
Practical Techniques for Speeding Up Enumeration Algorithms

for Frequent Itemset Mining Problems

Takeaki Uno1 Tatsuya Asai2 Hiroki Arimura2 Yuzo Uchida2

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, JAPAN
e-mail:uno@nii.jp

2 Department of Informatics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-0053, JAPAN
e-mail:{t-asai,y-uchida,arim}@i.kyushu-u.ac.jp

Abstract: In this paper, we address practical techniques for efficiently mining all frequent
item sets, frequent closed item sets, and maximal frequent item sets, respectively, from transac-
tion databases. We modify the algorithm for enumerating maximal bipartite cliques proposed in
SIGAL89 [9, 10], and propose an algorithm for frequent closed item set enumeration. The com-
putation time of the algorithm is theoretically proved to be linear in the number of output, which
is not proved for existing algorithms. We further modify the algorithm for practical computation,
and for enumerating all frequent item sets, and maximal frequent item sets. By computational
experiments, which is done by a competition of frequent set mining algorithms, we showed our
approach is quite efficient, especially for realworld problems witch are said to be difficult.

1 Introduction

Frequent item set mining is one of the most fundamental problems in data mining and has many
applications such as association rule mining [1], inductive databases [6], and query expansion [8].
Let E be an item set, composed items 1, ..., n. T is a set of transactions over E, i.e., each T ∈ T is
composed of items of E. For an item set K ⊆ E, let T (K) = {T |T ∈ T , S ⊆ t}. Each transaction
of T (K) is called occurrence of K, and T (K) is called the occurrence set of K. For a given constant
α, an item set K is called frequent if |T (K)| ≥ α. We call α support. If a frequent item set is
included in no other frequent item set, the item set is said to be maximal. For a transaction set
S ⊆ T , let I(S) =

⋂
T∈S T. If an item set K satisfies I(T (K)) = K, K is called closed item set.

In this paper, we consider problems of enumerating all frequent item sets, frequent closed item
sets, and maximal frequent item sets for given transactions. As shown in [3], frequent closed item
set mining problems can be considered as a problem of enumerating maximal bipartite cliques.
Given a collections of tuples of items as a database, we can define the associated bipartite graph
consisting of two disjoint sets of nodes, one for items and another for tuples. The bipartite graph
has an edge from an item to a tuple iff the item appears in the tuple. In the graph, an item
set defines a set of tuples as its occurrences, and a set of tuples defines an item set as their
maximally common substructure. Particularly, the closed item sets are equivalent to maximal
bipartite cliques of a bipartite graph since a closed item set is the unique maximum one among
those item sets that have the same set of occurrences.

According to the above observation, we can enumerate all closed item sets by using enumer-
ation algorithms for maximal bipartite cliques. However, the algorithm outputs many infrequent
closed item sets, thus we need some modifications. In SIGAL 89, one of the authors proposed
a practical fast algorithm for enumerating maximal bipartite cliques, whose computation time is
theoretically bounded by O(∆3) for each maximal bipartite clique, and by O(∆̄2) experimentally,
where ∆ and ∆̄ are the maximum degree and the average degree of the input graph, respectively
[9, 10]. Roughly speaking, the algorithm outputs bipartite cliques in the decreasing order of the
number of vertices included in T , in its recursion. In detail, if an iteration outputs a bipartite
clique including x vertices of T , any its descendant iteration outputs a clique including vertices
of T less than x. Hence, when we enumerate closed item sets by this algorithm, if an iteration
outputs an infrequent closed item set, then any descendant of the iteration always outputs infre-
quent closed item set. Thus, we can omit such iterations and can enumerate frequent closed item
sets in linear time of the number of frequent closed item sets.

1

We further use several techniques for reducing the practical computation time, occurrence
deliver, partial adjacent matrix, hybrid, and rightmost sweep. Occurrence deliver is a way to
reduce the time for computing the frequency, partial adjacent matrix reduces the computational
costs of adjacency matrix, hybrid switches the strategy of computing occurrence sets, and right-
most sweep reduces the memory complexity. By using these techniques, we reduce the practical
computation time of the algorithm.

Algorithms for mining all frequent item sets, and maximal frequent item sets are obtained
with slight modifications to the algorithm. Since any maximal frequent item set is a closed item
set, we can enumerate all maximal frequent item sets by enumerating closed item sets and check
the maximality of them. To enumerate all frequent item sets, backtrack algorithms are often
used. The computation time of backtrack algorithms are linear in the number of frequent item
sets. However, they take much computation time for checking the frequency, and this is a bottle
neck part. Closed item sets classifies the item sets into equivalence classes such that each item
set of an equivalence class has the same frequency. Thus, we use the frequent closed item set
enumeration, and enumerate all the frequent item sets in the equivalence classes induced by the
frequent closed item sets. This needs fewer frequency checks than backtracking algorithms, and
we can reduce the practical computation time.

We show the efficiency of the algorithm by computational experiments done in a competition
of frequent item set mining algorithms. We categorize the instances into four groups by the
number of frequent closed item sets and supports. We consider the performance and advantages
of our techniques via the results.

In the following sections, we explain our algorithms and practical techniques. We first explain
the algorithm proposed in [9, 10] in the terms of frequent item sets in Section 2. Then, we propose
practical techniques for speeding up in Section 3. In Section 4 and 5, we present modifications for
all frequent item sets and maximal frequent item sets enumeration. Section 6 shows the results of
experiments done in FIMI’03, and discuss the efficiency of our algorithms and techniques. Finally,
Section 7 concludes this paper.

2 Enumerating Frequent Closed Item Sets

In this section, we explain a rough sketch of the algorithm for enumerating maximal bipartite
cliques proposed in [9, 10]. Here we use the terms of frequent item set mining.

Let C be the set of frequent closed item sets. For K ∈ C, let the parent index, denoted by
i(K), be the minimum item such that T (K) = T (K ∩ {1, ..., i}). We define the parent of K by
I(T (K ∩{1, ..., i(K)−1})). Since T (K) ⊂ T (K ∩{1, ..., i(K)−1}), the frequency of the parent is
larger than a child. Thus, the graph representation of the parent-child relationship forms a tree,
whose root is ∅. We call the tree enumeration tree. We can find all frequent closed item set by
traversing the enumeration tree.

To traverse the enumeration tree, we need to find children of a closed item set. For an item
set K and an index i, let K[i] = I(T (K ∪ {i})). Here we state the following lemma.

Lemma 1 K ′ is a child of K ∈ C if and only if (1) K[i] = K ′, (2) i > i(K), and (3) K[i] \ K

includes no item less than i.

Proof : Suppose that K ′ is a child of K. Then, K = I(T (K ′∩{1, ..., i(K ′)−1})). This implies that
i(K) < i(K ′) and K[i] = K ′. Hence (1) and (2) hold. Since T (K ′) ⊂ T (K), we have K ⊂ K ′.

This together with K = I(T (K ′ ∩ {1, ..., i(K ′) − 1})) implies that K ∩ {1, ..., i(K ′) − 1} =
K ′ ∩ {1, ..., i(K ′) − 1}. Thus (3) holds.

Suppose that (1), (2) and (3) hold. Then, the parent index of K[i] is i. From (3), K[i] ∩
{1, ..., i − 1} = K ∩ {1, ..., i − 1}, Hence, the parent of K[i] is

I(T (K[i] ∩ {1, ..., i(K[i]) − 1})) = I(T (K ∩ {1, ..., i − 1})).

2

This together with (2) means that the parent of K[i] is K.

According to this lemma, we can generate any child of K by computing K[i] for each i > i(K).
We describe the algorithm LCMclosed as follows.

LCMclosed (K:frequent closed item set)
1. Output K

2. For each i > i(K) do

3. If K[i] is a child of K, and K[i] is frequent then LCMclosed (K[i])

3 Reducing Practical Computation Time

In this section, we explain the following techniques for reducing the practical computation time:

· occurrence deliver
· checking closedness with partial adjacency matrix
· diffsets and switching the strategy (hybrid)
· rightmost sweep.

We first explain occurrence deliver. This is for constructing T (K[i]) for each i > i(K) quickly.
Suppose that we have computed T (K). Then, a simple way for computing T (K[i]) is to find all
occurrences of K including i. This takes O(T (K)) time for each i. Instead of this, we trace each
occurrence T of K, and insert T to Occ[i] for each items i ∈ T larger than i(K). After tracing
all occurrences of K, Occ[i] = T (K[i]) holds for any i. In this way, we can compute T (K[i]) in
O(|T (K[i])|) time on average. We describe occurrence deliver in the following.

Occurrence deliver (T (K):occurrence set, i(K):parent index)
1. Set Occ[i] := ∅ for each i > i(K)
2. For each T ∈ T (K) do

3. For each i ∈ T, i > i(K) do

4. Insert T to Occ[i]

We note that the initializing of Occ at line 1 can be omitted by clearing all non-empty Occ’s
after each execution of Occurrence deliver. Thus, line 1 does not take O(|E|) time, and the
time complexity of Occurrence deliver is O(

∑
i>i(K) |T (K[i])|).

We second explain checking closedness with partial adjacency matrix. This technique is for
checking whether K[i]∩{1, ..., i−1} = K ∩{1, ..., i−1} or not. This condition can be checked by
executing occurrence deliver for items less than i(K), but we can do better. K[i]∩{1, ..., i−1} =
K ∩ {1, ..., i − 1} holds if and only if for any j ∈ {1, ..., i − 1} \ K, some occurrences of K does
not include j. We check this by finding occurrences of K[i] not including j. The worst case time
complexity of this check is as same as that by occurrence deliver, however we can terminate the
check for j when we find an occurrence not including j. In particular, we have to check this
for j included in T ∗ \ K where T ∗ is of the minimum size in T (K[i]). Hence, the experimental
computation time is faster then occurrence deliver.

By using adjacency matrix, this check can be done quickly, however adjacency matrix takes
much cost, both computation time and memory for large but sparse database. Hence, we use
the rows of the adjacency matrix with respect to transactions with larger sizes. By this, we can
reduce the computation time but do not take much cost for handling them. We describe the
algorithm as follows.

LCMclosed check (K, T (K[i]), i)
1. T ∗ := transaction of T (K[i]) with the fewest items
2. For each j ∈ T ∗ \ K, j < i do

3

3. For each T ∈ T (K[i]) \ {T ∗}
4. If j 6∈ T ′ then go to 7.
5. End for

6. Return false
7. End for

8. Return true

We next explain hybrid. In the execution of the algorithm, we often have that |T (K[i])| is
closed to T (K) for each child K[i]. In such cases, it is better that maintaining T (K)\T (K ∪{i})
for all i in each iteration, and evaluating the frequency of K[i] by |T (K)| − |T (K) \ T (K[i])| =
|T (K)|−|T (K)\T (K∪{i})|. The set T (K)\T (K∪{i}) is called diffset. Diffsets can be updated
quickly when we add an item to K. This technique is proposed by Zaki [11]. We do not have
to maintain diffsets for items i with |T (K[i])| < α, thus the practical computation time is fast
if many frequent item sets includes the same items. Diffsets can be also used to check whether
K[i] ∩ {1, ..., i − 1} = K ∩ {1, ..., i − 1} or not.

Now we have two strategies to compute the occurrence sets. The performance of two strate-
gies depend on the problems, thus we estimate the computation time of both strategies in each
iteration, and choose the best in each iteration. Particularly, if we once choose diffsets, then we
use diffsets in all its descendant iterations since the estimated computation time must be shorter
than that of occurrence deliver for any its descendant.

We next explain rightmost sweep which is to reduce the memory complexity of occurrence
deliver. Occurrence deliver needs memory for Occ, which is up to the size of O(|E|), in each iter-
ation. If we do not re-use the memory in the descendant iterations, we have to use O(|E||Kmax|)
memory in total where Kmax is the largest frequent item set. Rightmost sweep enables us to
re-use the memory.

The improvement in rightmost sweep is to generate recursive calls with respect to K[i] in
the decreasing order of i. Any iteration inputting frequent item set K accesses Occ[j] for only
j > i(K). Hence, even if we re-use Occ in the descendant iterations with respect to K[i], Occ[j]’s
for j < i are preserved. Thus, we do not need to re-compute T (K[j]) for j < i.

4 Enumerating Frequent Item Sets

In this section, we explain our algorithm for enumerating all frequent item sets. To enumerate
quickly, we use the following properties. We omit the proofs.

Property 1 For two item sets K and K ′ satisfying K ⊆ K ′ and T (K ′) = T (K), any set
R,K ⊆ R ⊆ K ′ satisfies T (K) = T (R) = T (K ′). In particular, if and only if K is frequent, then
R is frequent.

Property 2 For two item sets K and K ′ satisfying T (K ′) = T (K), T (K∪S) = T (K ′∪S) holds
for any S.

Consider the following backtracking algorithm for enumerating all frequent item sets. The
algorithm adds an item to the current item set, and generates a recursive call if the obtained item
set is frequent.

Backtrack (K:item set)
1. Output K

2. For each i > the largest item of K do

3. If K ∪ {i} is frequent then Backtrack (K ∪ {i})

Let S(K) be the set of items larger than the largest item of K and included in I(T (K)).
Suppose that we are executing an iteration, and S(K) 6= ∅. Then, from the above properties, we

4

can see that any R,K ⊆ R ⊆ K ∪ S(K) is frequent if and only if K is frequent. This condition
also holds if we add items not included in S(K) to K, which will be output by descendant
iterations of this iteration. Thus, we are motivated to omit the iterations with respect to item
sets R,R∩S(K) 6= ∅, by outputting R in the iteration with respect to R \S(K). By this, we can
reduce the computation time concerned with the frequency of R.

This technique can be applied recursively. For any K ′,K ′ ⊇ K,K ′ ∩ S(K) = ∅, we have
T (K ′) = T (R) = T (K ′ ∪S(K)∪S(K ′)) holds for any K ′ ⊆ R ⊆ K ′ ∪S(K)∪S(K ′). Recursively
applying this, we can group item sets with the same occurrence sets. We call this technique hyper-
cube decomposition, because an equivalence class with respect to a closed item set is decomposed
into hypercubes of 01 lattice. From these discussion, we obtain the following algorithm.

LCMfreq (K,S:item set)
1. S := S ∪ S(K)
2. Output all item sets R,K ⊆ R ⊆ K ∪ S

3. For each i > the largest item of K do

4. If K ∪ {i} is frequent then LCMfreq (K ∪ {i},K ′)

5 Enumerating Maximal Frequent Item Sets

The main idea of enumerating maximal frequent item sets is very simple. Since any maximal
frequent item set is a frequent closed item set, we enumerate frequent closed item sets and output
only those being maximal frequent item sets. The check of the maximality can be done in short
time. K is a maximal frequent item set if and only if T (K ∪ {j}) is infrequent for any j. We can
check this condition by executing occurrence deliver or diffsets for all items.

6 Computational Experiments

In 2003, a competition FIMI’03 of frequent item set mining algorithms had held. About 20
algorithms had been submitted to the competition, and evaluated their performances with over
10 instances with some supports such that the algorithms terminate in practical time. In the
following subsections, we take a general view of these algorithms and data sets, and show the
results.

6.1 Techniques on Other Algorithms

First of all, we explain common structures of the other algorithms submitted to FIMI’03. We can
see the papers with respect to these algorithms are available at the homepage of FIMI’031. Some
basic ideas of these algorithms can be also seen in [1, 2, 4, 5, 7, 12, 11]. Almost all algorithms
are based on the enumeration of frequent item sets, such as backtrack algorithms or apriori
algorithms. Apriori algorithms generate each frequent item set from smaller one level by level in
the bottom-up way, and avoids duplications by storing all item sets the algorithm found. The
advantage of the apriori algorithms is shorter computation time of checking the frequency. An
item set is frequent only if all its subsets are frequent. Apriori algorithms have all frequent item
sets with smaller sizes in memory, thus they can check the condition in shorter time. To maintain
the input data and frequent item sets found, many of them use “FP-tree,” also called “trie”, a
kind of suffix tree. By using this, we can insert/delete/search a set in short time. However, if the
average sizes and the number of frequent item sets gets large, they take much computation time
and memory to store and maintain them.

To enumerate frequent closed item sets, these algorithms find all frequent item sets, and
output only them being closed item sets. In addition, some of the algorithms omit some recursive

1http://fimi.cs.helsinki.fi/index.html

5

Table 1: The datasets. AvTrSz means the average transaction size

Dataset #items #Trans AvTrSz #FI #FCI #MFI Minsup (%)
BMS-Web-View1 497 59,602 2.51 3.9K–NA 3.9K–1241K 2.1K–129.4K 0.1–0.01
BMS-Web-View2 3,340 77,512 4.62 24K–9897K 23K–755K 3.9K–118K 0.1–0.01

BMS-POS 1,657 517,255 6.5 122K–33400K 122K–21885K 30K–4280K 0.1–0.01
T10I5N1KP5KC0.25D200K 1,000 200,000 10.0 15K–335K 14K–229K 7.9K–114K 0.5–0.025

T30I15N1KP5KC0.25D200K 1,000 200,000 30.0 - - - 2–0.5
pumsb 7,117 49,046 74.0 - - - 95–55

pumsb star 7,117 49,046 50.0 - - - 50–5
mushroom 120 8,124 23.0 - - - 20–0.1

connect 130 67,577 43.0 - - - 95–10
chess 76 3196 37.0 - - - 90–20

kosarak 130 67,577 43.0 - - - 1–0.1
retail 16470 88,162 10.3 - - - 0.1–0.01

accidents 469 340,183 33.8 - - - 90–30

calls such that no descendant iteration outputs closed item sets, but they seem not to be output
linear time. To enumerate maximal frequent item sets, they also enumerate frequent item sets but
uses many bounding operations, which omit the iterations whose descendants output no maximal
frequent item set. Actually, this bounding operations are very powerful. Our algorithm has no
such bounding operation for maximal frequent item sets, hence is slow for problems of maximal
frequent item sets.

To reduce the input, these algorithms use a technique of input reduction. For an item i, if the
number of transactions including i is smaller than the support, no frequent item set includes i.

The algorithms remove such items from the input database. Moreover, if some transactions are
the same, the algorithms contract the transactions. In the case that the support is large, many
items are removed by this operation, hence the input size becomes small.

In summary, the techniques of the other algorithm which our algorithms does not use are:

(1) apriori
(2) input reduction
(3) bounding operations for maximal frequent item sets
(4) FP-tree

In the below, we discuss the efficiency of these techniques and our techniques

6.2 Datasets and Methods

The datasets are shown in Table 1, which include: T10I5N1KP5KC0.25D200K and
T30I15N1KP5KC0.25D200K from IBM Almaden Quest research group; chess, connect, mush-
room, pumsb, pumsb star from UCI ML repository2 and PUMSB; BMS-WebView-1, BMS-
WebView-2, BMS-POS from KDD-CUP 20003. We show the profiles of these datasets in Table
6.2.

Here we consider two parameters as measures of difficulty of datasets: (a) the minimum
support which the algorithms terminates in short time, and (b) difference between the number
of frequent closed item sets and frequent item sets.

If the support is large, the computation time concerned with the frequency will be long. Thus,
input reduction and diffset are expected to be efficient, and apriori type algorithm may have an
advantage. Conversely, in the case that the support is small, occurrence deliver, and output
linear time algorithms have an advantage. If the number of frequent item sets are much larger

2http://www.ics.uci.edu/ mlearn/MLRepository.html
3http://www.ecn.purdue.edu/KDDCUP/

6

Table 2: Four categories
Support is large Support is small

frequent item sets pumsb, pumsb star BMS-Web-View1, BMS-Web-View2
>> # frequent closed item sets connect, chess retail, mushroom

frequent item sets accidents T10I5N1KP5KC0.25D200K,
is nearly equal to T30I15N1KP5KC0.25D200K

frequent closed item sets BMS-POS, kosarak

than frequent closed item sets, output linear time algorithm and hypercube decomposition have
an advantage. In Table 6.2, we categorize these datasets by these two parameters.

6.3 Results

In Table 6.3 and 6.3, we show the outline of the results of the experiments done in FIMI’03. We
report the best algorithm for the problems of the above four categories, with setting supports
to be small and large. If our algorithm performs the best in a category, we write “ours” on the
corresponding cell. If our algorithm does not works well, we write “others”. If the performances
of our algorithms and of the other algorithms are almost equal, then we write “both”. We note
that we write “others” even if only one of the other algorithm performs better then ours and the
rest does not.

Table 3: Results of all frequent item sets, and frequent closed item sets
#frequent item sets small setting support to small ours

>> #frequent closed item sets support setting support to large ours
large setting support to small ours

support setting support to large others

#frequent item sets small setting support to small both
is nearly equal to support setting support to large both

#frequent closed item sets large setting support to small others
support setting support to large others

Table 4: Results of maximal frequent item sets
#frequent item sets small setting support to small ours

>> #frequent closed item sets support setting support to large others
large setting support to small others

support setting support to large others

#frequent item sets small setting support to small others
is nearly equal to support setting support to large others

#frequent closed item sets large setting support to small others
support setting support to large others

First of all, our algorithms work well but not the best for all. Particularly, for the instances of
maximal frequent item sets, our algorithm is slow. This is because we use no bounding operation
designed for the maximal frequent item set enumeration.

For frequent item sets and closed item sets, our algorithms perform well. Especially, when
we set support to be small and the number of frequent item sets is larger than that of frequent
closed item sets, our algorithms got high marks. However, when support is large, sometimes our
algorithms are slow. This is because we do not use input reductions. In the case that we set

7

support to be small, the performance of occurrence deliver is good, and otherwise diffset is good.
In the middle range, the hybrid performs well.

We saw no advantages of apriori algorithm and FP-tree from the view points of these cate-
gories, which is said to be quite efficient for frequent item set mining problems. For the problems
which our algorithms do not perform well, input reduction seems to contribute so much to speed-
ing up. In the other cases, it seems to be better to use depth-first enumeration algorithms.

7 Conclusion

In this paper, we propose several practical efficient algorithms for enumerating all frequent closed
item sets, frequent closed item sets, and maximal frequent item sets, from large transaction
databases. These algorithms are obtained by adding several practical techniques to a maximal
bipartite clique enumeration algorithm. In theory, we demonstrate that our algorithm exactly
enumerates the set of frequent closed item sets in polynomial time for each frequent closed item
set. We reported the results of a competition of frequent item set mining algorithms FIMI’03, and
showed that our practical techniques have a good performance for large realworld problems such
as BMS-Web-View1,2, and retail, and those having several artificial structures such as instances
of UCI-repositories.

Acknowledgment

We gratefully thank to Professor Ken Satoh of National Institute of Informatics. This research
had been supported by group research fund of National Institute of Informatics, JAPAN.

References
[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large

Databases,” In Proceedings of VLDB ’94, pp. 487–499, 1994.
[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, “Fast Discovery of

Association Rules,” In Advances in Knowledge Discovery and Data Mining, MIT Press,
pp. 307–328, 1996.

[3] E. Boros, V. Gurvich, L. Khachiyan, and K. Makino, “On the Complexity of Generating
Maximal Frequent and Minimal Infrequent Sets,” STACS 2002, pp. 133-141, 2002.

[4] D. Burdick, M. Calimlim, J. Gehrke, “MAFIA: A Maximal Frequent Itemset Algorithm for
Transactional Databases,” ICDE 2001, pp. 443-452, 2001.

[5] J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns without Candidate Generation,” SIGMOD
Conference 2000, pp. 1-12, 2000

[6] H. Mannila, H. Toivonen, “Multiple Uses of Frequent Sets and Condensed Representations,”
KDD’96, pp. 189–194, 1996.

[7] J. Pei, J. Han, R. Mao, “CLOSET: An Efficient Algorithm for Mining Frequent Closed
Itemsets,” ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery 2000, pp. 21-30, 2000.

[8] B. Possas, N. Ziviani, W. Meira Jr., B. A. Ribeiro-Neto, “Set-based model: a new approach
for information retrieval,” SIGIR’02, pp. 230-237, 2002.

[9] Takeaki Uno, “A Practical Fast Algorithm for Enumerating Cliques in Huge Bipartite Graphs
and Its Implementation,” 89th Special Interest Group of Algorithms, Information Processing
Society Japan, 2003,

[10] Takeaki Uno, “Fast Algorithms for Enumerating Cliques in Huge Graphs,” Research Group
of Computation, IEICE, Kyoto University, pp.55-62, 2003

[11] M. J. Zaki, C. Hsiao, “CHARM: An Efficient Algorithm for Closed Itemset Mining,” 2nd
SIAM International Conference on Data Mining (SDM’02), pp. 457-473, 2002.

[12] M. J. Zaki, “Scalable algorithms for association mining,” Knowledge and Data Engineering,
12(2), pp. 372–390, 2000.

8

