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Abstract: For a transaction database, a frequent
itemset is an itemset included in at least a specified
number of transactions. A frequent itemset P
is maximal if P is included in no other frequent
itemset, and closed if P is included in no other
itemset included in the exactly same transactions
as P . The problems of finding these frequent
itemsets are fundamental in data mining, and
from the applications, fast implementations for
solving the problems are needed. In this paper,
we propose efficient algorithms LCM (Linear time
Closed itemset Miner), LCMfreq and LCMmax
for these problems. We show the efficiency of our
algorithms by computational experiments compared
with existing algorithms.

1 Introduction

Frequent item set mining is one of the fundamental
problems in data mining and has many applications
such as association rule mining, inductive databases,
and query expansion. From these applications, fast
implementations of frequent itemset mining problems
are needed. In this paper, we propose the second
versions of LCM, LCMfreq and LCMmax, for enu-
merating closed, all and maximal frequent itemsets.
LCM is an abbreviation of Linear time Closed item
set Miner .

In FIMI03[7], we proposed the first version of
LCM, which is for enumerating frequent closed item-
sets. LCM uses prefix preserving closure extension
(ppc extension in short), which is an extension from
a closed itemset to another closed itemset. The ex-
tension induces a search tree on the set of frequent
closed itemsets, thereby we can completely enumer-
ate closed itemsets without duplications. Generating

a ppc extension needs no previously obtained closed
itemset. Hence, the memory use of LCM does not
depend on the number of frequent closed itemsets,
even if there are many frequent closed itemsets.

The time complexity of LCM is theoretically
bounded by a linear function in the number of fre-
quent closed itemsets, while the existing algorithms
are not. We further developed algorithms for the
frequency counting, occurrence deliver and hybrid of
diffsets. They reduce the practical computation time
efficiently. Moreover, the framework of LCM is sim-
ple. Generating ppc extensions needs no sophisti-
cated data structure such as binary trees. LCM is
implemented with only arrays. Therefore, LCM is
fast, and outperforms than other algorithms for some
sparse datasets.

However, LCM does not have any routine for re-
ducing the database, while many existing algorithms
have. Thus, the performance of LCM is not good for
dense datasets with large minimum supports, which
involve many unnecessary items and transactions.
At FIMI03, we also proposed modifications of LCM,
LCMfreq and LCMmax, for enumerating all frequent
itemsets and maximal frequent itemsets. Although
they are fast for some instances, if LCM is not fast
for an instance, they are also not fast for the instance.
Existing maximal frequent itemset mining algorithms
have efficient pruning methods to reduce the number
of iterations, while LCMmax does not have. It is also
a reason of the slowness of LCMmax.

This paper proposes the second version of LCM
algorithms. We added database reduction to LCM,
so that problems of dense datasets can be solved in
short time. The second version of LCMmax includes
a pruning method, thus the computation time is re-
duced when the number of maximal frequent itemsets
is small. We further developed new algorithms for
checking the maximality of a frequent itemset and
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for taking the closure of an itemset. We compare
the performance of LCM algorithms and other algo-
rithms submitted to FIMI03 by computational exper-
iments. In many instances, LCM algorithms perform
above other algorithms.

The organization of the paper is as follows. Sec-
tion 2 introduces preliminaries. The main algorithms
and practical techniques of LCM algorithms are de-
scribed in Section 3. Section 4 shows the results of
computational experiments, and Section 5 concludes
the paper.

2 Preliminaries

Let I = {1, ..., n} be the set of items. A transaction
database on I is a set T = {t1, . . . , tm} such that each
ti is included in I. Each ti is called a transaction. We
denote by ||T || the sum of sizes of all transactions in
T , that is, the size of database T . A set P ⊆ I is
called an itemset.

For itemset P , a transaction including P is called
an occurrence of P . The denotation of P , denoted
by T (P ) is the set of the occurrences of P . |T (P )| is
called the frequency of P, and denoted by frq(P ). For
given constant θ, called a minimum support, itemset
P is frequent if frq(P ) ≥ θ. If a frequent itemset P
is included in no other frequent itemset, P is called
maximal. For any itemsets P and Q, T (P ∪ Q) =
T (P )∩T (Q) holds, and if P ⊆ Q then T (Q) ⊆ T (P ).
An itemset P is called closed if no other itemset Q
satisfies T (P ) = T (Q), P ⊆ Q.

Given set S ⊆ T of transactions, let I(S) be the set
of items common to all transactions in S, i.e., I(S) =⋂

T∈S T . Then, we define the closure of itemset P
in T , denoted by clo(P ), by I(T (P ))(=

⋂
t∈T (P ) t).

For every pair of itemsets P and Q, the following
properties hold[13, 14].

(1) If P ⊆ Q, then clo(P ) ⊆ clo(Q).
(2) If T (P ) = T (Q), then clo(P ) = clo(Q).
(3) clo(clo(P )) = clo(P ).
(4) clo(P ) is the unique smallest closed itemset

including P .
(5) A itemset P is a closed itemset if and only

if clo(P ) = P .

For itemset P and item i ∈ P , let P (i) = P ∩
{1, . . . , i} be the subset of P consisting only of el-
ements no greater than i, called the i-prefix of P .
An itemset Q is a closure extension of an itemset
P if Q = clo(P ∪ {i}) holds for some i 6∈ P . If
Q is a closure extension of P , then Q ⊃ P, and

frq(Q) < frq(P ). We call the item with the maxi-
mum index in P the tail of P , and denote by tail(P ).

3 Algorithms for Efficient Enu-

meration

In this section, we explain the techniques used in the
second versions of LCM algorithms. We explain them
one-by-one with comparing to the techniques used
by the other algorithms, in the following subsections.
The new techniques used in the second version are:

3.2. new database reduction (reduce the frequency
counting cost)

3.6. database reduction for fast checking closedness
3.8. database reduction for fast checking maximality
3.7. new pruning algorithm for backtracking-based

maximal frequent itemset mining.

The techniques also used in the first versions are:

3.4. occurrence deliver (compute frequency in
linear time)

3.5. ppc extension (generates closed itemsets with
neither memory nor duplication)

3.3. hypercube decomposition (fast enumeration by
grouping frequent itemsets by equivalence class).

The techniques used in the existing algorithms and
the first version have citations to the previous papers.

3.1 Enumerating Frequent Itemsets

Any itemset included in a frequent itemset is it-
self frequent. Thereby, the property “frequent” is
monotone. From this, we can construct any frequent
itemset from the empty set by adding items one-by-
one without passing through any infrequent itemset.
Roughly speaking, the existing algorithms are classi-
fied into two groups, and algorithms in both groups
use this property.

The first group is so called apriori or level-by-level
algorithms [1, 2]. Let Dk be the set of frequent item-
sets of size k. Apriori algorithms start with D0, that
is {∅}, and compute Dk from Dk−1 in the increasing
order of k from k = 1. Any itemset in Dk is obtained
from an itemset of Dk−1 by adding an item. Apriori
algorithms add every item to each itemset of Dk−1,
and choose frequent itemsets among them. If Dk = ∅
holds for some k, then Dk′ = ∅ holds for any k′ > k.
Thus, apriori algorithms stop at such k. This is the
scheme of apriori algorithms.
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The other group is so called backtracking
algorithms[3, 18, 19]. Backtracking algorithm is
based on recursive calls. An iteration of a backtrack-
ing algorithm inputs a frequent itemset P , and gener-
ates itemsets by adding every items to P . Then, for
each itemset being frequent among them, the itera-
tion generates recursive calls with respect to it. To
avoid duplications, an iteration of backtracking algo-
rithms adds items with indices larger than the tail
of P . We describe the framework of backtracking
algorithms as follows.

ALGORITHM BackTracking (P :current solution)
1. Output P
2. For each e ∈ I, e > tail(P ) do

3. If P ∪ {e} is frequent then

call BackTracking (P ∪ {e})

An execution of backtracking algorithms gives a
tree structure such that the vertices of the tree are
iterations, and edges connect two iterations if one of
the iteration calls the other. If an iteration I recur-
sively calls another iteration I ′, then we say that I
is the parent of I ′, and I ′ is a child of I . For an iter-
ation, the itemset received from the parent is called
the current solution.

Apriori algorithms use much memory for storing
Dk in memory, while backtracking algorithms use
less memory since they keep only the current solu-
tion. Backtracking algorithms need no computation
for maintaining previously obtained itemsets, so the
computation time of backtracking algorithms is gen-
erally short. However, apriori algorithms have ad-
vantages for the frequency counting.

LCM algorithms are based on backtracking al-
gorithms, and use an efficient techniques for the
frequency counting, which are occurrence deliver
and anytime database reduction described below.
Hence, LCM algorithms compute the frequency effi-
ciently without keeping previously obtained itemsets
in memory.

3.2 Maintaining Databases

In the existing studies, database reduction is said to
be important to reduce the computation time. It is
to reduce the input database as the following rules:

1. remove each item included in less than θ transactions
2. remove each item included in all transactions
3. merge the identical transactions into one.

Database reduction performs well when the mini-
mum support is large, and many existing algorithms
use it. LCM algorithms also use database reduction.

In the existing studies, the input databases are
often stored and maintained by using FP-tree (fre-
quent pattern tree), which is a version of prefix tree
(trie) [9]. By using FP-tree, we can search specified
transactions from the datasets efficiently. FP-tree
compresses the common prefix, so we can decrease
the memory use. In addition, FP-tree can detect the
identical transactions, thus we can merge them into
one. This merge accelerates the frequency counting.
From these reasons, FP-trees are used in many algo-
rithms and implementations.

Although FP-tree has many good advantages, we
do not use it in the implementation of LCM, but use
simple arrays. The main reason is that LCM does
not have to search transactions in the database. The
main operation of LCM is tracing the transactions in
the the denotation of the current solution. Thus, we
do not need to use sophisticated data structures for
searching.

The other reason is the computation time for the
initialization. If we use a standard binary tree for
implementing FP-tree, the initialization of the in-
put database takes O(||T || + |T | log |T |) time. for
constructing FP-tree in memory. Compared to this,
LCM detects the identical transactions and stores
the database in memory within linear time of the
database size. This is because that LCM uses radix
sort for this task, which sorts the transactions in a
lexicographic order in linear time. In general, the
datasets of data mining problems have many trans-
actions, and each transaction has few items. Thus,
||T || is usually smaller than |T | log |T |, and LCM has
an advantage. The constant factors of the compu-
tation time of binary tree operations are relatively
larger than that of array operations. LCM also has
an advantage at this point. Again, we recall that
LCM never search the transactions, so each opera-
tion required by LCM can be done in constant time.

FP-tree has an advantage in reducing the memory
use. This memory reduction can also reduce the
computation time of the frequency counting. To
check the efficiency of the reduction, we checked
the reduction ratio by FP-tree for some datasets
examined in FIMI03. The result is shown in Table
1. Each cell shows the ratio of the number of items
needed to be stored by arrays and FP-tree. Usually,
the input database is reduced in each iteration,
hence we sum up the numbers over all iterations to
compute the ratio. In the results of our experiments,
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the ratio was not greater 3 in many instances. If
|I| is small, |T | is large, and the dataset has a
randomness, such as accidents, the ratio was up to 6.
Generally, a binary tree uses memory three times as
much as an array. Thus, the performance of FP-tree
seems to be not quite good rather than an array in
both memory use and computation time, for many
datasets.

3.3 Hypercube Decomposition

LCM finds a number of frequent itemsets at once for
reducing the computation time[18]. Since the item-
sets obtained at once compose a hypercube in the
itemset lattice, we call the technique hypercube de-
composition. For a frequent itemset P , let H(P )
be the set of items e satisfying e > tail(P ) and
T (P ) = T (P ∪ {e}). Then, for any Q ⊆ H(P ),
T (P ∪ Q) = T (P ) holds, and P ∪ Q is frequent.
LCMfreq uses this property. For two itemsets P and
P ∪ Q, we say that P ′ is between P and P ∪ Q if
P ⊆ P ′ ⊆ P ∪ Q. In the iteration with respect to
P , we output all P ′ between P and P ∪ H(P ). This
saves about 2|H(P )| times of the frequency counting.

To avoid duplications, we do not generate recur-
sive calls with respect to items included in H(P ).
Instead of generating these recursive calls, we output
frequent itemsets including items of H(P ) in recur-
sive calls with respect to items not included in H(P ).
When the algorithm generates a recursive call with
respect to e 6∈ H(P ), we pass H(P ) to it. In the re-
cursive call, we output all itemsets between P ∪ {e}
and P ∪{e}∪H(P )∪H(P ∪{e}). Since any itemset
Q satisfies T (P ∪ Q ∪ H(P )) = T (P ∪ Q), the item-
sets output in the recursive calls are frequent. We
describe hypercube decomposition as follows.

ALGORITHM HypercubeDecomposition
(P :current solution, S:itemset)

S′ := S ∪ H(P )
Output all itemsets including P

and included in P ∪ S′

For each item e ∈ I \ (P ∪ S ′), e > tail(P ) do

If P ∪ {e} is frequent then

call HypercubeDecomposition (P ∪ {e}, S ′)
End for

3.4 Frequency Counting

Generally, the most heavy part of the frequent item-
set mining is the frequency counting, which is to
count the number of transactions including a newly

generated itemset. To reduce the computation time,
existing algorithms uses down project. For an itemset
P , down project computes its denotation T (P ) by us-
ing two subsets P1 and P2 of P . If P = P1 ∪P2, then
T (P ) = T (P1)∩T (P2). Under the condition that the
items of P1 and P2 are sorted by their indices, the in-
tersection can be computed in O(|T (P1)| + |T (P2)|)
time. Down project uses this property, and computes
the denotations quickly. Moreover, if |T (P1)| < θ or
|T (P2)| < θ holds, we can see that P never be fre-
quent. It also helps to reduce the computation time.

Apriori-type algorithms accelerates the frequency
counting by finding a good pair P1 and P2 of subsets
of P , such that |T (P1)| + |T (P2)| is small, or either
P1 or P2 is infrequent. Backtracking algorithm adds
an item e to the current solution P in each itera-
tion, and compute its denotation. By using T ({e}),
the computation time for the frequency counting is
reduced to O(

∑
e>tail(P )(|T (P )| + |T ({e})|)).

The bitmap method[5] is a technique for speed-
ing up the computation of taking the intersection in
down project. It uses a bitmap image (the charac-
teristic vector) of the denotations. To take the in-
tersection, we have to take O(|T |) time with bitmap.
However, a 32bit CPU can take the intersection of
32bits at once, thus roughly speaking the computa-
tion time is reduced to 1/32. This method has a
disadvantage for sparse datasets, and is not orthog-
onal to anytime database reduction described in the
below. From the results of the experiments in FIMI
03, bitmap method seems to be not good for sparse
large datasets.

LCM algorithms use another method for the fre-
quency counting, called occurrence deliver[18, 19].
Occurrence deliver computes the denotations of P ∪
{e} for e = tail(P ) + 1, ..., |I| at once by tracing
transactions in T (P ). It use a bucket for each e to
be added, and set them to empty set at the begin-
ning. Then, for each transaction t ∈ T (P ), occur-
rence deliver inserts t to the bucket of e for each
e ∈ t, e > tail(P ). After these insertions, the bucket
of e is equal to T (P ∪ {e}). For each transaction t,
occurrence deliver takes O(|t∩ {tail(P ) + 1, ..., |I|}|)
time. Thus, the computation time is O(

∑
T∈T (P ) |T∩

{tail(P )+1, ..., |I|}|) =O(|T (P )|+
∑

e>tail(P ) |T (P ∪

{e})|). This time complexity is smaller than down
project. We describe the pseudo code of occurrence
deliver in the following.

ALGORITHM OccurrenceDeliver
(T:database, P :itemset)

1. Set Bucket[e] := ∅ for each item e > tail(P )

4



dataset and chess accidents BMS-WebView2 T40I10D100K
minimum support 40% 30% 0.05% 0.1%
reduction factor
by FP-tree 2.27 6.01 1.9 1.57
reduction factor by
Hypercube decomposition 6.25 1 1.21 1
reduction factor
by apriori (best) 1.11 1.34 1.35 2.85

Table 1: Efficiency test of FP-tree, hypercube decomposition, and apriori: the reduction factor of FP-tree is
(sum of # of elements in reduced database by LCM) / ( sum of # of elements in reduced database by FP-tree),
over all iterations, the reduction ratio of hypercube decomposition is the average number of output frequent
itemsets in an iteration, and the reduction ratio of apriori is (sum of

∑
e>tail(P ) |T (P ∪ {e})|) / (sum of

∑
e>F (P ) |T (P ∪ {e})|), over all iterations.

2. For each transaction t ∈ T (P ) do

3. For each item e ∈ t, e > tail(P ) do

4. Insert t to Bucket[e]
5. End for

6. End for

7. Output Bucket[e] for all e > tail(P )

Let F (P ) be the set of items e such that e >
tail(P ) and P ∪ {e} is frequent. Apriori algorithms
have possibility to find out in short time that P ∪{e}
is infrequent, thus, in the best case, their computa-
tion time can be reduced to O(

∑
e∈F (P ) |T (P∪{e})|).

If
∑

e>tail(P ),e6∈F (P ) |T (P ∪ {e})| is large, occurrence
deliver will be slow.

To decrease
∑

e>tail(P ),e6∈F (P ) |T (P ∪ {e})|, LCM
algorithms sort indices of items e in the increasing
order of |T ({e})|. As we can see in Table 1, this
sort reduces

∑
e>tail(P ),e6∈F (P ) |T (P ∪ {e})| to 1/4 of

∑
e>tail(P ) |T (P ∪ {e})| in many cases. Since apriori

algorithms take much time to maintain previously
obtained itemsets, the possibility of speeding up by
apriori algorithms is not so large.

LCM algorithms further speeds up the frequency
counting by iteratively reducing the database. Sup-
pose that an iteration I of a backtracking algorithm
receives a frequent itemset P from its parent. Then,
in any descendant iteration of I , no item of indices
smaller than tail(P ) is added. Hence, any such item
can be removed from the database while the exe-
cution of the descendant iterations. Similarly, the
transactions not including P never include the cur-
rent solution of any descendant iteration, thus such
transactions can be removed while the execution of
the descendant iterations. Indeed, infrequent items
can be removed, and the identical transactions can

be merged.
According to this, LCM algorithms recursively re-

duce the database while the execution of recursive
calls. Before the recursive call, LCM algorithms gen-
erate a reduced database according to the above dis-
cussion, and pass it to the recursive call. We call this
technique anytime database reduction.

Anytime database reduction reduces the compu-
tation time of the iterations located at the lower
levels of the recursion tree. In the recursion tree,
many iterations are on the lower levels and few
iterations are on the upper levels. Thus, anytime
database reduction is expected to be efficient. In
our experiments, anytime database reduction works
quite well. The following table shows the efficiency
of anytime database reduction. We sum up over all
iterations the sizes of the database received from
the parent, in both cases with anytime database
reduction and without anytime database reduction.
Each cell shows the sum. The reduction ratio is large
especially if the dataset is dense and the minimum
support is large.

3.5 Prefix Preserving Closure Exten-
sion

Many existing algorithms for mining closed itemsets
are based on frequent itemset mining. That is, the
algorithms enumerate frequent itemsets, and output
those being closed. This approach is efficient when
the number of frequent itemsets and the number of
frequent closed itemsets differ not so much. How-
ever, if the difference between them is large, the algo-
rithms generate many non-closed frequent itemsets,
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dataset and connect pumsb BMS-WebView2 T40I10D100K
minimum support 50% 60% 0.1% 0.03%
Database reduction 188319235 2125460007 2280260 1704927639
Anytime database reduction 538931 7777187 521576 77371534
Reduction factor 349.4 273.2 4.3 22.0

Table 2: Accumulated number of transactions in database in all iterations

thus they will be not efficient. Many pruning meth-
ods have been developed for speeding up, however
they are not complete. Thus, the computation time
is not bounded by a linear function in the number of
frequent closed itemsets. There is a possibility of over
linear increase of computation time in the number of
output.

LCM uses prefix preserving closure extension (ppc-
extension in short) for generating closed itemsets[18,
19]. For a closed itemset P , we define the closure
tail clo tail(P ) by the item i of the minimum index
satisfying clo(P (i)) = P . clo tail(P ) is always in-
cluded in P . We say that P ′ is a ppc extension of P
if P ′ = clo(P ∪{e}) and P ′(e−1) = P (e−1) hold for
an item e > clo tail(P ). Let P0 be the itemset satis-
fying T (P ′) = T . Any closed itemset P ′ 6= P0 is a
ppc extension of another closed itemset P , and such
P is unique for P ′. Moreover, the frequency of P is
strictly larger than P ′, hence ppc extension induces a
rooted tree on frequent closed itemsets. LCM starts
from P0, and finds all frequent closed itemsets in a
depth first manner by recursively generating ppc ex-
tensions. The proof of ppc extension algorithms are
described in [18, 19].

By ppc extension, the time complexity is bounded
by a linear function in the number of frequent closed
itemsets. Hence, the computation time of LCM never
be super linear in the number of frequent closed item-
sets.

3.6 Closure Operation

To enumerate closed itemsets, we have to check
whether the current solution P is a closed itemset
or not. In the existing studies, there are two meth-
ods for this task. The first method is to store in
memory previously obtained itemsets which are cur-
rently maximal among itemsets having the identical
denotation. In this method, we find frequent itemsets
one-by-one, and store them in memory with remov-
ing itemsets included in another itemset having the
identical denotation. After finding all frequent item-
sets, only closed itemsets remain in memory. We call
this storage method. The second method is to gener-

ate the closure of P . By adding to P all items e such
that frq(P ) = frq(P ∪ {e}), we can construct the
closure of P . We call the second closure operation.

LCM uses closure operations for generating ppc ex-
tensions. Similar to the frequency counting, we use
database reduction for closure operation. Suppose
that the current solution is P , the reduced database
is composed of transactions S1, ..., Sh, and each Sl is
obtained from transactions T l

1, ..., T
l
k of the original

database. For each Sl, we define the interior inter-
section In(Sl) by

⋂
T∈{T l

1
,...,T l

k
} T . Here the closure

of P is equal to
⋂

S∈{S1,...,Sh}
In(S). Thus, by using

interior intersections, we can efficiently construct the
closure of P .

When we merge transactions to reduce the
database, interior intersections can be updated effi-
ciently, by taking the intersection of their interior in-
tersections. In the same way as the frequency count-
ing, we can remove infrequent items from the interior
intersections for more reduction. The computation
time for the closure operation in LCM depends on
the size of database, but not on the number of previ-
ously obtained itemsets. Thus, storage method has
advantages if the number of frequent closed itemsets
is small. However, for the instances with a lot of
frequent closed itemsets, which take long time to be
solved, LCM has an advantage.

3.7 Enumerating Maximal Frequent
Itemsets

Many existing algorithms for maximal frequent item-
set enumeration are based on the enumeration of fre-
quent itemsets. In breadth-first manner or depth-
first manner, they enumerate frequent itemsets and
output maximal itemsets among them. To reduce the
computation time, the algorithms prune the unnec-
essary itemsets and recursive calls.

Similar to these algorithms, LCMmax enumerates
closed itemsets by backtracking, and outputs maxi-
mal itemsets among them. It uses a pruning to cut
off unnecessary branches of the recursion. The prun-
ing is based on a re-ordering of the indices of items,
in each iteration. We explain the re-ordering in the
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following.

Let us consider a backtracking algorithm for enu-
merating frequent itemsets. Let P be the current so-
lution of an iteration of the algorithm. Suppose that
P ′ is a maximal frequent itemset including P . LCM-
max puts new indices to items with indices larger
than tail(P ) so that any item in P ′ has an index
larger than any item not in P ′. Note that this re-
ordering of indices has no effect to the correctness of
the algorithm.

Let e > tail(P ) be an item in P ′, and consider the
recursive call with respect to P ∪ {e}. Any frequent
itemset P̂ found in the recursive call is included in
P ′, since every item having an index larger than e
is included in P ′, and the recursive call adds to P
items only of indices larger than e. From this, we
can see that by the re-ordering of indices, recursive
calls with respect to items in P ′ ∩ H generates no
maximal frequent itemset other than P ′.

According to this, an iteration of LCMmax chooses
an item e∗ ∈ H , and generates a recursive call with
respect to P ∪ {e∗} to obtain a maximal frequent
itemset P ′. Then, re-orders the indices of items other
than e∗ as the above, and generates recursive calls
with respect to each e > tail(P ) not included in P ′∪
{e∗}. In this way, we save the computation time for
finding P ′, and by finding a large itemset, increase
the efficiency of this approach. In the following, we
describe LCMmax.

ALGORITHM LCMmax (P :itemset, H :items to
be added)

1. H ′ := the set of items e in H s.t. P ∪ {e} is frequent
2. If H ′ = ∅ then

3. If P ∪ {e} is infrequent for any e then

output P ; return

4. End if

5. End if

6. Choose an item e∗ ∈ H ′ ; H ′ := H ′ \ {e∗}
7. LCMmax (P ∪ {e}, H ′)
8. P ′ := frequent itemset of the maximum size

found in the recursive call in 7
9. For each item e ∈ H \ P ′ do

10. H ′ := H ′ \ {e}
11. LCMmax (P ∪ {e}, H ′)
12. End for

3.8 Checking Maximality

When LCMmax finds a frequent itemset P , it checks
the current solution is maximal or not. We call
this operation maximality check. Maximality check

is a heavy task, thus many existing algorithms avoid
it. They store in memory maximal itemsets among
previously obtained frequent itemsets, and update
them when they find a new itemset. When the al-
gorithms terminate and obtain all frequent itemsets,
only maximal frequent itemsets remain in memory.
We call this storage method. If the number of max-
imal frequent itemsets is small, storage method is
efficient. However, if the number is large, storage
method needs much memory. When a frequent item-
set is newly found, storage method checks whether
the itemset is included in some itemsets in the mem-
ory or not. If the number of frequent itemsets is large,
the operation takes long time.

To avoid the disadvantage of storage method,
LCMmax operates maximality check. LCMmax
checks the maximality by finding an item e such
that P ∪ {e} is frequent. If and only if such e ex-
ists, P is not maximal. To operate this efficiently,
we reduce the database. Let us consider an itera-
tion of LCMmax with respect to a frequent itemset
P . LCM algorithms reduce the database by anytime
database reduction for the frequency counting. Sup-
pose that the reduced database is composed of trans-
actions S1, ..., Sh, and each Sl is obtained by merg-
ing transactions T l

1, ..., T
l
k of the original database.

Let H be the set of items to be added in the iter-
ation. Suppose that we remove all items e from H
such that P ∪ {e} is infrequent. Then, for any l,
T l

1∩H = T l
2∩H =, ..., = T l

k ∩H holds. For an item e
and a transaction Sl, we define the weight w(e, Sl) by
the number of transactions in T l

1, ..., T
l
k including e.

Here the frequency of P∪{e} is
∑

S∈{S1,...,Sh}
w(e, S).

Thus, by using the weights, we can efficiently check
the maximality, in linear time of the size of the re-
duced database.

When we merge transactions to reduce the
database, the weights can be updated easily. For each
item e, we take the sum of w(e, S) over all transac-
tions S to be merged. In the same way as frequency
counting, we can remove infrequent items from the
database for maximality checking, for more reduc-
tion.

The computation time for maximality check in
LCMmax depends on the size of database, but not
on the number of previously obtained itemsets. Thus,
storage method has advantages if the number of max-
imal frequent itemsets is small, but for the instances
with a lot of maximal frequent itemsets, which take
long time to be solved, LCMmax has an advantage.
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Figure 1: Results 1

4 Computational Experiments

In this section, we show the results of our compu-
tational experiments. We implemented our three al-
gorithms LCM, LCMfreq, and LCMmax. They are
coded by ANSI C, and complied by gcc. The exper-
iments were executed on a notebook PC, with AMD
athron XP 1600+ of 224MB memory. The perfor-
mance of LCM algorithms are compared with the
algorithms which marked good score on FIMI 03:
fpgrowth[8], afopt[11], MAFIA[5, 6], kDCI[12], and
PATRICIAMINE[16]. We note that kDCI and PA-
TRICIAMINE are only for all frequent itemset min-
ing. To reduce the time for experiments, we stop
the execution when an algorithm takes more than
10 minute. The following figures show the results.
We do not plot if the computation time is over 10

minutes, or abnormal terminations. The results are
displayed in Figure 1 and 2. In each graph, the hori-
zontal axis is the size of minimum supports, and the
virtical axis is the CPU time written in a log scale.

From the performances of implementations, the in-
stances were classified into three groups, in which the
results are similar. Due to the space limitation, we
show one instance as a representative for each group.

The first group is composed of BMS-WebView1,
BMS-WebView2, BMS-POS, T10I4D100K, kosarak,
and retail. These datasets have many items and
transactions but are sparse. We call these datasets
sparse datasets. We chosen BMS-WebView2 as the
representative.

The second group is composed of datasets taken
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Figure 2: Results 2
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from UCI-Machine Learning Repository1, connect,
chess, mushrooms, pumsb, and pumsb-star. These
datasets have many transactions but few items. We
call these datasets middle density datasets. As a rep-
resentative, we show the result of chess.

The third group is accidents. It is different from
any other dataset. It has huge number of transac-
tions, but few items. Transactions includes many
items, so the dataset is very dense. We call this
dataset very dense dataset.

In almost instances and minimum supports, LCM
algorithms perform well. When the minimum sup-
port is large, LCM algorithms are the fastest for all
instances, because of the fast initialization. For all
instances with any minimum support, LCM outper-
forms other closed itemset mining algorithms. This
shows the efficiency of ppc extension.

For sparse datasets, LCM algorithms are the
fastest, for any minimum support. The efficiency of
FP-tree is not large, and occurrence deliver works ef-
ficiently. The performances of afopt and fp-growth
are quite similar for these problems. They are the
second bests, and 2 to 10 times slower than LCM
algorithms. For enumerating frequent closed item-
sets, they take much time when the number of closed
itemsets is large. Although PATRICIAMINE is fast
as much as fp-groth and afopt, it abnormally ter-
minated for some instances. kDCI is slow when the
number of frequent itemsets is large. MAFIA was the
slowest for these instances, for any minimum support.

For middle density datasets, LCM is the fastest
for all instances on closed itemset mining. On all
and maximal frequent itemset mining, LCMfreq and
LCMmax are the fastest for large minimum supports,
for any dataset. For small minimum supports, for
half instances LCMfreq and LCMmax are the fastest.
For the other instances, the results are case by case:
each algorithm won in some cases.

For accidents, LCM algorithms are the fastest
when the minimum support is large. For small sup-
ports, LCM(closed) is the fastest, however LCMfreq
and LCMmax are slower than fp-growth For this
dataset, the efficiency of FP-tree is large, and the
compression ratio is up to 6. Bitmap is also efficient
from the density. Hence, the computation time for
the frequency counting is short in the execution of
existing implementations. However, by ppc exten-
sion, LCM has an advantage for closed itemset min-
ing. hence LCM(closed) is the fastest.

1http://www.ics.uci.edu/ mlearn/MLRepository.html

5 Conclusion

In this paper, we proposed a fast implementation of
LCM for enumerating frequent closed itemsets, which
is based on prefix preserving closure extension. We
further gave implementations LCMfreq and LCM-
max for enumerating all frequent itemsets and max-
imal frequent itemsets by modifying LCM. We show
by computational experiments that our implements
of LCM, LCMfreq and LCMmax perform above the
other algorithms for many datasets, especially for
sparse datasets. There is a possibility of speeding up
LCM algorithms by developing more efficient maxi-
mality checking algorithms, or developing a hybrid of
array and FP-tree like data structures.
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