, 6, 9}.

A quorum (or minimum frequency threshold) is any positive number θ ≥ 1.

Definition 3 (motif [9, 13, 12]). Let θ ≥ 1 be a quorum. We say that pattern
x is a θ-motif (or motif, for short) in s if |L(x)| ≥ θ holds.

Let L be any location list and d be any integer. Then, we define the shift of
L with displacement d by L+ d = { ` + d | ` ∈ L }. We write L − x to represent
the set L+ y with y = −x.

Lemma 1 ([9, 12, 13]). Let θ ≥ 1 and x, y ∈ P be any motifs. If x ¹ y then
L(x) ⊇ L(y) + d for some integer d ≥ 0.

The converse of this lemma does not hold for motifs in general.

Example 3. Let s = EABCDABEDABCDE over Σ = {A, B, C, D, E} be an input string.
Consider motifs x = AB ◦ D with location list L(x) = {1, 5, 8}, y = B ◦ D with
L(y) = {2, 6, 9}, and z = D with L(z) = {4, 8, 11}. We can see that z ≺ y ≺ x

holds and x, y, z are equivalent each other. For instance, L(z) = L(x) + d with
the displacement d = 3. Then, x is maximal in s, but y and z are not.
3 The binary relation ¹ is also called the generalization relation or the subsumption

relation in artificial intelligence and data mining.

Definition 4 (maximal motif [9]). Let θ ≥ 1 be a quorum. A motif x is
maximal in s if for any motif y that properly contains x, there is no integer d

such that L(y) = L(x) + d.

In other words, θ-motif x is maximal in s iff there exists no θ-motif in s

properly containing x that is equivalent to x under shift-invariance. Let θ be a
quorum. We denote by F andM the sets of all (frequent) motifs and all maximal
motifs, respectively. Clearly, M ⊆ F ⊆ P for any s and θ. A maximal motif y

is a successor of maximal motif x (withinM) if x ≺ y and there is no maximal
motif z such that x ≺ z ≺ y.

Now, we state our problem as follows.

Definition 5. The maximal motif enumeration problem is, given an input string
s of length n and a quorum θ ≥ 1, to enumerate all maximal motifs in s without
repetition.

2.2 Merge and Closure

In this subsection, we define merge and closure operations which are originally
introduced in [2, 3, 12, 13].

An infinite string is a function from integers to symbols in Σ ∪ {◦}. For a
finite string x ∈ (Σ ∪ {◦})∗, the infinite or expanded version of x is an infinite
string bxc defined by bxc[i] = x[i] for 0 ≤ i ≤ |x| − 1 and bxc[i] = ◦ otherwise.
For an infinite string x, its finite string version (or trimmed version), denoted
by dxe, is the longest substring of x that starts and ends with a solid character
in Σ, i.e., dxe ∈ P, if it exists and ε otherwise. By definition, if x is a pattern
then dbxce = x for every finite x, but it is not the case for general string such
as x = ◦ B ◦ C ◦.

Let d be a displacement. For an infinite string x, the infinite string (x+ d) is
defined by (x+d)[i] = x[i−d] for every i. For a finite string x, (x+d) = bxc+d.
Then, (x + d) is called the shift of x by d.

Example 4. Given a finite string s = EABCDABED, its infinite version is bsc =
· · · ◦ ◦↓ EABCDABED ◦ ◦ · · ·, where ↓ indicates the origin i = 0. Then, (bsc − 2) =
· · ·◦◦ EA↓ BCDABED◦◦ · · ·, and its finite version is d(bsc−2)e = ↓ EABCDABED = s.

Merge of infinite and finite strings. Next, we define the merge operator ⊕.
For letters a, b ∈ Σ, we define a⊕a = a and a⊕◦ = ◦⊕a = a⊕b = ◦ if a 6= b. For
infinite strings α, β, the merge of α and β, denoted by α⊕β, is the infinite string
such that (α⊕β)[i] = α[i]⊕β[i] for every integer i. For finite strings x, y ∈ P, the
merge of x and y, denoted by x⊕ y, is the finite string x⊕ y = d bxc⊕byc e ∈ P.
Note that the operator ⊕ is associative and commutative.

Definition 6 (merge of location list [3, 12]). For a location list L = {d1, . . . , d|L|}
of a string s, the merge of L = {d1, . . . , d|L|} ⊆ {0, . . . , n − 1} is the pattern⊕L ∈ P defined by

⊕
L = d(bsc+ d1)⊕ · · · ⊕ (bsc+ d|L|)e.

We can see the following properties hold.

Property 1. Let L,L′ be any location lists.

1. If L ⊇ L′ then
⊕L ¹⊕L′.

2.
⊕L =

⊕
(L+ d) for any integer d.

Property 2. Let θ be a quorum and L be any location list such that |L| ≥ θ.
Then,

⊕L is a maximal motif.

Property 3. For any string xy ∈ Σ(Σ ∪ {◦})∗, L(xy) = L(x) ∩ (L(y) + |x|).

Property 4. Let x and y be two strings in Σ(Σ∪{◦})∗ such that x[i] = ◦, y[i] = c,

and x[j] = y[j] for j 6= i. Then, we have L(y) = L(x) ∩ {d|x[d + i] = c}.

Definition 7 (closure operation [12, 13] 4). Given a pattern x and an input
string s, the motif Clo(x) =

⊕L(x) is called the closure of x on s.

The above definition is a generalization of the closure operation [11, 16] from
sets to motifs, and is introduced by [12, 13].

We can see the following lemma claiming the computability of the closure.

Lemma 2. The closure Clo(x) of a pattern x is unique and computable in
O(mn) time from x and L(x), where n = |s| and m = |L(x)| ≤ n.

Proof. The character of the jth position of Clo(x) is bxc[d1]⊕, · · · , bxc[dm] where
L(x) = {d1, . . . , dm}. It can be computed in O(m) time. Since the character of
the jth position of Clo(x) is ’◦’ for any j < 0 and j > n, we can compute Clo(x)
in O(mn) time. We can also observe that Clo(x) is unique. ut

Lemma 3 (properties of closure). Let x, y be any patterns occurring in s.

1. x ¹ Clo(x).
2. Clo(x) = Clo(Clo(x)).
3. If x ¹ y then Clo(x) ¹ Clo(y).
4. Clo(x) is the unique maximal element w.r.t ¹ in the equivalence class of

patterns [x] = { y | L(x) = L(y) + d for some integer d } containing x.

4 The set-counterpart of the closure has been known in data mining and formal concept
analysis [11, 16]. The closure Clo(x) for motifs was introduced in [12] and called the
maximal extension in [13].

Theorem 1 (characterization of maximal motifs [12]). Let θ be a quorum
and x be a motif in an input string s. Then, the following (i)–(iii) are equivalent:

(i) x is a maximal motif.
(ii) x =

⊕L and |L| ≥ θ for some L ⊆ {0, . . . , |s| − 1}.
(iii) x = Clo(x).

The next lemma says that the converse of Lemma 1 holds as follows for
maximal motifs.

Lemma 4 ([12]). Let θ ≥ 1 be a quorum and x, y ∈ M be maximal motifs.
Then,

1. x ¹ y iff L(x) ⊇ L(y) + d for some integer d, and
2. if x = y iff L(x) = L(y) + d for some integer d.

Proof. The only-if direction of the statement 1 is obvious from Lemma 1. Now,
we show its if direction. Let x, y ∈M be maximal motifs. Suppose that L(x) ⊇
L(y)+d holds for some d. From Property 1 for the merge operator

⊕
, if L(x) ⊇

L(y) then
⊕

L(x) ¹⊕
L(y) holds. On the other hand, the characterization of

Theorem 1 says that x = Clo(x) =
⊕

L(x) for every maximal motif x. Therefore,
it follows that x ¹ y, and thus the result is proved. Then, the statement of 2
immediately follows from the above statement 1. ut

In other words, ordered sets (M,¹) and (Lθ,⊇) are isomorphic, where Lθ =
{ L(x) |x ∈ F } is the class of the location lists for all (possibly non-maximal)
motifs in s.

Example 5. Let s = ABBCABRABRABCABABRABBC be an input string. Let x =
B◦◦◦◦A be a pattern with location list L(x) = {2, 5, 8}. First, we compute the
alignment of infinite strings S = {(bsc − 2), (bsc − 5), (bsc − 8)} as follows:

◦◦◦◦◦◦AB↓BCABRABRABCABABRABBC = s− 2
◦◦◦ABBCA↓BRABRABCABABRABBC◦◦◦ = s− 5
ABBCABRA↓BRABCABABRABBC◦◦◦◦◦◦ = s− 8

where the underlines indicate the common letters. Then, we compute the merge⊕S = (bsc − 2)⊕ (bsc − 5)⊕ (bsc − 8) of the infinite strings in S as follows:

◦◦◦◦◦◦◦◦↓B◦AB◦AB◦◦◦◦◦◦◦◦◦◦◦◦◦ =
⊕S

Finally, we get the closure Clo(x) = B◦AB◦AB by taking its finite version.

2.3 Enumeration algorithms

We introduce terminology for enumeration algorithms according to [7, 15]. An
enumeration algorithm for an enumeration problem Π is an algorithm A that
receives an instance I and outputs all solutions S in the answer set S(I) into
a write-only output stream O without duplicates. Let N = ||I||, M = |S(I)|
be the input and the output sizes on I, and TA be the total running time of A
for computing all solutions on I. Then, A is of output-polynomial (P-OUTPUT)
if TA is bounded by a polynomial q(N,M). A is of polynomial enumeration
time (P-ENUM) if the amortized time for each solution x ∈ S is bounded by
a polynomial p(N) in N , i.e., TA = O(M · p(N)). A is of polynomial delay (P-
DELAY) if the delay , which is the maximum computation time between two
consecutive outputs, is bounded by a polynomial p(N) in the input size N . A is
of polynomial space (P-SPACE) if the maximum size of its working space, except
the size of output stream O, is bounded by a polynomial p(N). By definition,
P-OUTPUT is the weakest and P-DELAY is the strongest among P-OUTPUT,
P-ENUM, and P-DELAY, that is, any P-DELAY algorithm is P-ENUM, and
any P-ENUM algorithm is P-OUTPUT.

The class of tree-search algorithm is an important class of P-ENUM algo-
rithms, which traverses a spanning tree T over S(I), and outputs each solution
at each node with work time P (N). In general, if P (N) is polynomial then a
tree-search algorithm A is a P-ENUM with linear total complexity M · P (N),
but not necessarily P-DELAY since the delay depends on the maximum depth of
the tree. The following lemma by Uno [15] gives a useful technique to translate
a tree-search enumeration algorithm in P-ENUM into one in P-DELAY.

Lemma 5 (Uno [15]). Any tree-search algorithm for Π with polynomial work
time P (N) per node can be transformed into a polynomial delay algorithm for
Π with delay O(P (N)).

Proof. For completeness, we sketch the proof of [15]. The modified algorithm A′
with the delay 3·P (N) + O(1) visits all nodes of T in a depth-first order as the
original. At each node of depth d ≥ 0 with solution x, A′ outputs x in the first
visit (preorder) if d is even, and in the last visit (postorder) if d is odd. At the
leaf node, the algorithm always outputs a solution, immediately. Then, we can
see that on at least one node among three consecutive visiting nodes, a solution
is output. ut

3 Lower bounds for the number of maximum motifs

We show the following lower bound of the number of maximal motifs in a given
sequence, which justifies output-sensitive algorithms for the maximal motif enu-
meration problem. The upper bound of |M| is obviously 2O(n).

Theorem 2 (exponential lowerbound of maximal motifs). There is an
infinite series of input strings s0, s1, s2, . . . , such that for every i = 0, 1, 2, . . .,
the number |M| of maximal motifs in si is bounded below by 2Ω(n), that is,
exponential in n = |si|.

Proof. Let Σ = {#, 0, 1} and n ≥ 1 be any nonnegative integer. We define the
input string s = #t1# · · · #tn# over Σ so that s has a family of exponentially many
motifs that have mutually distinct location lists. For every i = 1, . . . , n, the i-th
block ti = b1 · · · bn ∈ {0, 1}n is defined as follows: for every j = 1, . . . , n, bj is 1 if
i = j and 0 otherwise. These n blocks t1, . . . , tn correspond to the boolean matrix
of size n×n with 1’s on the diagonal. Next, we define a family X of patterns as
follows. For every bit string b = b1 . . . bn ∈ {0, 1}n of length n we define pattern
x(b) = #p1 . . . pn# in X as follows: for every i = 1, . . . , n, pi = ◦ if bi = 1, and
pi = 0 if bi = 0. For example, if b = 0010 then x(b) = 00 ◦ 0. Then, we can show
that pattern x(b) matches the i-th block ti for every i = 1, . . . , n iff bi = 1. Let
{d1, . . . , dn} ⊆ {0, . . . , |s| − 1} be the set of the initial n positions of delimiters
in s. Then, the location lists of x(b) is L(x(b)) = { di | 1 ≤ i ≤ n, bi = 1 }.
Furthermore, if b 6= b′ then L(x(b)) 6= L(x(b′)) for any b, b′ ∈ {0, 1}n. Therefore,
we know that all patterns in X have mutually distinct location lists, and thus
they are maximal in s provided they satisfy a quorum. Let θ = 1

2n be a quorum.
Then, we can show that the number of maximum motifs within X is bounded
below by F =

∑n
k=θ

(
n
k

)
= 2Ω(n). This completes the proof. ut

The following lemma shows that frequent closed itemset mining is a spe-
cial case of maximal motif mining. A transaction database D is a collection of
transactions where a transaction is a subset of a given set E of items. D may
includes many identical transactions. For a subset x of E, an occurrence of x is
a transaction including x. The set of occurrences of x is called the denotation
of x, and the frequency of x is the cardinality of its denotation. x is called a
closed itemset[11, 16] if x is properly included in another subset of E which has
the same denotation as x. See the details of the notion of closed itemsets and its
enumeration algorithm in [11, 16]

It is known that the closed itemset enumeration (with frequency at least 1)
is equivalent to the maximal bipartite clique enumeration in bipartite graphs
[5]. Since counting maximal bipartite cliques in a bipartite graph is known to be
#P-complete[17], we can see that counting maximal motifs is also #P-complete.

Lemma 6 (transformation from closed itemsets to maximal motifs).
For every transaction database r = {t1, . . . , tm} consisting of m transactions
over n items of total size N = mn, there exists an input sequence s of length
O(nm) such that the set Mr

θ of θ-frequent closed itemsets in r is equivalent to
the set of Ms

θ+m of maximal motifs in s with quorum θ + m.

Proof. Let Σ = {#, 0, . . . , n + 1, 1̄, . . . , n̄}. We define s(t) for transaction t by
the string of length n such that ith letter is i if i ∈ t, and is ī otherwise.
Then, we define s = s(t1)# · · · #s(tm)s({0, . . . , n + 1}) · · · s({0, . . . , n + 1}) where
s({0, . . . , n + 1}) = 0123 · · ·n + 1 and it is repeated m times. Note that there
is no # between s({1, . . . , n})’s. We can see that any pattern x of frequency at
most m + 1 includes only letters in 0, . . . , n, ◦, and can not include two same
letters. Thus, such x is obtained from a substring of 0123 · · ·n + 1 by replacing
some letters the substring by ◦. Since any such pattern matches 0123 · · ·n + 1,
the frequency of such pattern is always no less than m. Moreover, we can see
that if such a pattern x does not begin with 0 or does not end with n + 1, it
never be a maximal motif.

For an itemset I, we define its corresponding pattern by the pattern obtained
from 0123 · · ·n + 1 by replacing items not in I by ◦. Then, we can see that x

appears at the position of s(ti) if and only if ti includes I. Thus, I is a closed
pattern if and only if it is a maximal motif, and the frequency of I is equal to
the frequency of the corresponding maximal motif minus m.

ut
From the following corollary obtained by the lemma, we know that the max-

imal motif enumeration problem is at least as hard as the closed itemset enu-
meration problem [5, 11, 16].

Corollary 1. Any algorithm for enumerating maximal motifs in s of size n in
time T (n) per motif, space S(n), and delay D(n) can be transformed into an
algorithm for enumerating closed itemsets with minimum support in O(T (N2))
time per itemset, space O(S(N2)), and delay O(D(N2)) on r of size N .

Theorem 3 (#P-completeness of maximal motifs). The problem of count-
ing the number of maximal motifs in a given string is #P-complete.

The following theorem says that the number of motifs can be exponentially
larger than the number of maximal motifs.

Theorem 4 (succinctness of maximal motifs). There is an infinite series
of input strings s0, s1, s2, . . . , such that for every i ≥ 0 with quorum θ = 1

2n+2 |si|,
the number F = |F| of motifs in si is exponential (more precisely 2Ω(1

2n+2 |si|)),
while the number M = |M| of maximal motifs in si is no more quadratic in |si|.

Proof. Theorem 1 of Uno et al. [16] says that there is an infinite series of trans-
action databases such that the number F of frequent itemsets and the number
M of frequent closed itemsets in a transaction database of size mn are F = 2Ω(n)

and M = O(m2), respectively. Combining Lemma 6 above and the constructions
of Theorem 1 of [16], where N = Θ(m2) for large m and n, we obtain the result.

ut

From Theorem 4, we know that a straightforward algorithm for enumerating
M based on the enumeration of motifs does not work efficiently. This is also
true for most real world datasets. Figure 1 shows an example, where there are
only 10 maximal motifs among 50 motifs in a string of length 21.

4 Previous approaches for maximal motif enumeration

We give a brief review on possible approaches for output-sensitive computation
ofM and summarize the previous results.

4.1 Previous approaches

A most straightforward method of generating maximal motifs is to use frequent
pattern generation. We enumerate all motifs in an input string s, classify them
into equivalence classes according to their location lists, and find the maximal
motifs for each equivalence class. This method requires O(|F|) time and O(||F||)
memory. Since O(|F|) can be exponentially larger than |M|, we cannot obtain
any output-sensitive algorithm in time and memory in this way. The algorithm
in [?] uses maximal motifs instead of solid characters to extend the pattern.
In the worst case it combines any pairs of maximal motifs, thus the time com-
plexity is output polynomial but square of the output size. Moreover, the space
complexity is not polynomial in the input size, since we have to store maximal
motifs previously discovered in memory.

Another possible method is to use the basis for maximal motifs [10, 12, 13].
Parida et al [9] introduced the use of the basis for maximal motif enumeration.
A basis for M is a subset B ⊆ M of motifs such that M can be generated by
finite applications of an operation, e.g., ⊕, over M. Presently, the basis BI of
irredundant motifs [9], the basis BT of tiling motifs [13], and the basis BP of
primitive motifs [12] have been proposed. A maximal motif x ∈ M is tiling if
for any set of maximal motifs y1, . . . , yk ∈ M and any set of integers d1, . . . , dk

with x ¹ yi, if L(x) =
⋃

i(L(yi) + di) then x = yi for some i. Pisanti et al. [14]
describe a simple algorithm for computingM from BT in O(|M|2 ·n) total time
and O(||M||) space. However, the total time is not linear in |M|. Thus, it is of
P-OUTPUT but not of P-ENUM.

4.2 An improved algorithm for generating M from a basis BT

We can improve Pisanti et al.’s method forM adopting an idea used in [12] for
generation of BT from s. The next lemma is essential for our algorithm.

Lemma 7. Any maximal motif x ∈ M satisfies either (i) x ∈ BT , or (ii) there
exist some y ∈M and integer d such that x ≺ y and x = y ⊕ (s + d).

Algorithm MaxBasis(θ: quorum, s: input string, B: basis)
1 M0 := B; i := 0
2 while (∆ 6= ∅) do begin
3 ∆ := ∅;
4 for each y ∈Mi and d ∈ {0, . . . , n− 1} do

5 if y ⊕ (s + d) 6∈ (
⋃i

k=0
Mk ∪∆) then ∆ = ∆ ∪ {y ⊕ (s + d)}; output y ⊕ (s + d);

6 Mi+1 := ∆; i := i + 1;
7 end

Fig. 2. An polynomial time enumeration algorithm for generating M from B based
on breadth-first search. This algorithm does not have polynomial space or polynomial
delay.

Figure 2 shows our algorithm MaxBasis that computesM from BT . In the
algorithm, the setMi is the set of maximal motifs which can be generated from
B by applying the operation in line 5 i times. We use a trie to store Mi and ∆

for O(|x|) membership of pattern x. Thus, we can implement MaxBasis to run
in O(|M| · n2) total computation time.

Theorem 5 (generation of maxmal motifs from the basis). Given a quo-
rum θ ≥ 1, an input string s of length n, and the basis BT of tiling motifs, the
algorithm MaxBasis in Figure 2 enumerates all maximal motifs of M from B
in O(n2) amortized time per maximal motif with O(||M||) space.

Since its space complexity and delay are O(||M||) and O(|M| · n2), respec-
tively, MaxBasis is neither a polynomial space or polynomial delay even given
a basis BT as input. Note that it is still open whether the basis BT (or BP)
is output-polynomial time computable from s since the total running time of
the algorithms in [12] and [14] are only bounded by O(nθ

∑θ
i=1 |Bi

T |) or nO(θ),
where Bi

T is the basis for quorum i ≥ 1. Hence, it seems difficult to obtain an
output-polynomial time algorithm for BT and thusM in this approach. 5

5 A polynomial space polynomial delay algorithm using
depth-first search

In this section, we present an efficient depth-first search algorithm MaxMotif

that, given a quorum θ ≥ 1 and an input string s of length n, enumerates all
5 Parida et al. [10] presented an output-polynomial time algorithm for the class of

flexible motifs, and claimed that they also presented a similar algorithm for maximal
motifs with wild cards in [9]. Since these algorithms seem to depend on an unproved
conjecture in [9], however, we did not include them. At least, the algorithm in [10]
requires the space and the delay proportional to the output size |M|. Thus, it is not
polynomial space and polynomial delay.

maximal motifs x in s in O(|L(x)| · n2) delay and O(n) space. In what follows,
we fix input string s of length n ≥ 1 and 1 ≤ θ ≤ n. Unlike MaxBasis in the
previous section, MaxMotif uses depth-first search over M to avoid the use
of extra storage for keeping all discovered motifs. In the following sections, we
explain the details of the algorithm.

5.1 Building tree-shaped search route for maximal motifs

We first build a tree-shaped search route T = (V,P,⊥) for traversing all maximal
motifs (Figure 3). The node set V = M consists in all maximal motifs in s, P
is the set of reverse edges defined later, and ⊥ = Clo(ε) is the root called the
root motif . If s contains at least two distinct solid letters then ⊥ = ε, otherwise
⊥ = a for the only letter a in s.

Lemma 8. ⊥ = Clo(ε) is the unique shortest maximal motif in s.

Proof. Since L(⊥) = {0, . . . , n − 1} is the largest location list on s, it follows
from Lemma 4 that Clo(ε) ¹ x for any maximal motif x. ut

Next, we define the set P of reverse edges from a child to its parent as
follows. Given a maximal motif x, the core index of x, denoted by core i(x), is
the smallest index 0 ≤ ` ≤ |x|−1 such that L(x) = L(y) for the prefix y = x[0..`],
if x 6= ⊥. For x = ⊥, core i(x) is defined by −1. Then, we assign the unique
parent to each non-root maximal motif.

Definition 8 (parent of maximal motif). For a maximal motif y such that
y 6= ⊥, the parent of y, denoted by P(y), is the pattern P(y) = Clo(dy[0..core i(y)−
1]e). 6

Lemma 9. For every maximal motif y such that y 6= ⊥, P(y) always exists, is
unique, and is a maximal motif. Furthermore, P(y) ≺ y holds.

Proof. Since y 6= ⊥, L(y) 6= L(⊥), thereby L(dy[0..`− 1]e) 6= L(y) holds for
some l ≥ 0. This assures that core i(y) − 1 ≥ −1 and P(y) is always defined.
From the definition, P(y) is unique, and clearly a maximal motif. ut
Theorem 6. T = (V,P,⊥) is a spanning tree for all maximal motifs in M.

Proof. From Lemma 9, all maximal motifs y but ⊥ have the unique parent P(y)
such that P(y) ≺ y. Since the relation ¹ is acyclic onM, i.e., there is no infinite
decreasing chain of maximal motifs of M, the result follows. ut

The remaining task is to show how to enumerate all children y of a given
parent motif x within polynomial memory space of the input size. This is not
an easy task since we have only reverse edges. We discuss this issue in the next
subsection.
6 In the definition, y[0..core i(y)−1] ∈ Σ(Σ∪{◦})∗∪{ε} may not be a proper pattern.

Thus, we use dy[0..core i(y)−1]e instead of y[0..core i(y)−1] to remove the trailing
◦’s.

A B B C A B R A B R A B C A B A B R A B B C
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

10 2000
input string s

spanning tree T = (M, P) for maximal motifs pattern lattice L = (M, ≤≤≤≤) for maximal motifs

AB

ε

ABRAB

ABoAB

B

BC

BoAB

BoABoAB

BoABoooooB

BoooooB

<0,A>

<0,B>

<2,R>

<1,C>

<2,A>

<6,B>

<5,A>

<9,B>

<3,A>
3

4

3

5

4

3

3

21

7

9

quorum θθθθ = 3

AB

ε

ABRAB

ABoAB

B

BC

BoAB
BoABoAB

BoABoooooB

BoooooB

3

4

3

5

4

3

3

21

7

9

Fig. 3. The spanning tree T = (M,P) (left) and the pattern lattice L = (M,¹)
(right) for maximal motifs of M on quorum θ = 3 and input string s (top). Each
box represents maximal motif x in M and the number right to the box indicates its
frequency |L(x)|. Each arrow indicates ordering, P or ¹, of a tree/lattice. (Section
5.1). An arrow in the tree T indicates the ppc-extension with seed 〈k, c〉. The newly
introduced letter c is written in bold face. (Section 5.2). There are 10 maximal motifs
among 49 motifs in s.

5.2 Prefix-preserving closure extension

We introduce the prefix-preserving closure extension defined as follows. A sub-
stitution for motif x is a pair ξ = 〈k ← c〉 ∈ Z×Σ of integer k and solid letter
c. If bxc[k] = ◦, ξ is compatible with x. The application of ξ to x, denoted by
xξ = x〈k ← c〉, is the motif dye, where y is the infinite string such that for every
integer i, y[i] = c if i = k and y[i] = bxc[i] otherwise. For example, if x = BA ◦ B,
then x〈−1← C〉 = CBA ◦ B, x〈2← C〉 = BACB, and x〈6← C〉 = BA ◦ B ◦ ◦ C.
Definition 9 (ppc-extension). For any maximal motifs x and y, y is a prefix-
preserving closure extension (or a ppc-extension) of x if the following (i)–(iii)
hold:

(i) y = Clo(x〈k ← c〉) for some substitution, called its seed, ξ = 〈k ← c〉 ∈ Z×Σ

compatible with x, that is, y is obtained by first substituting c at index k and
then taking its closure,

(ii) the index k satisfies k > core i(x), and
(iii) x[0..k − 1] = y[0..k − 1], that is, the prefix of length k−1 is preserved, where

x[0..k − 1] is obtained from x by padding trailing ◦’s if necessary.

Example 6. In Figure 3, we show an example of the spanning tree forM gener-
ated by the ppc-extension for an input string s = ABBCABRABRABCABABRABBC and

quorum θ = 3. Then, we have maximal motif x = AB with location list L(x) =
{0, 4, 7, 10, 13, 15, 18}. If we apply substitutions ξ1 = 〈2, R〉 and ξ2 = 〈3, A〉 to
x, respectively, then we obtain the ppc-extension y = ABRAB = Clo(ABR) =
Clo(x · ξ1) with {4, 7, 15}, and z = AB ◦ AB = Clo(AB ◦ A) = Clo(x · ξ2) with
{4, 7, 10, 15}.
Lemma 10. Let x be any maximal motif and y = Clo(x〈k ← c〉) be a ppc-
extension of x. Then, k is the core index of y.

Proof. Since k is larger than the core index of x, we have that L(dy[0..k − 1]e) =
L(x). Thus, the core index of y is greater than k − 1. Since y = Clo(dy[0..k]e),
L(y) = L(dy[0..i]e) holds for any i ≥ k. Therefore, the core index of y is k.

The goal of this subsection is to prove the following theorem.

Theorem 7 (correctness of ppc-extension). For any maximal motifs x, y

such that y 6= ⊥, (1) x = P(y) if and only if (2) y = Clo(xξ) is a prefix-
preserving closure extension of x for some substitution ξ = 〈k ← c〉 ∈ Z × Σ

compatible with x. Furthermore, there exists exactly one ξ satisfying condition
(2) for each y.

Proof. (1) to (2): Suppose x = P(y), and thus x = Clo(dy[0..` − 1]e) for the
core index ` of y. First, we show that x[0..` − 1] = y[0..` − 1] holds. Since x =
Clo(dy[0..`−1]e), we have x[0..`−1] ¹ y[0..`−1]. Thus, if x[0..`−1] 6= y[0..`−1],
a more specific motif y′ = x[0..`− 1]y[`..|y|− 1] satisfies y ≺ y′ but L(y) = L(y′)
using Lemma 3. Next, if we take ξ = 〈`← y[`]〉, then the definition of core index
assures that y = Clo(xξ). Thus, ξ satisfies the condition of ppc-extension. This
proves this direction.

(2) to (1): Suppose that y = Clo(x〈k ← c〉). Then, it follows from Lemma 10
that k is the core index of y, thus P(y) = Clo(dy[0..k − 1]e). Since y is a ppc
extension, we have y[0..k − 1] = x[0..k − 1], and then Clo(dy[0..k − 1]e) =
Clo(dx[0..k − 1]e). By condition (iii) of ppc-extension, we can show that choice
of ξ is unique. ut

5.3 A polynomial space polynomial delay algorithm

Based on Theorem 7, we present in Figure 4 our algorithm MaxMotif that
enumerates all maximal motifs in a given input string by the depth-first search
overM applying the ppc-extension to each maximal motif.

Although a straightforward implementation of the procedure Expand in Fig-
ure 4 requires O(n4) time for each maximal motif, we can reduce the computation
time further.

Theorem 8. Given a quorum θ ≥ 1 and an input string s of length n, the
algorithm MaxMotif in Figure 4 enumerates all maximal motifs x of M in
O(L(x)n2) amortized time per motif with O(n) space and O(L(x)n2) delay.

Algorithm MaxMotif(θ: quorum, s: input string)
input: a quorum θ and an input string s;
output: all maximal motifs in M;
0 ⊥ = Clo(ε); //the root motif ⊥.
1 call Expand(⊥, {0, ..., n− 1},−1, θ, s); //core i(⊥) = −1.

Procedure Expand(x, L(x), core i(x), θ, s)
input: maximal motif x, L(x), core i(x), quorum θ, and input string s;
output: all descendants of x in T ;

2 if |L(x)| < θ then return;
3 output x;
4 for each k, core i(x) + 1 ≤ |s| − 1 such that x[k] = ◦ do
5 for each c ∈ Σ do begin
6 y = Clo(x〈k ← c〉); //ppt-extension.
7 if bxc[0..k − 1] = byc[0..k − 1] then
8 call Expand(y,L(y), k, θ, s);
9 end for
10 end for

Fig. 4. A polynomial space polynomial delay enumeration algorithm for M.

Proof. By Theorem 6 and Theorem 7, we see that the algorithm MaxMotif

visits all maximal motifs on the spanning tree T starting from the root ⊥. Since
T is a tree and any maximal motif appears in T , the algorithm enumerates M
without duplicates.

Let W (x) be the work that Expand spends for each maximal motif x except
the recursive call. For each y = x〈k ← c〉, computing the closure Clo(y) at line 6
takes O(|L(y)| · n) time. Thus, W (x) = O(|Σ| · |L(x)| · n2) time and this gives
the delay per maximal motif.

To improve the computation from line 5 to line 9, we compute L(y) for all
y = x〈k ← c〉 at once, by using the technique called Occurrence Deliver 7.
Suppose that we have an empty bucket for each letter c ∈ Σ. Then, for each
position d ∈ L(x), we insert d to the bucket of the letter s[d + k]. After this
operation, the content of the bucket of c is L(x〈k ← c〉). Now we can see that for
each k line 5 to line 9 takes O(|L(x)|n) time. This does not increase the space
complexity of O(n).

By applying the technique by Uno [15] that transforms any tree-search enu-
meration algorithm with work time W (x) at each node into a W (x) delay algo-
rithm, we finally obtain an algorithm with delay O(|L(x)| · n2). ut

In summary, the time complexity of the algorithm is O(n3), the space com-
plexity is O(n), and the delay is O(n3).

7 Occurrence deliver is introduced for closed itemsets enumeration in Uno et al. [16]

1

10

100

1000

10000

100000

1000000

10
00

0

40
00

0

16
00

00

64
00

00

25
60

00
0

1E
+07

length

ti
m

e
p

er
 1

0
0

0
0

 p
at

te
rn

s
(s

ec
)

Motif

MaxMotif

quorum

Fig. 5. Computation time with the increase of string length

Corollary 2. The maximal motif enumeration problem is solvable in polynomial
space and polynomial delay in the input size n = |s|. ut

6 Computational experiments

In this section, we show the results of computational experiments of our Max-

Motif algorithm. The aims of the experiments are to see,

1. the computation time for the real world data,
2. the increase of the computation time against the increase of the length of

the input string,
3. the increase of the computation time against the decrease of quorum, and
4. what kind of patterns we get.

We compared these with frequent motif mining. The algorithm for frequent
motif mining is a usual depth-first backtracking type one, with occurrence de-
liver, so the main body of the implementations of both algorithms are the same.

We coded the algorithms with C language with standard library functions.
The computer has CPU of Intel Pentium M 1.2GHz and 256MB memory, the OS
was cygwin, a Linux emulator on Windows, and the compiler was gcc. We chose
Y chromosome of the human genome8 as a test instance, and some text files
additionally. Y chromosome has repeated structures in it, thus it is a good in-
stance for frequent pattern mining. By the experiments, we evaluated the change
of computation time with the change of the input string length and the quorum.

First, we see the change of the computation time by the increase of the input
string length. We made strings for the experiments by taking the first k letters of
Y chromosome for several k’s. For each string, we gave a quorum so that nearly
10,000 frequent patterns appear. The results are shown in Figure 5. The X axis

8 We took the genome data at ftp://ftp.ncbi.nih.gov/genomes/H sapiens/

1

10

100

1000

10000

100000

10
00

0

40
00

0

16
00

00

64
00

00

25
60

00
0

1E
+07

length

ti
m

e
p

er
 1

0
0

0
0

 p
at

te
rn

s
(s

ec
)

Motif

MaxMotif

quorum

Fig. 6. Computation time with the increase of string length without any consecutive
six ◦’s

is the length of the input strings, and Y axis is the computation time for 10,000
patterns. Both axes are drawn in log scales. We also draw lines for the quorum.

We can see that the computation time is not so long for genome sequence of
10 million length, if we want to find not so many patterns. Perhaps MaxMotif

works for practical huge genome sequences. Both the number of patterns and
the computation time are quite similar, between MaxMotif and frequent motif
mining. This shows that the computational costs for generating ppc extensions,
which is mainly for checking the equalities of prefixes, are not large. Thus, we
can see that we need no additional computational cost to find only maximal
patterns. The lines of the computation time and quorum is close to parallel.
This means that the computation time depends deeply on quorum but not so
much on the length of input string, when we discover thousands of patterns.

In the output, we saw many unnatural patterns, such as A ◦ · · · ◦ T ◦ · · · ◦ A.
They are maximal motifs, but seem to be unnecessary in practice. To avoid such
patterns, we restricted consecutive ◦’s. Here we restrict six consecutive ◦’s in
this experiments. The results are shown in Figure 6. The computation time per
pattern does not increase, but the quorum to get 10,000 patterns is decreased.
This implies that we avoided many such unnecessary patterns, and find more
infrequent but necessary patterns.

Next, we see the result by the change of quorum. The test instance was a
substring of 4,000 letters taken from Y chromosome, and we execute the algo-
rithm for several quorums from 320 to 4. The results are shown in Figure 7.
Figure 8 shows the results when we forbid any consecutive three ◦’s.

As we can see, there is no difference on the number of patterns, between
frequent motifs and frequent maximal motifs when the quorum is large. How-
ever, when the quorum is small, the difference is quite huge. Especially, when
the quorum was smaller then eight, frequent motif mining algorithm did not
terminate in three hours. This implies that maximal motif is a good model for
mining many sequence patterns with a small frequency.

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

32
0 80 20 10 6 quorum

ti
m

e(
se

c)
 &

 #
d

is
co

v
er

ed
 m

o
ti

fs

motif

MaxMotif

#Motifs

#MaxMotifs

Fig. 7. The number of patterns and computation time with the decrease of quorum

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

32
0 80 20 10 6 quorum

ti
m

e(
se

c)
 &

 #
d

is
co

v
er

ed
 m

o
ti

fs motif

MaxMotif

#Motifs

#MaxMotifs

Fig. 8. The number of patterns and computation time with the decrease of quorum
with forbidding any consecutive three ◦’s

Finally, we report the results of an execution for text data; We examined the
source code of MaxMotif itself. The source code contains about 15000 letters,
and we ignored any “new line” characters. The computation was done in two
seconds, and we got about 20,000 maximal motifs. However, there were many
patterns such as “*****************◦◦*”. Such patterns match the comment
line, such as

/***/
/***** main routine ****************************/
/***/

One can see that many combinations of consecutive ’*’ and ◦ make maximal
motifs for this string, and such patterns are almost part of the output. Even if
we forbid some consecutive ◦’s, still they remain in the output. To avoid such
patterns, we introduced “removing overlapping occurrences”. For a pattern x, if
two positions d and d′ in L(x) satisfy that d < d′ < d + |x|, that is, overlapping,

we consider that d′ is redundant, and remove it from L(x) when we take the
closure. Then, we could avoid almost all such redundant patterns efficiently.

As a conclusion, we could see that maximal motifs can be a good model in
practice, and we can solve the problem in short time even if the input string is
so huge. However, we did not see any result when the size of alphabet is large; in
our experiments, it was 4 for genome sequences, and at most 100 for text data.
It is a remaining task in this research.

7 Conclusion

In this paper, we presented a polynomial space polynomial delay algorithm for
enumerating all maximal motifs in an input string for the class of motifs with
wild cards. By the use of depth-first search based on the prefix-preserving exten-
sion, the algorithm enumerates all maximal motifs without explicitly storing and
checking the maximal motifs enumerated so far. This drastically improves the
space and the delay complexities compared with the previous algorithms with
breadth-first search. The experimental results show the efficiency of our algo-
rithm in practice, even if the input string is so huge, such as genome sequences
of over 10 million length.

In the context of data mining, maximal motifs for sets of this type are called
closed itemsets, and since the end of 90’s, related enumeration problems have
been extensively studied for various classes of combinatorial objects, such as
sets, sequences, trees, and graphs [3, 5, 11, 12, 16, 18]. On the other hand, how-
ever, most of them are heuristic algorithms based on branch-and-bound, and
there are only a few results on output-polynomial time enumeration for these
classes [3, 5, 16]. Hence, the result of this paper will be a first step towards effi-
cient enumeration of maximal patterns for complex combinatorial objects such
as sequences, trees, and graphs [3].

Pattern discovery for classes of unions of patterns is one of the difficult
problems in machine learning. Since the class of maximal motifs is a class of
unions generated from tiling motifs [13], it will be a future problem to extend
the proposed enumeration method to pattern discovery for unions of sequence
patterns, e.g. [4]. Implementation of the proposed algorithm with practical im-
provement and evaluation of the algorithm on the real world datasets, e.g., bio-
logical datasets, are also interesting future problems.

References

1. A. Apostolico, M. Comin 2, L. Parida, Conservative Extraction of Over-
Represented Extensible Motifs,” ISMB (Supplement of Bioinformatics) 21, 9-18,
2005.

2. A. Apostolico and L. Parida, Compression and the wheel of fortune, In Proc. the
2003 Data Compression Conference (DCC’03), IEEE, 2003.

3. H. Arimura, T. Uno, An output-polynomial time algorithm for mining frequent
closed attribute trees, In Proc. ILP’05, LNAI 3625, 1–19, August 2005.

4. H. Arimura, T. Shinohara, S. Otsuki, Finding minimal generalizations for unions
of pattern languages and its application to inductive inference from positive data,
In STACS’94, LNCS 775, Springer-Verlag, 649–660, 1994.

5. E. Boros V. Gurvich, L. Khachiyan, K. Makino, The complexity of generating
maximal frequent and minimal infrequent sets, In Proc. STACS ’02, LNCS, 133-
141, 2002.

6. M. Crochemore and W. Rytter, Jewels of Stringology, World Scientific, 2002.
7. L. A. Goldberg, Polynomial space polynomial delay algorithms for listing families

of graphs, In Proc. the 25th STOC, ACM, 218–225, 1993.
8. D. Gusfield, Algorithms on strings, trees, and sequences, Cambridge, 1997.
9. L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and Y. Gao, Pattern discovery

on character sets and real-valued data: linear bound on irredundant motifs and
effcient polynomial time algorithm, In Proc. the 11th SIAM Symposium on Discrete
Algorithms (SODA’00), 297–308, 2000.

10. L. Parida, I. Rigoutsos, D. E. Platt, An Output-Sensitive Flexible Pattern Discov-
ery Algorithm. In Proc. CPM’01, LNCS 2089, 131–142, 2001.

11. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering Frequent Closed Item-
sets for Association Rules, In Proc. ICDT’99, 398–416, 1999.

12. J. Pelfrêne, S. Abdeddaim, and J. Alexandre, Extending Approximate Patterns,
In Proc. CPM’03, LNCS 2676, 328–347, 2003.

13. N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot, A basis of tiling mo-
tifs for generating repeated patterns and its complexity for higher quorum, In
Proc. MFCS’03, LNCS 2747, 622–631, 2003.

14. N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot, A comparative study of
bases for motif inference, In String Algorithmics, KCL publications, 2004.

15. T. Uno, Two general methods to reduce delay and change of enumeration algo-
rithms, NII Technical Report, NII-2003-004E, April 2003.

16. T. Uno, T. Asai, Y. Uchida, H. Arimura, An efficient algorithm for enumerating
closed patterns in transaction databases, In Proc. DS’04, LNAI 3245, 16-30, 2004.

17. L. G. Valiant, The complexity of computing the permanent, Theoretical Computer
Science 8, 189-201, 1979.

18. X. Yan, J. Han, CloseGraph: mining closed frequent graph patterns, In
Proc. SIGKDD’03, 2003.

