
LCM: An Efficient Algorithm for

Enumerating Frequent Closed Item Sets

Takeaki Uno1, Tatsuya Asai2, Yuzo Uchida2, Hiroki Arimura2

1 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan

e-mail: uno@nii.jp
2 Department of Informatics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-0053, JAPAN

e-mail:{t-asai,y-uchida,arim}@i.kyushu-u.ac.jp

Abstract:

In this paper, we propose three algorithms LCM-
freq, LCM, and LCMmax for mining all frequent sets,
frequent closed item sets, and maximal frequent sets,
respectively, from transaction databases. The main
theoretical contribution is that we construct tree-
shaped transversal routes composed of only frequent
closed item sets, which is induced by a parent-child
relationship defined on frequent closed item sets. By
traversing the route in a depth-first manner, LCM
finds all frequent closed item sets in polynomial time
per item set, without storing previously obtained
closed item sets in memory. Moreover, we introduce
several algorithmic techniques using the sparse and
dense structures of input data. Algorithms for enu-
merating all frequent item sets and maximal frequent
item sets are obtained from LCM as its variants. By
computational experiments on real world and syn-
thetic databases to compare their performance to the
previous algorithms, we found that our algorithms
are fast on large real world datasets with natural dis-
tributions such as KDD-cup2000 datasets, and many
other synthetic databases.

1. Introduction

Frequent item set mining is one of the fundamen-
tal problems in data mining and has many applica-
tions such as association rule mining [1], inductive
databases [9], and query expansion [12].
Let E be the universe of items, consisting of items

1, ..., n. A subset X of E is called an item set . T
is a set of transactions over E, i.e., each T ∈ T
is composed of items of E. For an item set X, let
T (X) = { t ∈ T |X ⊆ t } be the set of transactions
including X. Each transaction of T (X) is called

an occurrence of X. For a given constant α ≥ 0,
an item set X is called frequent if |T (X)| ≥ α. If
a frequent item set is included in no other frequent
set, it is said to be maximal. For a transaction set
S ⊆ T , let I(S) =

⋂
T∈S T . If an item set X satisfies

I(T (X)) = X, then X is called a closed item set. We
denote by F and C the sets of all frequent itemsets
and all frequent closed item sets, respectively.

In this paper, we propose an efficient algorithm
LCM for enumerating all frequent closed item sets.
LCM is an abbreviation of Linear time Closed item
set Miner . Existing algorithms for this task basically
enumerate frequent item sets with cutting off unnec-
essary frequent item sets by pruning. However, the
pruning is not complete, hence the algorithms oper-
ate unnecessary frequent item sets, and do something
more. In LCM, we define a parent-child relation-
ship between frequent closed item sets. The relation-
ship induces tree-shaped transversal routes composed
only of all the frequent closed item sets. Our algo-
rithm traverses the routes, hence takes linear time
of the number of frequent closed item sets. This
algorithm is obtained from the algorithms for enu-
merating maximal bipartite cliques [14, 15], which is
designed based on reverse search technique [3, 16].

In addition to the search tree technique for closed
item sets, we use several techniques to speed-up the
update of the occurrences of item sets. One technique
is occurrence deliver, which simutaneously computes
the occurrence sets of all the successors of the cur-
rent item set during a single scan on the current oc-
currence set. The other is diffsets proposed in [18].
Since there is a trade-off between these two methods
that the former is fast for sparse data while the latter
is fast for dense data, we developed the hybrid algo-
rithm combining them. In some iterations, we make

1

a decision based of the estimation of their computa-
tion time, hence our algorithm can use appropriate
one for dense parts and sparse parts of the input.
We also consider the problems of enumerating all

frequent sets, and maximal frequent sets, and derive
two algorithms LCMfreq and LCMmax from LCM.
LCMmax is obtained from LCM by adding the ex-
plicit check of maximality. LCMfreq is not merely
a LCM without the check of closedness, but also
achives substantial speed-up using closed itemset dis-
covery techniques because it enumerates only the rep-
resentatives of groups of frequent item sets, and gen-
erate other frequent item sets from the representa-
tives.
From computer experiments on real and artificial

datasets with the previous algorithms, we observed
that our algorithms LCMfreq, LCM, and LCMmax
significantly outperform the previous algorithms on
real world datasets with natural distributions such
as BMS-Web-View-1 and BMS-POS datasets in the
KDD-CUP 2000 datasets as well as large synthe-
sis datasets such as IBM T10K4D100K. The per-
formance of our algorithms is similar to other algo-
rithms for hard datasets such as Connect and Chess
datasets from UCI-Machine Learning Repository, but
less significant than MAFIA, however LCM works
with small memory rather than other algorithms.
The organization of the paper is as follows. In Sec-

tion 2, we explain our tree enumeration method for
frequent closed item sets and our algorithm LCM. In
Section 3, we describe several algorithmic techniques
for speeding up and saving memory. Then, Section 4
and 5 give LCMmax and LCMfreq for maximal and
all frequent item sets, respectively. Techniques for
implementation is described in Section 6, and the re-
sults of computational experiments are reported in
Section 7. Finally, we conclude in Section 8.

2. Enumerating Frequent Closed Item
Sets

In this section, we introduce a parent-child relation-
ship between frequent closed item sets in C, and de-
scribe our algorithm LCM for enumeration them.
Recent efficient algorithms for frequent item sets,

e.g.,[4, 17, 18], use a tree-shaped search structure for
F , called the set enumeration tree [4] defined as fol-
lows. Let X = {x1, . . . , xn} be an itemset as an
ordered sequence such that x1 < · · · < xn, where the
tail of X is tail(X) = xn ∈ E. Let X, Y be item
sets. For an index i, X(i) = X ∩ {1, . . . , i}. X is a

E

X parent of X

T

i(X)

occurrences of the parentoccurrences of X

Figure 1: An example of the parent of X: The parent
of X is obtained by deleting items larger than i(X)
(in the gray area) and take a closure.

prefix of Y if X = Y (i) holds for i = tail(X). Then,
the parent-child relation P for the set enumeration
tree for F is define as X = P(Y) iff Y = X ∪ {i} for
some i > tail(X), or equivalently, X = Y \{tail(Y)}.
Then, the whole search space for F forms a prefix
tree (or trie) with this edge relation P.
Now, we define the parent-child relation P for

closed item sets in C as follows. For X ∈ C, we de-
fine the parent of X by P(X) = I(T (X(i(X) − 1))),
where i(X) be the minimum item i such that T (X) =
T (X(i)) but T (X) �= T (X(i−1)). If Y is the parent
of X, we say X is a child of Y . Let ⊥ = I(T (∅)) be
the smallest item set in C called the root . For any
X ∈ C \ {⊥}, its parent P(X) is always defined and
belongs to C. An illustration is given in Fig. 1.
For any X ∈ C and its parent Y , the proper in-

clusion Y ⊂ X holds since T (X(i(X) − 1)) ⊂ T (X).
Thus, the relation P is acyclic, and its graph rep-
resentation forms a tree. By traversing the tree in
a depth-first manner, we can enumerate all the fre-
quent closed item sets in linear time in the size of the
tree, which is equal to the number of the frequent
closed item sets in C. In addition, we need not store
the tree in memory. Starting from the root ⊥, we
find a child X of the root, and go to X. In the same
way, we go to a child of X. When we arrive at a leaf
of the tree, we backtrack, and find another child. Re-
peating this process, we eventually find all frequent
closed item set in C.
To find the children of the current frequent closed

item set, we use the following lemma. For an item set
X and an index i, let X[i] = X ∪ H where H is the
set of the items j ∈ I(T (X ∪ {i})) satisfying j ≥ i.

Lemma 1 X′ is a child of X ∈ C (X′ ∈ C and the
parent of X′ is X) if and only if
(cond1) X′ = X[i] for some i > i(X),
(cond2) X′ = I(T (X′)) (X′ is a closed item set)
(cond3) X′ is frequent

2

Proof : Suppose that X′ = X[i] satisfies the condi-
tions (cond1), (cond2) and (cond3). Then, X′ ∈ C.
Since T (X(i − 1)) = T (X) and T (X(i − 1) ∪ {i}) =
T (X′) holds thus i(X′) = i holds. Hence, X′ is a
child of X. Suppose that X′ is a child of X. Then,
(cond2) and (cond3) hold. From the definition of
i(X′), T (X(i(X′))∪{i(X′)}) = T (X′) holds. Hence,
X′ = X[i(X′)] holds. We also have i(X′) > i(X)
since T (X′(i(X′) − 1)) = T (X). Hence (cond1)
holds.

Clearly, T (X[i]) = T (X ∪ {i}) holds if (cond2)
I(T (X[i])) = X[i] holds. Note that no child X′ of X
satisfies X[i] = X[i′], i �= i′, since the minimum item
of X[i]\X and X[i′]\X are i and i′, respectively. Us-
ing this lemma, we construct the following algorithm
scheme for, given a closed itemset X, enumerating all
descendants in the search tree for closed itemsets.

Algorithm LCM (X : frequent closed item set)
1. output X
2. For each i > i(X) do
3. If X[i] is frequent and X[i] = I(T (X[i])) then

Call LCM(X[i])
4. End for

Theorem 1 Let 0 < σ < 1 be a minimum support.
Algorithm LCM enumerates, given the root closed
item set ⊥ = I(T (∅)), all frequent closed item sets
in linear time in the number of frequent closed item
sets in C.
The existing enumeration algorithm for frequent

closed item sets are based on backtrack algorithm,
which traverse a tree composed of all frequent item
sets in F , and skip some item sets by pruning the
tree. Since the pruning is not complete, however,
these algorithms generate unnecessary frequent item
sets. On the other hand, the algorithm in [10] directly
generates only closed item sets with the closure oper-
ation I(T (·)) as ours, but their method may generate
duplicated closed item sets and needs expensive du-
plicate check.
On the other hand, our algorithm traverses a tree

composed only of frequent closed item sets, and each
iteration is not as heavy as the previous algorithms.
Hence, our algorithm runs fast in practice. If we con-
sider our algorithm as a modification of usual back-
tracking algorithm, each iteration of our algorithm
re-orders the items larger than i(X) such that the
items not included in X follow the items included in
X. Note that the parent X is not a prefix of X[i] in
a recursive call. The check of (cond2) can be consid-
ered as a pruning of non-closed item sets.

T(X)

•••
jQ[|E|-2] jQ[|E|-1] jQ[|E|]

A
C
D
F
G

A
B
C
F

A
B
C
F
H

A
C
D
F
G

occurrences

jQ[i]
= T(X[i])

A
B
C
D
F
G
H

Right first sweep

• • •

Figure 2: Occurrence deliver and right first sweep:
In the figure, J [i] is written as JQ[i]. For each oc-
currence T of X, occurrence deliver inserts T to J [i]
such that i ∈ T. When the algorithm generates a re-
cursive call respect to X[|E| − 2], the recursive calls
respect to X[|E| − 1] and X[|E|] have been termi-
nated, J [|E| − 1] and J [|E|] are cleared. The recur-
sive call of X[|E|−2] uses only J [|E| − 1] and J [|E|],
and hence the algorithm re-uses them in the recursive
call.

3. Reducing Computation Time

The computation time of LCM described in the pre-
vious section is linear in |C|, with a factor depending
on T (X) for each closed item set X ∈ C. However,
this still takes long time if it is implemented in a
straightforward way. In this section, we introduce
some techniques based on sparse and dense structures
of the input data.
Occurrence Deliver. First, We introduce the

technique called the occurrence deliver for reducing
the construction time for T (X[i]), which is needed
to check (cond3). This technique is particularly effi-
cient in the case that |T (X[i])| is much smaller than
|T (X)|. In a usual way, T (X[i]) is obtained from
T (X) in O(|T (X)|) time by removing all transac-
tions not including i based on the equiality T (X[i]) =
T (X ∪ {i}) = T (X) ∩ T ({i}) (this method is known
as down-project). Thus, the total computation for all
children takes |E| scans and O(|T (X)| · |E|) time.
Instead of this, we build for all i = i(X), . . . , |E|

the occurrence lists J [i] def= T (X[i]) simultaneously
by scanning the transactions in T (X) at once as fol-
lows. We initialize J [i] = ∅ for all i = i(X), . . . , |E|.
For each T ∈ T (X) and for each i ∈ T (i > i(X)),
we insert T to J [i]. See Fig. 2 for explanation, where
we write jQ[i] for J [i]. This correctly computes J [i]
for all i in the total time O(|T (X)|). Furthermore,
we need not make recursive call of LCM for X[i] if
T (X[i]) = ∅ (this is often called lookahead [4]). In

3

our experiments on BMS instances, the occurrence
deliver reduces the computation time up to 1/10 in
some cases.
Right-first sweep. The occurrence deliver

method needs eager computation of the occurrence
sets J [i] = T (X[i]) for all children before expand-
ing one of them. A simple implementation of it may
require much memory than the ordinary lazy compu-
tation of T (X[i]) as in [17]. However, we can reduce
the memory usage using a method called the right-
first sweep as follows.
Given a parent X, we make the recursive call for

X[i] in the decreasing order for each i = |E|, . . . , i(X)
(See Fig. 2). At each call of X[i], we collect the
memory allocated before for J [i+ 1], . . . ,J [|E|] and
then re-use it for J [i]. After terminating the call for
X[i], the memory for J [i] is released for the future
use in J [j] for j < i. Since |J [i]| = |T (X[i])| ≤
|T ({i})| for any i and X, the total memory

∑
i |J [i]|

is bounded by the input size ||T || =
∑

T∈T |T |, and
thus, it is sufficient to allocate the memory for J at
once as a global variable.
Diffsets. In the case that |T (X[i])| is nearly equal

to |T (X)| we use the diffset technique proposed in
[18]. The diffset for index i isDJ [i] = T (X)\T (X[i]),
where T (X[i]) = T (X ∪ {i}). Then, the frequency
of X[i] is obtained by |T (X[i])| = |T (X)| − |DJ [i]|.
When we generate a recursive call respect to X[i], we
update DJ [j], j > i by setting DJ [j] to be DJ [j] \
DJ [i] in time O(

∑
i>i(X),X[i]∈F ((|T (X)|−|T (X[i])|).

Diffsets are needed for only i such that X[i] is fre-
quent. By diffsets, the computation time for in-
stances such as connect, chess, pumsb are reduced
to 1/100, where |T (X[i])| is as large as |T (X)|.
Hybrid Computation. As we saw in the preced-

ing subsections, our occurrence deliver is fast when
|T (X[i])| is much smaller than |T (X)| while the diff-
set of [18] is fast when |T (X[i])| is nearly close to
|T (X)|. Therefore, our LCM dinamically decides
which of occurrence deliver and diffsets we will use.
To do this, we compare two quantities on X:

A(X) =
∑

i |T (X ∪ {i})| and
B(X) =

∑
i:X∪{i}∈F (|T (X)| − |T (X ∪ {i})|).

For some fixed constant α > 1, we decide to use
the occurrence deliver if A(X) < αB(X) and the
diffset otherwise. We make this decision only at the
child iterations of the root set ⊥ since this decision
takes much time. Empirically, restricting the range
i ∈ {1, . . . , |E|} of the the index i in A(X) and B(X)
to i ∈ {i(X) + 1, . . . , |E|} results significant speed-
up. By experiments on BMS instances, we observe
that the hybrid technique reduces the computation

time up to 1/3. The hybrid technique is also useful
in reducing the memory space in diffset as follows.
Although the memory B(X) used by diffsets is not
bounded by the input size ||T || in the worst case,
it is ensured in hybrid that B(X) does not exceed
A(X) ≤ ||T || because the diffset is chosen only when
A(X) ≥ αB(X).
Checking the closedness in occrrence de-

liver. Another key is to efficiently check the closed-
ness X[i] = I(T (X[i])) (cond 2). The straightfor-
ward computation of the closure I(T (X[i])) takes
much time since it requires the access to the whole
sets T (X[j]), j < i and i is usually as large as |E|.
By definition, (cond 2) is violated iff there exists

some j ∈ {1, . . . , i − 1} such that j ∈ T for ev-
ery T ∈ T (X ∪ {i}). We first choose a transac-
tion T ∗(∪{i}) ∈ T (X ∪ {i}) of minimum size, and
tests if j ∈ T for increasing j ∈ T ∗(∪{i}). This
results O(

∑
j∈T∗(X∪{i}) m(X[i], j)) time algorithm,

where m(X′, j) is the maximum index m such that
all of the first m transactions of T (X′) include j,
which is much faster than the straightforward algo-
rithm with O(

∑
j<i |T (X ∪ {i} ∪ {j}])|) time.

In fact, the efficient check requires the adjacency
matrix (sometime called bitmap) representing the in-
clusion relationship between items and transactions.
However, the adjacency matrix requires O(|T |× |E|)
memory, which is quite hard to store for large in-
stances. Hence, we make columns of adjacency
matrix for only transactions of size larger than
(
∑

T∈T |T |)/δ. Here δ is a constant. This uses at
most O(δ ×

∑
T∈T |T |), linear in the input size.

Checking the closedness in diffsets. In the
case that |T (X[i])| is nearly equal to |T (X)|, the
above check is not done in short time. In this case,
we keep diffset DJ [j] for all j < i, i �∈ X such
that X[i] is frequent. To maintain DJ for all i is
a heavy task, thus we discard unnecessary DJ ’s as
follows. If T (X ∪ {j}) includes an item included
in no T (X[i′]), i′ > i(X), then for any descendant
X′ of X, j �∈ I(T (X′[j′])) for any j′ > i(X′).
Hence, we no longer have to keep DJ [j] for such
j. Let NC(X) be the set of items j such that X[j]
is frequent and any item of T (X) \ T (X ∪ {j}) is
included in some T (X[j′]), j′ > i(X). Then, the
computation time for checking (cond2) is written
as O(

∑
j∈NC(X),j<i |T (X) \ T (X ∪ {j})|). By check-

ing (cond2) in these ways, the computation time for
checking (cond2) is reduced from 1/10 to 1/100.
Detailed Algorithm. We present below the de-

scription of the algorithm LCM, which recursively
computes (X, T (X), i(X)), simultaneously.

4

global: J ,DJ /* Global sets of lists */

Algorithm LCM()
1. X := I(T (∅)) /* The root ⊥ */
2. For i := 1 to |E|
3. If X[i] satisfies (cond2) and (cond3) then

Call LCM Iter(X[i], T (X[i]), i) or
Call LCMd Iter2(X[i], T (X[i]), i,DJ)
based on the decision criteria

4. End for

LCM Iter(X, T (X), i(X)) /* occurrence deliver */
1. output X
2. For each T ∈ T (X)

For each j ∈ T, j > i(X), insert t to J [j]
4. For each j,J [j] �= ∅ in the decreasing order
5. If |J [j]| ≥ α and (cond2) holds then

LCM Iter(T (J [j]),J [j], j)
6. Delete J [j]
7. End for

LCM Iter2(X, T (X), i(X),DJ) /* diffset */
1. output X
2. For each i, X[i] is frequent
3. If X[i] satisfies (cond2) then
4. For each j, X[i] ∪ {j} is frequent,

DJ ′[j] := DJ [j] \ DJ [i]
5. LCM Iter2(T (J [j]),J [j], j,DJ ′)
6. End if
7. End for

Theorem 2 Algorithm LCM enumerates all fre-
quent closed item sets in O(

∑
j>i(X) |T (X[j])| +

∑
j>i(X),X[j]∈F

∑
j′∈T∗(X) m(X[j], j′)) time,

or O(
∑

i>i(X),X[i]∈F ((|T (X)| − |T (X[i])|) +
∑

j∈NC(X),j<i |T (X) \ T (X ∪ {j})|)) time for
each frequent closed item set X, with memory linear
to the input size.

4. Enumerating Maximal Frequent
Sets

In this section, we explain an enumeration algorithm
of maximal frequent sets with the use of frequent
closed item set enumeration. The main idea is very
simple. Since any maximal frequent item set is a fre-
quent closed item set, we enumerate frequent closed
item sets and output only those being maximal fre-
quent sets. For a frequent closed item set X, X is a
maximal frequent set if and only if X ∪ {i} is infre-
quent for any i �∈ X. By adding this check to LCM,
we obtain LCMmax.
This modification does not increase the memory

000 ••• 0

111 ••• 1

closed item
set class01 lattice

Figure 3: Hypercube decomposition: LCMfreq de-
composes a closed item set class into several sublat-
tices (gray rectangles).

complexity but increase the computation time. In the
case of occurrence deliver, we generate T (X∪{j}) for
all j in the same way as the occurrence deliver, and
check the maximality. This takes O(

∑
j<i(X) |T (X ∪

{j}|) time. In the case of difference update, we do
not discard diffsets unnecessary for closed item set
enumeration. We keep diffsets DJ for all j such that
X ∪ {j} is frequent. To update and maintain this,
we spend O(

∑
j,X∪{j}∈F |T (X) \ T (X ∪ {j})|) time.

Note that we are not in need of check the maximality
if X has a child.

Theorem 3 Algorithm LCMmax enumerates all
maximal frequent item sets in O(

∑
i |T (X ∪ {i})|)

time, or O(
∑

i,X∪{i}∈F((|T (X)|−|T (X∪{i})|)) time
for each frequent closed item set X, with memory lin-
ear in the input size.

5. Enumerating Frequent Sets

In this section, we describe an enumeration algo-
rithm for frequent item sets. The key idea of our
algorithm is that we classify the frequent item sets
into groups and enumerate the representative of each
group. Each group is composed of frequent item sets
included in the class of a closed item set. This idea
is based on the following lemma.

Lemma 2 Suppose that frequent item sets X and
S ⊃ X satisfy T (X) = T (S). Then, for any item
set X′ including X, T (X′) = T (X′ ∪ S).

Particularly, T (X′) = T (R) holds for any X′ ⊆
R ⊆ X′∪S, hence all R are included in the same class
of a closed item set. Hence, any frequent item set X′

5

is generated from X′ \ (S \ X). We call X′ \ (S \ X)
representative.
Let us consider a backtracking algorithm finding

frequent item sets which adds items one by one in lex-
icographical order. Suppose that we currently have a
frequent item set X, and find another frequent item
set X ∪ {i}. Let S = X[i]. Then, according to the
above lemma, we can observe that for any frequent
item set X′ including X and not intersecting S \ X,
any item set including X′ and included in X′ ∪ S is
also frequent. Conversely, any frequent item set in-
cluding X is generated from X′ not intersecting S\X.
Hence, we enumerate only representatives including
X and not intersecting S \ X, and generate other
frequent item sets by adding each subset of S \ X.
This method can be considered that we “decompose”
classes of closed item sets into several sublattices (hy-
percubes) each of whose maximal and minimal ele-
ments are S and X′, respectively (see Fig. 3). We
call this technique hypercube decomposition.
Suppose that we are currently operating a rep-

resentative X′ including X, and going to gener-
ate a recursive call respect to X′ ∪ {j}. Then, if
(X′[i] \X′) \ S �= ∅, X′ and S ∪ (X′[i] \ X′) satisfies
the condition of Lemma 2. Hence, we add X′[i] \ X′

to S.
We describe LCMfreq as follows.

Algorithm LCMfreq (X : representative,
S : item set, i : item)

1. Output all item sets R, X ⊆ R ⊆ X ∪ S
2. For each j > i, j �∈ X ∪ S
3. If X ∪ {j} is frequent then

Call LCMfreq (X ∪ {j}, S ∪ (X[j] \ (X ∪ {j})), j)
4. End for

For some synthetic instances such that frequent
closed item sets are fewer than frequent item sets,
the average size of S is up to 5. In these cases, the
algorithm finds 2|S| = 32 frequent item sets at once,
hence the computation time is reduced much by the
improvement.
To check the frequency of all X ∪ {j}, we can

use occurrence deliver and diffsets used for LCM.
LCMfreq does not require the check of (cond2),
hence The computation time of each iteration is
O(

∑
j>i(X) |T (X[j])|) time for occurrence deliver,

and O(
∑

j>i(X),X[j]∈F |T (X) \ T (X[j])|) for diff-
sets. Since the computation time change, we
use another estimators for hybrid. In almost all
cases, if once

∑
j>i(X),X[j]∈F |T (X) \ T (X[j])| be-

comes smaller than
∑

j>i(X) |T (X[j])|, the condi-
tion holds in any iteration generated by a recursive

call. Hence, the algorithm first starts with occur-
rence deliver, and compares them in each iteration.
If

∑
j>i(X),X[j]∈F |T (X) \ T (X[j])| becomes smaller,

then we change to diffsets. Note that these estima-
tors can computed in short time by using the result
of occurrence deliver.

Theorem 4 LCMfreq enumerates all frequent
sets of F in O(

∑
j>i(X) |T (X[j])|) time or

O(
∑

j>i(X),X[j]∈F |T (X) \ T (X[j])|) time for
each frequent set X, within O(

∑
T∈T |T |) space.

Particularly, LCMfreq requires one integer for each
item of any transaction, which is required to store the
input data. Other memory LCMfreq uses is bounded
by O(|T |+ |E|).
Experimentally, an iteration of LCMfreq in-

putting frequent set X takes O(|T (X)| + |X|)
or O((size of diffset) + |X|) steps in average. In
some sense, this is optimal since we have to take
O(|X|) time to output, and O(|T (X)|) time or
O((size of diffset)) time to check the frequency of X.

6. Implementation

In this section, we explain our implementation. First,
we explain the data structure of our algorithm. A
transaction T of input data is stored by an array with
length |T |. Each cell of the array stores the index of
an item of T. For example, t = {4, 2, 7} is stored in
an array with 3 cells, [2, 4, 7]. We sort the elements of
the array so that we can take {i, ..., |E|} ∩T in linear
time of {i, ..., |E|}∩T.J is also stored in arrays in the
same way. We are not in need of doubly linked lists
or binary trees, which take much time to be operated.
To reduce the practical computation time, we sort

the transactions by their sizes, and items by the num-
ber of transactions including them. Experimentally,
this reduces

∑
j>i(X) |T (X∪{j})|. In some cases, the

computation time has been reduced by a factor of
1/3.

7. Computational Experiments

To examine the practical efficiency of our algorithms,
we run the experiments on the real and synthetic
datasets, which are made available on FIMI’03 site.
In the following, we will report the results of the ex-
periments.

6

Table 1: The datasets. AvTrSz means the average transaction size

Dataset #items #Trans AvTrSz #FI #FCI #MFI Minsup (%)

BMS-Web-View1 497 59,602 2.51 3.9K–NA 3.9K–1241K 2.1K–129.4K 0.1–0.01
BMS-Web-View2 3,340 77,512 4.62 24K–9897K 23K–755K 3.9K–118K 0.1–0.01

BMS-POS 1,657 517,255 6.5 122K–33400K 122K–21885K 30K–4280K 0.1–0.01
T10I4D100K 1,000 100,000 10.0 15K–335K 14K–229K 7.9K–114K 0.15–0.025

T40I10D100K 1,000 100,000 39.6 - - - 2–0.5
pumsb 7,117 49,046 74.0 - - - 95–60

pumsb star 7,117 49,046 50.0 - - - 50–10
mushroom 120 8,124 23.0 - - - 20–0.1

connect 130 67,577 43.0 - - - 95–40
chess 76 3196 37.0 - - - 90–30

7.1 Datasets and Methods

We implemented our algorithms our three algorithms
LCMfreq (LCMfreq), LCM (LCM), LCMmax (LCM-
max) in C and compiled with gcc3.2.
The algorithms were tested on the datasets shown

in Table 1. available from the FIMI’03 homepage1,
which include: T10I4D100K, T40I10D100K from
IBM Almaden Quest research group; chess, con-
nect, mushroom, pumsb, pumsb star from UCI ML
repository2 and PUMSB; BMS-WebView-1, BMS-
WebView-2, BMS-POS from KDD-CUP 20003.
We compare our algorithms LCMfreq, LCM, LCM-

max with the following frequent item set mining algo-
rithms: Implementations of Fp-growth [7], Eclat [17],
Apriori [1, 2] by Bart Goethals 4; We also com-
pare the LCM algorithms with the implementation of
Mafia [6], a fast maximal frequent pattern miner, by
University of Cornell’s Database group 5. This ver-
sions of mafia with frequent item sets, frequent closed
item sets, and maximal frequent item sets options
are denoted by mafia-fi, mafia-fci, mafia-mfi, respec-
tively. Although we have also planned to make the
performance comparison with Charm, the state-of-
the-art frequent closed item set miner, we gave up the
comparison in this time due to the time constraint.
All experiments were run on a PC with the configu-

ration of Pen4 2.8GHz, 1GB memory, and RPM 7200
hard disk of 180GB. In the experiments, LCMfreq,
LCM and LCMmax use at most 123MB, 300MB, and
300MB of memory, resp. Note that LCM and LCM-
max can save the memory use by decreasing δ.

1http://fimi.cs.helsinki.fi/testdata.html
2http://www.ics.uci.edu/ mlearn/MLRepository.html
3http://www.ecn.purdue.edu/KDDCUP/
4http://www.cs.helsinki.fi/u/goethals/software/
5University of Cornell Database group, Himalaya Data

Mining Tools, http://himalaya-tools.sourceforge.net/

7.2 Results

Figures 6 through Figure 12 show the running time
with varying minimum supports for the seven al-
gorithms, namely LCMfreq, LCM, LCMmax, FP-
growth, eclat, apriori, mafia-mfi on the nine datasets
described in the previous subsection. In the follow-
ing, we call all, maximal, closed frequent item set
mining simply by all, maximal, closed.

Results on Synthetic Data

Figure 4 shows the running time with minimum sup-
port ranging from 0.15% to 0.025% on IBM-Artificial
T10I4D100K datasets. From this plot, we see that
most algorithms run within around a few 10 min-
utes and the behaviors are quite similar when mini-
mum support increases. In Figure 4, All of LCMmax,
LCM, and LCMfreq are twice faster than FP-growth
on IBM T10I4D100K dataset. On the other hand,
Mafia-mfi, Mafia-fci, and Mafia-fi are slower than ev-
ery other algorithms. In Figure 5, Mafia-mfi is fastest
for maximal, and LCMfreq is fastest for all, for min-
imum support less than 1% on IBM T10I4D100K
dataset.

Results on KDD-CUP datasets

Figures 6 through Figure 8 show the running time
with range of minimum supports from ranging from
0.1% to 0.01% on three real world datasets BMS-
WebView-1, BMS-WebView-2, BMS-POS datasets.
In the figure, we can observe that LCM algorithms
outperform others in almost cases, especially for
lower minimum support. In particular, LCM was
best among seven algorithms in a wide range of min-
imum support from 0.1% to 0.01% on all datasets.

7

���������	���

�

��

���

����

���� ���� ��� ���� ���� ���� ��	
�����

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

�	��	����

Figure 4: Running time of the algorithms on IBM-
Artificial T10I40D100K

����������	���

�

��

���

����

� ��� � ��� ���	
����

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

�	��	����

Figure 5: Running time of the algorithms on IBM-
Artificial T40I10D100K

��������	�
��

���

�

��

���

����

��� ���� ���� ���� ���� ���� �	
������

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

Figure 6: Running time of the algorithms on BMS-
WebView-1

��������	�
��

���

�

��

���

����

��� ���� ���� ���� ���� ���� �	
������

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

Figure 7: Running time of the algorithms on BMS-
WebView-2

�������

�

��

���

����

�����

��� ���� ���� ���� ���� ���� �	
������

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

Figure 8: Running time of the algorithms on
BMS-POS

For higher minimum support ranging from 0.1% to
0.06%, the performances of all algorithms are similar,
and LCM families have slightly better performance.
For lower minimum support ranging from 0.04% to
0.01%, Eclat and Apriori are much slower than every
other algorithms. LCM outperforms others. Some
frequent item set miners such as Mafia-fi, and Mafia-
fci runs out of 1GB of main memory for these mini-
mum supports on BMS-WebView-1, BMS-WebView-

2, BMS-POS datasets. LCMfreq works quite well
for higher minimum support, but takes more than 30
minutes for minimum support above 0.04% on BMS-
Web-View-1. In these cases, the number of frequent
item sets is quite large, over 100,000,000,000. Inter-
estingly, Mafia-mfi’s performance is stable in a wide
range of minimum support from 0.1% to 0.01%.
In summary, LCM family algorithms significantly

perform well on real world datasets BMS-WebView-
1, BMS-WebView-2, BMS-POS datasets.

Results on UCI-ML repository and PUMSB
datasets

Figures 9 through Figure 12 show the running
time on middle sized data sets pumsb and pumsb*,
kosarak and small sized datasets connect, chess,
and mushroom. These datasets taken from machine
learning domains are small but hard datasets for fre-
quent pattern mining task since they have many fre-
quent patterns even with high minimum supports,
e.g., from 50% to 90%. These datasets are originally
build for classification task and have slightly differ-
ent characteristics than large business datasets such

8

�����

���

�

��

���

����

�� �� �� �� �� �� �� �� 	
�������

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

Figure 9: Running time of the algorithms on pumsb

���������	

���

�

��

���

����

�����

�� �� �� �� �� �� ��	
�����

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

Figure 10: Running time of the algorithms on pumsb*

�������

�

��

���

����

��� ���� ��� ���� ��� ��	
�����

�
��
�
��
�
�
�
	 �������

���

����	

�������

������	�

���	�����

Figure 11: Running time of the algorithms on kosarak

��������

����

���

�

��

���

����

�� �� � � ��� ���	
����

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

�	��	����

Figure 12: Running time of the algorithms on mush-
room

as BMS-Web-View-1 or BMS-POS.
In these figures, we see that Mafia-mfi constantly

outperforms every other maximal frequent item sets
mining algorithms for wide range of minimum sup-
ports except on pumsb*. On the other hand, Apriori
is much slower than other algorithm. On the mining
of all frequent item sets, LCMfreq is faster than the
others algorithms. On the mining of frequent closed
item sets, there seems to be no consistent tendency
on the performance results. However, LCM does not
store the obtained solutions in the memory, while the
other algorithms do. Thus, in the sense of memory-
saving, LCM has an advantage.

8 Conclusion

In this paper, we present an efficient algorithm LCM
for mining frequent closed item sets based on parent-
child relationship defined on frequent closed item
sets. This technique is taken from the algorithms
for enumerating maximal bipartite cliques [14, 15]
based on reverse search [3]. In theory, we demon-
strate that LCM exactly enumerates the set of fre-
quent closed item sets within polynomial time per

closed item set in the total input size. In practice, we
show by experiments that our algorithms run fast on
several real world datasets such as BMS-WebView-1.
We also showed variants LCMfreq and LCMmax of
LCM for computing maximal and all frequent item
sets. LCMfreq uses new schemes hybrid and hyper-
cube decomposition, and the schemes work well for
many problems.

Acknowledgement

We gratefully thank to Prof. Ken Satoh of National
Institute of Informatics. This research had been sup-
ported by group research fund of National Institute
of Informatics, JAPAN.

References

[1] R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules in Large Databases,”
In Proc. VLDB ’94, pp. 487–499, 1994.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen
and A. I. Verkamo, “Fast Discovery of Associa-

9

�������

���

�

��

���

����

�� �� �� �� �� �� 	�
� ���������

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

�	��	����

Figure 13: Running time of the algorithms on connect

�����

�����

����

���

�

��

���

����

�� �� �� �� �� 	�
�

���������

�
��
�
��
�
�
�
	

�������

���

����	

�������

������	�

���	�����

�	��	���

�	��	����

�	��	����

Figure 14: Running time of the algorithms on chess

tion Rules,” In Advances in Knowledge Discov-
ery and Data Mining, MIT Press, pp. 307–328,
1996.

[3] D. Avis and K. Fukuda, “Reverse Search for
Enumeration,” Discrete Applied Mathematics,
Vol. 65, pp. 21–46, 1996.

[4] R. J. Bayardo Jr., Efficiently Mining Long Pat-
terns from Databases, In Proc. SIGMOD’98,
pp. 85–93, 1998.

[5] E. Boros, V. Gurvich, L. Khachiyan, and
K. Makino, “On the Complexity of Generat-
ing Maximal Frequent and Minimal Infrequent
Sets,” In Proc. STACS 2002, pp. 133-141, 2002.

[6] D. Burdick, M. Calimlim, J. Gehrke, “MAFIA:
A Maximal Frequent Itemset Algorithm for
Transactional Databases,” In Proc. ICDE 2001,
pp. 443-452, 2001.

[7] J. Han, J. Pei, Y. Yin, “Mining Frequent
Patterns without Candidate Generation,” In
Proc. SIGMOD’00, pp. 1-12, 2000

[8] R. Kohavi, C. E. Brodley, B. Frasca, L. Ma-
son and Z. Zheng, “KDD-Cup 2000 Organizers’
Report: Peeling the Onion,” SIGKDD Explo-
rations, 2(2), pp. 86-98, 2000.

[9] H. Mannila, H. Toivonen, “Multiple Uses of Fre-
quent Sets and Condensed Representations,” In
Proc. KDD’96, pp. 189–194, 1996.

[10] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal,
Discovering frequent closed itemsets for associa-
tion rules, In Proc. ICDT’99, pp. 398-416, 1999.

[11] J. Pei, J. Han, R. Mao, “CLOSET: An Efficient
Algorithm for Mining Frequent Closed Item-
sets,” ACM SIGMOD Workshop on Research Is-
sues in Data Mining and Knowledge Discovery
2000, pp. 21-30, 2000.

[12] B. Possas, N. Ziviani, W. Meira Jr.,
B. A. Ribeiro-Neto, “Set-based model: a
new approach for information retrieval,” In
Proc. SIGIR’02, pp. 230-237, 2002.

[13] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shi-
rakawa, “A New Algorithm for Generating All
the Maximum Independent Sets,” SIAM Jour-
nal on Computing, Vol. 6, pp. 505–517, 1977.

[14] Takeaki Uno, “A Practical Fast Algorithm for
Enumerating Cliques in Huge Bipartite Graphs
and Its Implementation,” 89th Special Interest
Group of Algorithms, Information Processing
Society Japan, 2003,

[15] Takeaki Uno, “Fast Algorithms for Enumerat-
ing Cliques in Huge Graphs,” Research Group of
Computation, IEICE, Kyoto University, pp.55-
62, 2003

[16] Takeaki Uno, “A New Approach for Speed-
ing Up Enumeration Algorithms,” In
Proc. ISAAC’98, pp. 287–296, 1998.

[17] M. J. Zaki, “Scalable algorithms for associa-
tion mining,” Knowledge and Data Engineering,
12(2), pp. 372–390, 2000.

[18] M. J. Zaki, C. Hsiao, “CHARM: An Effi-
cient Algorithm for Closed Itemset Mining,” In
Proc. SDM’02, SIAM, pp. 457-473, 2002.

[19] Z. Zheng, R. Kohavi and L. Mason, “Real World
Performance of Association Rule Algorithms,”
In Proc. SIGKDD-01, pp. 401-406, 2001.

10

