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抄録: 本稿では, 頂点数がちょうど n であり, 外平面の頂点数がちょうど r であるよう
な 2連結な平面三角分割グラフを列挙するアルゴリズムの改良を示す. このアルゴリズム
は, O(n) の空間しか使用せず, すべてのグラフを重複なく, ちょうど 1度ずつ, 1つあた
り O(rn) の計算時間で出力する. 既存の最速なアルゴリズムの 1つあたりの計算時間は
O(r2n) である.
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abstract: In this paper we give an algorithm to generate all biconnected plane trian-
gulations having exactly n vertices including exactly r vertices on the outer face. The
algorithm uses O(n) space in total and generates such triangulations without duplications
in O(rn) time per triangulation, while the previous best algorithm generates such trian-
gulations in O(r2n) time per triangulation.

1 Introduction

Generating all graphs with some property
without duplications has many applications,
including unbiased statistical analysis [9].
Many algorithms to solve these problems are
already known [1, 2, 9, 11]. Many nice text-
books have been published on the subject[5,
7].

In this paper we wish to generate all bi-
connected plane triangulations having ex-
actly n vertices including exactly r vertices
on the outer face. Such triangulations play
an important role in many algorithms, in-
cluding graph drawing algorithms [3, 4, 10].

Recentry we have given an algorithm to
generate all biconnected “based” plane tri-

angulations having exactly n vertices includ-
ing exactly r vertices on the outer face [8]. A
based plane triangulation means a plane tri-
angulation with one designated “base” edge
on the outer face. For instance, four bicon-
nected based plane triangulations are shown
in Fig. 1, where the base edges are depicted
by thick lines. Note that, however, those
based triangulations are isomorphic as non-
based plane triangulations. The algorithm
usesO(n) space in total and runs in O(f(n, r))
time, where f(n, r) is the number of noniso-
morphic biconnected based plane triangula-
tions having exactly n vertices including ex-
actly r vertices on the outer face. The algo-
rithm generates triangulations without du-
plications. So the algorithm generates each
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triangulation in O(1) time on average, while
the previous best algorithm generates such
triangulations in O(n2) time per triangula-
tion [1]. The algorithm does not output en-
tire triangulations but the difference from
the previous triangulation.

The strategy of the algorithm in [8] is as
follows. Given n and r, we first define a
tree T such that the inner vertices of T cor-
respond to the biconnected based plane tri-
angulations having at most n − 1 vertices
including at most n − r inner vertices, the
leaves of T correspond to the biconnected
based plane triangulations having exactly n
vertices including exactly r vertices on the
outer face, and the edges of T correspond
to some relation between the biconnected
based plane triangulations. T is called the
genealogical tree, and the genealogical tree
for n = 5 and r = 4 is shown in Fig. 2. In
the figure we can observe that if we remove
a vertex depicted by a white circle from a
biconnected based plane triangulation, then
we can have a “parent” biconnected based
plane triangulation. Also we can prove the
number of vertices of T is within 3 times
the number of leaves of T . Since the size
of T is huge in general, so we cannot con-
struct whole part of T at once. However,
we can simply traverse T in O(1) time per
edge of T by partially constructing T . We
need only O(n) space in total. And on the
traversal we can find all the vertices of T ,
which correspond to all the triangulations.

By modifying the algorithm, we can also
generate without duplications all biconnected
(non-based) plane triangulations having ex-
actly n vertices including exactly r vertices
on the outer face in O(r2n) time per tri-
angulation on average [8]. Another algo-
rithm with O(n2) time per triangulation is
also claimed in [9] without detail but using
a complicated theoretical linear-time plane
graph isomorphism algorithm [6], while the
algorithm in [8] is simple and does not need

the isomorphism algorithm.
The strategy of the algorithm in [8] is as

follows. The genealogical tree T has many
biconnected based plane triangulations which
are distinct as based plane triangulations,
but isomorphic as (non-based) plane trian-
gulations. The only difference is the choice
of the base edge on the outer face. See
Fig. 1. On the traversal of T , we have to
output exactly one biconnected (non-based)
plane triangulations for each isomorphic class.
By giving a unique sequence of letters for
each biconnected based plane triangulations,
we can define a representative triangulation
among each isomorphic class as the triangu-
lation having the lexicographically-first se-
quence of letters. The algorithm in [8] needs
O(rn) time computation at each leaf v of T
to decide whether the sequence of letters for
the based triangulation corresponding to v
is the lexicographically-first one among the
isomorphic class, and only in such case the
based plane triangulation is output as the
representative plane triangulation. Other-
wise the based triangulation is not output.
For each output triangulation, T may con-
tain r isomorphic ones corresponding to the
r choices of the base edge. Thus the algo-
rithm generates each triangulation inO(r2n)
time on average.

In this paper we improve the running time
of the algorithm in [8] as follows. We de-
fine a new unique sequence of letters for
each biconnected based plane triangulation.
Given a biconnected based plane triangula-
tion, the new sequence of letters needs less
computation to decide whether the sequence
of letters for the based plane triangulation
is the lexicographically-first one among the
isomorphic class. Our algorithm needs only
O(n) time computation at each leaf of T .
Again, for each output triangulation, T may
contain r isomorphic ones corresponding to
the r choices of the base edge. Thus our al-
gorithm generate each triangulation inO(rn)

2



Figure 1: Biconnected based plane triangulations.

Figure 2: The genealogical tree for n = 5 and r = 4.

time on average.
The rest of the paper is organized as fol-

lows. Section 2 gives some definitions. Sec-
tion 3 defines our new sequence of letters.
Finally Section 4 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let G be a connected graph with n ver-

tices. An edge connecting vertices x and y is
denoted by (x, y). The degree of a vertex v
is the number of neighbors of v in G. A cut
is a set of vertices whose removal results in a
disconnected graph or a single-vertex graph
K1. The connectivity κ(G) of a graph G is
the cardinality of the minimum number of
vertices consisting a cut. G is k−connected
if k ≤ κ(G).

A graph is planar if it can be embedded in
the plane so that no two edges intersect ge-
ometrically except at a vertex to which they
are both incident. A plane graph is a pla-
nar graph with a fixed planar embedding.
A plane graph divides the plane into con-

nected regions called faces. The unbounded
face is called the outer face, and other faces
are called inner faces. We regard the con-
tour of a face as the clockwise cycle formed
by the vertices and edges on the boundary of
the face. We denote the contour of the outer
face of plane graph G by Co(G). An edge
connecting two vertices on Co(G) but not on
Co(G) is called a chord of G. A plane graph
is called a plane triangulation if each inner
face has exactly three edges on its contour.
A based plane triangulation is a plane tri-
angulation with one designated edge on the
contour of the outer face. The designated
edge is called the base edge.

3 The sequence of letters

Let G be a biconnected based plane trian-
gulation, Co(G) = w0, w1, · · · , w� and
(w0, w�) be the base edge of G. In this sec-
tion we assign a sequence of letters to G,
and show that the sequence is unique for G.

Let G0 = G. Let G1 be the plane triangu-
lation derived from G0 by removing all ver-
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tices on the outer face and edges incident to
them. An example is shown in Fig. 3. Note
that G1 may be disconnected, but each in-
ner face has exactly three edges on its con-
tour, so G1 is still a plane triangulation. Let
D0 be the plane subgraph of G0 induced by
the edges of G0 located outside of Co(G1)
including Co(G1). An example is shown in
Fig. 4. We are going to assign a sequence
of letters to D0. By recursively assigning
a sequence of letters to each biconnected
component of G1, then marging derived se-
quences appropriately, and append it to the
sequence for D0, we can assign a sequence

of letters for G.
We first explain about the order of the

marge, then explain how to assign a sequence
of letters to D0.

Assume G1 has biconnected components
H1, H2, · · ·. Each biconnected component
has at least one neighbor vertexwi on Co(G0).
For each H1, H2, · · · we choose one neighbor
vertex wi on Co(G0) having the minimum
index i. We can marge the sequences of
H1, H2, · · · in the increasing order of i. If
two or more biconnected components share
the same i, then we can break the tie by
checking the edges connecting wi and the
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Figure 6: The ten types of triangles.

biconnected components, and order them
counterclockwise around wi. For instace, in
Fig. 4, we order them H1, H2, H3, H4.

For recursion we define the base edge of
each H ∈ {H1, H2, · · · , } as follows. Assume
wi on Co(G0) is the neighbor of H having
the minimum i, and (wi, u) is the first edge
connecting wi and H around wi in clockwise
order. Let u

′
be the preceding vertex of u

on Co(H). We define (u, u
′
) the base edge

of H.
Now we explain how to assign a sequence

of letters toD0. Let v be a vertex on Co(G0).
Let ∆0,∆1, · · · ,∆k be the inner faces of G0

appearing around v in counterclockwise or-
der, and assume ∆0 and ∆k have at least one
edge on Co(G0) on its contour. See Fig. 5.
We can observe that each ∆1,∆2, · · · ,∆k is
one of the ten types shown in Fig. 6, where
the inner face is shaded. Note that we do

not mention about ∆0 here, since ∆0 always
appears as the last inner face around the
preceding vertex of v on Co(G0). In Fig. 6,
u, v, w is the three vertices on the contour of
the inner face, and the three vertices appear
on Co(G0) for (a)–(e), exactly two of the
three vertices appear on Co(G0) for (f)–(h),
and exactly one of the three vertices appears
on Co(G0) for (i) and (j). For (i) and (j), x
is the vertex on the contour of the other in-
ner face having edge (u, w), and x ∈ Co(G0)
for (i), and x �∈ Co(G0) for (j). We assign
to v a sequnece of letters consisting of a left
parenthesis, the type names of ∆1 (possibly
with a parameter), a right parenthesis, a left
parenthesis, the type names of ∆2 (possibly
with a parameter), a right parenthesis, · · ·, a
left parenthesis, the type names of ∆k (pos-
sibly with a parameter), and a right paren-
thesis.
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For some type we append a parameter p
to the type name as follows.

Assume Co(G0) = w0(= v), w1, · · · , w�.
For (c),(d),(e),(h), we define p = q where
wq = u. Here p is the length of the subpath
of Co(G0) from v to u. For (g), we define
p = q where wq = w. Those parameters
are called the chord parameters. Intutively
those parameters uniquely define the struc-
ture of the chords of Co(G0).

For (i), assume Gx
1 is the connected com-

ponent of G1 containing u and w. See Fig. 6
(i). Now if we remove edge (u, w) from Gx

1

then the resulting graph is disconnected. We
can observe (u, w) and (w, u) appear on
Co(G

x
1). Assume Co(G

x
1) = v0(= u), v1(=

w), v2, v3, · · · , vq(= w), vq+1(= u), · · ·. We
define p = q. An example for value of p
is shown in Fig. 3(b). Those parameters
are called the bridge parameters. Intutively
those parameters
uniquely define the structure of Co(G1).

For instance, we assign to w0, w1, w2 in
Fig. 7, (i)(i)(j)(f), (j)(g, 10)(e, 10)(h, 4)(j)
(f), (j)(j)(f), respectively. Note that, for
any choice of the base edge, the parameters
are always identical.

Let Co(G) = w0, w1, · · · , w� and (w0, w�)
be the base edge of G. By concatenating
those sequences for vertices on Co(G), we
can assign a sequence of letters to D0. By
recursively assigning a sequence of letters
to each biconnected component of G1, then
marging derived sequences appropriately, we
can assign a sequence of letters for a bicon-
nected based plane triangulation G with the
base edge (w0, w�). For instance, we assign
to the biconnected based plane triangula-
tion with the base edge (w0, w24), shown in
Fig. 7, sequence (i)(i)(j)(f), (j)(g, 10)(e, 10)
(h, 4)(j)(f), (j)(j)(f), (j)(f), (j)(f)(g, 21)
(e, 21)(d, 6)(h, 5)(j)(f), (j)(f), (f), · · ·. Also
we assign to the biconnected based plane
triangulation with the base edge (w1, w0),
shown in Fig. 7, sequence (j)(g, 10)(e, 10)

(h, 4)(j)(f) (j)(j)(f), (j)(f), (j)(f)(g, 21)
(e, 21)(d, 6)(h, 5)(j)(f), (j)(f), (f), · · ·. By
a suitable “lotated shift” those sequences
are easily translated each other. We have
the following theorem.

Theorem 1 Let Ga and Gb be two bicon-
nected based plane triangulations, and Sa

and Sb be the sequence of letters for them,
respectively. Ga and Gb are isomorphic if
and only if Sa = Sb.

Let G be a biconnected plane triangula-
tion with r vertices on the outer face. As-
sume Go(G) = w0, w1, · · · , wr−1. By choos-
ing a base edge from the r edges on Co(G),
r of based triangulations are derived from
G. Let G(i) be the biconnected based plane
triangulation with the base edge (wi, wi+1),
for i, 0 ≤ i ≤ r−1. Let S(i) be the sequence
of letters for G(i) for i, 0 ≤ i ≤ r − 1 . We
have the following theorem.

Theorem 2 Given G, in O(n) time, we can
find i such that S(i) is the lexicographically-
first one among the r sequences S(0),
S(1), · · · , S(r−1).

Proof : (Sketch) By a simple dynamic pro-
gramming we can solve the problem in O(n)
time as follows.

We need some notations here. Let ∆0,
∆1, · · · ,∆k be the inner faces of G0 appear-
ing around a vertex v on Co(G0). in coun-
terclockwise order, and assume ∆0 and ∆k

have at least one edge on Co(G0) on its con-
tour. See Fig. 5. We call ∆1 the first face
of v, and ∆1,∆2, · · · ,∆k the faces of v. By
concatenating the faces of the vertices on
Co(G0), we are going to consider the (cyclic)
sequence of faces in this algorithm. Note
that some faces may appear two or three
times on the sequence, for instance a face
of type (e) in Fig. 6 appear three times on
the sequence. All we need to do is to find a
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Figure 7: The triangle sequence.

starting vertex onCo(G0) which produce the
lexicographically-first sequence of letters.

First we compute all parameters in D0 in
O(|ED|) time, where ED is the set of edges
in D0. Then we assign the sequence to each
vertices on Co(G0).

We start with stage 0.
Now in O(n) time we find vertices having

the first face with the lexicographically-first
sequence of letters among the vertices on
Co(G0). We call those vertices the stage 0
winners. Let V0 be the set of such vertices,
and let F0 be the set of such first faces. If
there is only one such vertex in V0, say v,
then we have done, and we have found wi =
v.

Otherwise, we have two or more such ver-
tices in V0. Then we proceed to stage 1.

We check the succeeding faces of the faces
in F0. Among those succeeding faces we
choose faces having the lexicographically-
first sequence of letters. Let F1 be the set of
such faces. Only the vertices in V0 having
the first face succeeded by faces in F1 still
have a chance to be wi.

If |F1| = 1, then we have done, and wi

is the vertex in V0 having the first face suc-
ceeded by the face in F1.

Otherwise, F1 contains two or more such

faces. We concatenate each alternating oc-
curence of faces in F0 and faces in F1. If such
a alternating occurence contains 2k faces,
then we regard them as one (virtual) face
having letters (1, k). Only the vertices in
V0 having the first face succeeded by vir-
tual faces having the maximum k still has a
chance to be wi. Let V1 be the set of such
vertices. We call those vertices the stage 1
winners.

We repeat this process until we find a
unique wi. If two or more winners remain
after analyzing D0, we proceed to each bi-
connected component of G1, and then pro-
ceed recursively.

If after completely analyzing G we still
have two or more winners for wi then we can
choose any of them. (This is a symmetry
case.)

Since each face is re-checked after the pre-
ceding (virtual) face is concatenated to some
virtual face, the total number of such re-
check is at most 3f , where f is the number
of faces in G. Also we check each edge at
most a constant number of times, and for
planar graph f ≤ m and m ≤ 3n holds.
Thus the running time of the algorithm is
O(n).

By replacing the O(rn) time computation
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at each leaf of the genealogical tree T in [8]
to the O(n) time computation above, we can
improve the running time of the algorithm.
We have the following theorem.

Theorem 3 One can generate all the bi-
connected plane triangulations having n ver-
tices including r vertices on the outer face
in O(rn) time per triangulation on average.

4 Conclusion

In this paper we have given an algorithms
to generate all biconnected plane triangula-
tions without duplications. Our idea is to
define a unique sequence of letters for each
biconnected based plane triangulations, and
by the sequence we can efficiently decide
for each biconnected based plane triangula-
tion whether the based triangulation should
be output as a biconnected plane triangula-
tions.
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