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Abstract. The problem of finding dense structures in a given graph
is quite basic in informatics including data mining and data engineer-
ing. Clique is a popular model to represent dense structures, and widely
used because of its simplicity and ease in handling. Pseudo cliques are
natural extension of cliques which are subgraphs obtained by removing
small number of edges from cliques. We here define a pseudo clique by
a subgraph such that the ratio of the number of its edges compared to
that of the clique with the same number of vertices is no less than a
given threshold value. In this paper, we address the problem of enumer-
ating all pseudo cliques for given a graph and a threshold value. We
first show that it seems to be difficult to obtain polynomial time algo-
rithms using straightforward divide and conquer approaches. Then, we
propose a polynomial time, polynomial delay in precise, algorithm based
on reverse search. We show the efficiency of our algorithm in practice by
computational experiments.

1 Introduction

Let us consider the problem of finding dense structures from a given graph, i.e.,
finding vertex induced subgraphs including many edges. In graphs representing
similarity or relation, dense structures can be considered to represent groups
of similar objects or deeply related objects. Thus, the problem is important in
many scientific areas. This is especially true in data engineering and data mining,
where it is one of basic problems, and has many applications such as clustering,
community discovering, machine learning, Web search, etc. [1, 6, 8–11, 14, 20]. A
clique is a subgraph that is a complete graph. It is a fundamental structure
for representing dense structures. It has several good mathematical properties,
and can be easily handled. As a result, clique detection has been used in many
researches. Cliques are considered as a part of dense structures, or seeds of dense
structures. The clique enumeration can be efficiently carried out thanks to the
increase of computation power, and new algorithms[12, 16]. Currently, the bottle
neck of the computation in the practice is usually the output process, thus the
algorithm is almost optimal.

Then, as a next step, people wanted to use a richer model than cliques. In
very sparse graphs, a subgraph containing only small cliques can be considered
as a dense structure if it has many edges when compared to the others. If the
data is incorrect so that some edges are missing, then a vertex set should be a



clique will not be a clique. For robust computation, “pseudo cliques” should be
used. For example, such pseudo cliques are used for web page clustering[9].

We can consider several models to represent pseudo cliques. A possible model
is a subgraph that is obtained from a clique by removing at most θ edges, where
θ is a given threshold constant number. An advantage of this model is that in this
definition any subset of a pseudo clique is also a pseudo clique in the sense of the
vertex subset, thus the family of pseudo cliques satisfies the monotone property.
This is a useful property, and we can use many techniques in the literatures to
develop an efficient algorithm. However, a disadvantage of the model is that for
graphs of any size the threshold is the same, thus larger subgraphs can lose only
a small portion of its edges. This is contrary to the intuitions. Moreover, so many
small vertex sets will become pseudo cliques.

Another model is to define a pseudo clique by a subgraph that has at least
a constant ratio of edges compared to a clique of the same size. Precisely, we
define the density of a subgraphs by the number of edges over the number of all
its vertex pairs. A subgraph is a pseudo clique if its density is no less than the
given threshold value. In this definition, the family of pseudo cliques no longer
satisfies the monotone property. It is a disadvantage of this definition. On the
other hand, small subgraphs are pseudo cliques only if they are cliques, since
the limitation of the number of edge removals changes as the size of subgraphs.
This is an advantage of this definition.

In the literatures, a subgraph having many edges compared to the number
of its vertices is often called dense subgraph, heavy graph, or maximum edge
subgraph. However, all these terms are used to represent the subgraph having the
highest ratio of edges, thus it is mainly used in optimization. On the other hand,
in many areas in informatics, a subgraph having many edges thereby similar to
clique is often called a “pseudo clique” or “quasi clique”. In this paper, we use
the term pseudo clique.

The problem of maximizing the density among subgraphs of given size k
is NP-complete since it includes the maximum clique problem as its special
case[4]. However, if k = Θ(|V |) holds, there is a PTAS algorithm[2]. For the
edge weighted version, an O(|V |1/3−ε) approximation algorithm is known[4].
However, finding an induced subgraph maximizing average degree in it can be
solved in polynomial time[4].

In this paper, we address the enumeration problem of all pseudo cliques in a
given graph. We choose the latter definition for pseudo cliques. We first show the
existence of polynomial delay algorithm is non-trivial, by proving that straight-
forward back-tracking (branch-and-bound) approaches involve an NP-complete
problem in each iteration. Note that it does not assure that non-existence of
output polynomial time algorithm even when P 6= NP .

In contrast, a reverse search works well for this problem. We will show that
for any pseudo clique, one of its vertex satisfies that its removal is also a pseudo
clique. From this, we can obtain an adjacency relation on pseudo cliques spanning
all the pseudo cliques. Then we define a tree-shaped traversal route on all pseudo
cliques by this adjacency. Our algorithm traverses the route in a depth-first



manner with taking polynomial time on each pseudo clique, thus it is polynomial
delay algorithm. We then introduce a method to decrease the time complexity
and practical computation time. By computational experiments we show the
efficiency of our algorithm in practice.

The organization of this paper is as follows. Section 2 is for preliminaries. In
Section 3, we present the hardness result for straightforward approach. Section
4 describes the adjacency and the algorithm. In Section 5, we present the results
of our computational experiments, and conclude the paper in Section 6.

2 Preliminary

Let G = (V, E) be a graph with a vertex set V and an edge set E ⊆ V × V . In
this paper we consider graphs with no multiple edge. We say vertex v is adjacent
to vertex u if there is an edge e = {u, v} in E. We denote the degree of v by
deg(v), and the maximum degree by ∆.

For a vertex set U ⊆ V , the induced subgraph by U , denoted by G[U ] =
(U,E[U ]), is a graph composed of edges of G whose endpoints are both in U .
G[U ] is also called an induced subgraph. In Fig. 1, the subgraph induced by
vertex set {3, 5, 6, 9, 11} is the graph inside the gray circle without edges one of
its endpoint outside the circle. If U = ∅, we define G[U ] by the empty graph
(∅, ∅). If any two vertices in U are connected by an edge, U and G[U ] are called
a clique. In Fig 1, vertices {5, 7, 9, 11} form a clique. For a vertex v and a vertex
set U , we denote the number of edges connecting v and a vertex in U by degU (v).

Let clq(n) = n(n−1)
2 , where clq(n) is the number of edges in the clique of

n vertices. For a vertex subset U ⊆ V at a size of at least 2, the density of
G[U ] is defined by |E[U ]|/clq(|U |). The density is the ratio of the edges in G[U ]
compared to the complete graph of |U | vertices. In Fig 1, the density of the
subgraph induced by K = {3, 5, 6, 9, 11} is 7/10. We define the density of G[∅]
and graphs with one vertex by 1. Suppose that θ, 0 ≤ θ ≤ 1 be a constant number
called threshold. Then, an induced subgraph G[U ] is called a pseudo clique if its
density is no less than θ. We note that G[∅] and G[{v}] for any vertex v are
pseudo cliques for any threshold.

Let w be an edge weight function w : E → R. For an edge subset F ⊆ E,
we define the weight of F by the sum of weights of edges in F , and denote it by
w(F ). We also define the weight of G[U ] by w(E[U ]). For a given edge weight
function w : E → R, we define the weighted density of an induced subgraph
G[U ] by w(E[U ])/clq(|U |). We define the weighted density of the graphs with at
most one vertex by +∞. For a threshold θ ∈ R, an induced subgraph G[U ] is a
weighted pseudo clique if its weighted density is no less than θ.

We define the (weighted) density of a vertex set by that of the subgraph
induced by the vertex set. We often say U is a (weighted) pseudo clique if G[U ] is
a (weighted) pseudo clique. We here address the following enumeration problem.

(Weighted) Pseudo Clique Enumeration Problem:
For given graph G = (V, E) and threshold θ, (edge weight function w), output
all vertex sets whose induced subgraphs are (weighted) pseudo cliques of G
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Fig. 1. An example of pseudo clique and other vertices

If an enumeration algorithm which outputs a set of solutions terminates in
time polynomial of the sum of the input and output sizes, the algorithm is said
to be output polynomial time. The longest computation time between the output
of any two consecutive solutions is called the delay. An algorithm is polynomial
delay if the delay is polynomial in the input size. The computation time of a
polynomial delay algorithm is linear in the output size, thus it is optimal for the
output size and considered to be practically efficient. Our goal in this paper is to
develop a polynomial delay algorithm for pseudo clique enumeration problem.

3 Hardness Result for Straightforward Approaches

A popular scheme for constructing an enumeration algorithm is so called binary
partition, which is a variant of branch and bound method. For the problem
of enumerating all the elements of an implicitly given subset family F ⊆ 2E ,
binary partition algorithm works in the following way. If |F| is less than a certain
constant number, it enumerates elements in F directly. Otherwise, it chooses an
element e ∈ E and divide F into two sets F+ and F− so that F+ consists
of all the elements of F including e, and F− consists of those not including e.
Then, we check whether each of F+ and F− is the emptyset or not, and if it
is not empty, we enumerate the elements recursively, by dividing F+ or F− by
choosing another element e′.

The algorithms so called “depth first search” or “back tracking” are also
considered to be a variant of binary partition algorithms. Binary partition works
for many problems, such as spanning trees, paths, and cycles[15], cliques and
independent sets[12], perfect matchings in bipartite graphs[5], etc.

The number of iterations of a binary partition algorithm is linear in |F|,
which is the size of output, thanks to the check whether either F+ or F− is an
emptyset. Thus, if the check can be done in polynomial time of the input size,
the binary partition algorithm is polynomial delay. When we want to enumerate
the pseudo cliques by binary partition, the check problem is defined as follows.

Problem: Pseudo Clique Existence
For given a graph G, a vertex subset U , and a threshold θ, check whether a
pseudo clique K including U exists.

However, as we prove below, this problem is NP-complete. Thus, a straight-
forward binary partition algorithm will possibly take exponential time in an
iteration. Note that this result does not assure that binary partition algorithms
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will never be output polynomial time even if P 6= NP . For example, a good
ordering of vertices in V can exist so that the pseudo clique existence in any
iteration can be solved in polynomial time. Moreover, even if one iteration takes
exponential time in the input size, the total computation time can be polynomial
in the output size since the output size can be also exponential in the input size.
In general, it is not easy to prove such statements, but also not impossible.
Theorem 1. The problem pseudo clique existence is NP-complete.

Proof. The problem obviously belongs to NP, thus we prove NP-hardness by
reducing the k clique problem which is to answer whether given graph G′ =
(V ′, E′) includes a clique of given size k. This problem is NP-complete[7].

We will construct a graph G = (V, E) from G′ as follows. Fig. 2 shows an
example. Without loss of generality we assume that G′ has at least a certain
number of vertices, say 10 vertices. Let V = V ′ ∪ U where U is a vertex set of
size 2|V ′|2. We choose two arbitrary vertices z1 and z2 from U . The edge set E
is defined by

E = E′ ∪ {(u, v) | v ∈ V ′, u ∈ U, u 6= z1, z2} ∪ EU

where EU is an arbitrary edge subset EU ⊆ U × U such that |EU | = (2|V ′|2 −
1)× (|V ′|2 − 1). Then, the density of G[U ] is equal to (|V ′|2 − 1)/|V ′|2.

Let K be a subset of V ′. If and only if G[K] is a clique, the density of
G[K ∪ U ] is greater than (|V ′|2 − 1)/|V ′|2, since the density of G[{v} ∪ U ] is
equal to (|V ′|2 − 1)/|V ′|2 for any v ∈ V ′. For any K ⊂ V such that G[K] is a
clique, the density of G[K ∪ U ] is determined by the size of K. When K is the
empty set or composed of one vertex, its density is (|V ′|2−1)/|V ′|2, and strictly
increases as the increase of the size of K. If the size of K is k, the density is

clq(k) + (2|V ′|2 − 1)× (|V ′|2 − 1) + k(2|V ′|2 − 2)
clq(k + |V ′|2) .

Thus, by setting θ to this value, which is the density of G[U ∪K], K ⊆ V ′

is no less than θ if and only if K is a clique of at least size k in G′. Thus, the
problem pseudo clique existence is NP-complete. ut

4 Polynomial Delay Enumeration of Pseudo Cliques

In the previous section we showed that a straightforward approach to the pseudo
clique enumeration may fail in the sense of the polynomiality. However, the prob-
lem can actually be solved in polynomial delay. In this section we describe a



polynomial delay algorithm for the non-weighted version of our problem. Neces-
sary modifications for adopting the weighted version is obvious, thus we omitted
them. The key to an efficient enumeration is that we construct a tree shaped
traversal route on the set of pseudo cliques, and perform a depth first search on
the tree, without having the traversal route explicitly on the memory. Such a
transversal route can be obtained by looking at an adjacency relation on pseudo
cliques spanning on all the pseudo cliques. This technique is called reverse search,
which is originally developed by Avis and Fukuda[3].

The idea of reverse search is as follows. We first define a parent for each
element to be enumerated, except for specified element called the root. The def-
inition of the parent has to be acyclic, that is, each element is not a proper
ancestor of itself. Then, the parent-child relation induces a spanning tree rooted
at the root on the set of elements to be enumerated. We call the tree the enu-
meration tree. The algorithm traverses the tree in a depth first manner. Reverse
search does not need to memorize the previously visit elements in memory space
to avoid duplications. It uses an algorithm for listing the children of an element.
By finding a child of an element, we can go deeper on the enumeration tree by
a recursive call. After we come back from the recursive call, we find the next
child and make a recursive call for it. In this way, we can perform the depth first
search with memory space linear in the height of the enumeration tree1.

First we observe the following property to obtain an adjacency relation on
pseudo cliques.

Lemma 1. Let v be a vertex in G[K] with the degree no greater than the average
of the degrees of vertices in G[K]. The density of K \ {v} is no less than the
density of K.

Proof. If |K| = 1, then K \{v} = ∅, thus the statement holds. Hence, we assume
that |K| ≥ 2. Let F1 and F2 be a partition of the set of pairs of vertices in U
such that F1 is the set of pairs of v and another vertex, and F2 is the set of
the remaining pairs. Let E1 = E[K] ∩ F1, and E2 = E[K] ∩ F2. Then, we can
observe that the density of U is between |E1|/|F1| and |E2|/|F2|. The density
multiplied by |U |−1 is equal to the average degree of vertices in G[K], and thus
it is no less than |E1|/|F1|. Since E[K \{v}] = E[K]∩F2, the density of K \{v}
It concludes the proof. ut

From the lemma, we can see that for any pseudo clique K, K \ {v} is also
a pseudo clique for any vertex whose degree is no greater than the average.
This introduces an adjacency relation on pseudo cliques. Since any K has such a
vertex v, we can remove the vertices of K iteratively until K will be the emptyset,
passing through only pseudo cliques. Thus, the adjacency spans all the pseudo
cliques. The graph induced by the adjacency is not a tree, thus we introduce
parent-child relation to obtain a tree-shaped traverse route.

For a vertex set K 6= ∅, we define v∗(K) by the minimum degree vertex
in G[K]. If there are more than one minimum degree vertices, we choose the
1 The space complexity of the original reverse search does not depend on the height

of the enumeration tree.



minimum index one. We define the parent Prt(K) of K 6= ∅ by K \ {v∗(K)}.
From Lemma 1, Prt(K) is a pseudo clique if K is a pseudo clique. Since any
K has a unique parent, the graph induced by the parent-child relation forms
a tree. In Fig 1, the degrees of vertices in G[K] are degK(3) = degK(6) =
2, degK(5) = degK(9) = 3, degK(11) = 4, thus v∗(K) is vertex 3. The parent of
K = {3, 5, 6, 9, 11} is {5, 6, 9, 11}. We will describe an algorithm for traversing
the tree.

Now the remaining task is how to find the children of a pseudo clique. For
this task, we first observe the following property, immediately obtained from the
definition of the parent.
Property 1. For a pseudo clique K ⊆ V , K ′ is a child of K if and only if K ′\K =
{v} and v = v∗(K ′).

From the property, we can see that K has at most |V | − |K| children, each
of which is obtained by adding a vertex v not in K to K. Thus, we can list
the children of K by computing the density of K ∪ {v} and v∗(K ∪ {v}) for
each vertex v 6∈ K. In this way, we can list the children thus can enumerate
all pseudo cliques. We describe the algorithm as follows, which enumerates all
pseudo cliques by calling with G and K = ∅.

Algorithm EnumPseudoClique (G = (V, E), K)
1: output K
2: for each v 6∈ K do
3: if K ∪ {v} is a pseudo clique then
4: if K ∪{v} is a child of K then EnumPseudoClique (G = (V, E), K ∪{v})

In a straightforward implementation, an iteration of the algorithm takes
O(|V |2) time, thus pseudo cliques can be enumerated O(|V |2) time for each.
The computation time can be reduced by a sophisticated process. We character-
ize vertices generating children in terms of degK , and describe a more efficient
algorithm. The density of K ∪{v} is (|E[K]|+degK(v))/clq(|K|+1), thus there
is a threshold value θ(K) = θclq(|K| + 1) − |E[K]| such that for any vertex v
with degK(v) ≥ θ(K), K ∪ {v} is a pseudo clique.
Lemma 2. Let K ⊆ V be a pseudo clique and v be a vertex not in K. Then,
K ∪ {v} is a pseudo clique if and only if degK(v) ≥ θ(K)

We use buckets for 0, ..., |V | − 1 so that the bucket for i stores vertices v
satisfying degK(v) = i. Then, we can take the vertices generating pseudo cliques
in constant time for each. We update the buckets in each iteration and it takes
O(deg(v)) time for the last added vertex v.

To check whether v∗(K ∪ {v}) = v or not, we introduce a total order ≺U for
any vertex subset U 6= ∅, defined by

u ≺U v ⇔ degU (u) < degU (v) or (degU (u) = degU (v) and u ≤ v),

here u ≤ v means that the index of u is less than that of v. Then, v∗(K) is
the vertex of U satisfying v∗(K) ≺U u for any other vertex u ∈ U . Then, we
have the following lemma.



Lemma 3. For any pseudo clique K and a vertex v not in K, K∪{v} is a child
of K if and only if (1) K∪{v} is a pseudo clique, (2) the tuple (degK(v∗(K)), v∗(K))
is lexicographically larger than the tuple (degK(v) − 1, v), and (3) v is adjacent
to any vertex u ∈ K,u ≺K v.

Proof. We first observe that for any vertex u, degK∪{v}(u) = degK(u) + 1 if v
is adjacent to u, and degK∪{v}(u) = degK(u), otherwise. Then, the only if part
of the statement is obvious; if (2) is violated, then v∗(K) ≺K∪{v} v. Hence we
prove the if part. It is sufficient to prove that conditions (2) and (3) lead that
v∗(K ∪ {i}) is v. v∗(K ∪ {i}) is v when any vertex u ∈ K satisfies u ≺K∪{i} v.

Suppose that conditions (2) and (3) hold for v. Then, from condition (3),
any vertex u ∈ K satisfying u ≺K v is adjacent to v. Thus, the vertex u satisfies
degK∪{v}(u) = degK(u) + 1. From condition (2), the tuple (degK∪{v}(u), u)
is lexicographically larger than (degK∪{v}(v), v) = (degK∪{v}(v), v). Thus, the
statement holds. ut

We show an example in Fig. 1. K ∪ {v} is a child of K for v = 1, 2, 4. Vertex
7 does not satisfy (3), and vertex 10 does not satisfy (2).

If a vertex v satisfies that K ∪ {v} is a pseudo clique and v ≺K v∗(K), then
K ∪ {v} is always a child of K. By keeping the above bucket sorted in the order
of indices, we can find all such vertices in O(log |V |) time for each. We note that
using a sophisticated heap algorithm which realizes constant time insertion, we
can still bound the computation time for update the buckets by O(deg(v)). We
then explain the way to efficiently find vertices v satisfying that v∗(K) ≺K v
but K ∪ {v} is a child of K.

Let L(K) be the sequence of first ∆ vertices of K sorted by the order ≺K . If
K has less than ∆ vertices then L(K) includes all vertices in K. For each vertex
v 6∈ K, we define l(v,K) by the first vertex in L(K) which is not adjacent to
v. We define l(v, K) by +∞ if v is adjacent to all vertices in L(K). In Fig. 1,
L(K) = (3, 6, 5, 9, 11), l(2, K) = 10, and l(7,K) = 3. The following is obvious.
Lemma 4. Let v be a vertex satisfying that v∗(K) ≺K v and K∪{v} is a pseudo
clique. Then, K ∪ {v} is a child of K if and only if v ≺K l(v, K). In particular,
v is adjacent to v∗(K).

We choose the vertices u in L(K) in the order of ≺K and look at the vertices
adjacent to u, then l(v, k) can be computed for all vertices v adjacent to at least
one vertex of L(K). This is done in O(min{∆2, |V | + |E|}) time, hence all the
vertices v generating children and v∗(K) ≺K v can be found in O(min{∆2, |V |+
|E|}) time.

To perform our reverse search, we have to keep L(K) and the buckets in the
memory. This requires O(|V |+ |E|) space. We need no extra memory for other
operations, thus we have the following theorem.
Theorem 2. For a given graph G and threshold θ, all pseudo cliques can be
enumerated in O(min{∆2, |V |+ |E|}) time for each within O(|V |+ |E|) memory.
In particular, the delay is O(min{∆2, |V |+ |E|}).

We note that the delay can be bounded by the computation time for one
iteration by using so called “odd-even output method”, described in [13, 18].



We modify the algorithm so that in each iteration, the algorithm outputs the
solution before generating recursive calls if the depth of the recursion is odd,
and after the recursive calls otherwise. By this, during the execution, any three
consecutive iterations output at least one solution, thus the delay is reduced to
be equal to the computation time for one iteration.

Considering the practice, the estimation of the computation time is too large,
since we are usually given a possibly large but sparse graphs thereby the pseudo
cliques are small in comparison to the graph sizes. Otherwise the number of
pseudo cliques explodes so that we can not handle the output. Thus, there will
be few candidates for children, and few vertices adjacent to v∗(K). Thus the
complexity we state here is possibly far from the practical computation time.

5 Computational Experiments

We here present the results of computational experiments to show the practi-
cal efficiency of our algorithm. The implementation is coded by C, compiled
by gcc, and executed in a notebook PC with a Pentium M 1.1GHz processor
with 256MB memory with cygwin which is an emulator of Linux environments
on Windows. The implementation is a simpler version of our algorithm, which
maintains only degK(v) for each vertex v, thus the worst computation time for
an iteration is O(|E| + |V |). The reason that we did not use the technique to
find the children in O(log |V |) time for each is that in practice we expected that
only few vertices satisfy degK(v) = degK(v∗(K)) on average. This was observed
in the computational experiments.

We examined several types of graphs as inputs of the implementation, ran-
domly generated graphs and graph taken from real world data. We had three
groups of random graphs which are generated in the following three different
ways. The first group consists of ordinary random graphs. For each pair of ver-
tices, we connected them by an edge with the same probability 0.1. The second
group is of so called locally dense graphs. Consider a necklace sequence obtained
by connecting the head and the tail of the vertex sequence (1, 2, . . . , |V |). For
each vertex v, we connected it to each its neighbor with probability 1/2. Here a
neighbor of v is a vertex u with |u− v| ≤ r, or |u− v| ≥ |V | − r, for given r. In
the experiments we set r = 20.

The third was randomly generated scale free graphs. In a scale free graph,
the probability that the degree of a vertex is λ is 1/λΓ . Such a distribution is
called zip distribution, and such data is said to satisfy power law. The graphs
appearing in real world problems are often scale free graphs. Our scale free
graphs are generated by starting from a clique of k vertices and adding vertices
one-by-one to it, and then connect it to k vertices. The vertices to be connected
are chosen randomly such that a vertex is chosen with a probability proportional
to its degree. A graph generated in this way is known to be scale free. The graph
tends to have few locally dense structures which we can see many in real world
data, thus the average size of cliques in this graph is often small.

We run the implementations for these graphs with the thresholds θ = 0.8
and θ = 0.9. Since we could not find any implementations for the pseudo clique
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Fig. 3. Results for random graphs (left) and locally dense random graphs (right)
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enumeration problem, we compare the performance to that of an ordinary back-
tracking clique enumeration algorithm, which maintains degK(v) to find can-
didates for the addition. Since the clique enumeration is a special case of our
problem, it can be considered as a kind of upper bound of the performance of
the pseudo clique enumeration.

The results of the experiments are shown in figures. The left side of Fig. 3
shows the results for ordinary random graphs, and the right side of Fig. 3 is for
locally dense random graphs The left side of Fig. 4 is for scale free graphs. The
horizontal axis is the number of vertices in the input graphs, and the vertical axis
is for the computation time, computation time for 1 million (pseudo) cliques, and
the number of output (pseudo) cliques. All these are shown in log scales. The line
almost horizontal in the figures display the computation time per one million
pseudo cliques. The computation time for each pseudo clique does not change
with the change in the threshold value θ, and does not differ very much from
that of the clique enumeration. This means that the performance of the pseudo
clique enumeration is close to optimal, thus in the practice a high performance
is expected.

The computation time is increasing with the increase of the graph sizes in
the scale free graphs and slightly increasing in random graphs. This is possibly
because of the increase in the average degree, and the decrease in the ratio
of children in the candidates of children. When we set threshold value θ to
a small value, the number of vertices v satisfying degK(v∗(K)) ≤ degK(v) ≤



degK(v∗(K)) + 1 increases. Since scale free graphs has a kind of locality, few of
them will be the children of K, on average.

For all the results, the diagonal lines represents the numbers of pseudo cliques
and cliques. For the random graphs, the ratio of these three values increases with
the increase in graph size. This could be because of the increase in the average
degree. It is interesting to note that the ratio does not change much in locally
dense random graphs, and is reduced for the scale graphs.

The right side of Fig. 4 is the result for the graph taken from the real world
data. The graph is a co-author graph[19] such that each vertex is a researcher
and two researchers are connected if they have a joint paper. The number of
vertices is about 30,000 and the number of edges is about 125,000. It is known
that the graph is a scale free graph. For this graph we observe the results by
changing the threshold θ. The leftmost point indicates the computation time of
the clique enumeration, thus it is faster than the others, but not different much
from that of the pseudo clique enumeration. The computation time does not
seem to depend on the threshold value.

6 Conclusion

In this paper we addressed the problem of finding dense structures from a graph.
The density is given by the ratio of the existing edges compared to a complete
graph, and we define a pseudo clique as a dense structure by a subgraph with
density no less than the given threshold value. In this term we define our problem
of enumerating all pseudo cliques of given a graph and a threshold.

We first showed that it is not easy to get polynomial time algorithm by
straightforward approach since in this way we encounter an NP-complete prob-
lem. On the other hand, we show that any pseudo clique has a proper subset
being a pseudo clique with one fewer vertices. This induces a relation spanning
all pseudo cliques. Using the relation we developed a reverse search algorithm
whose delay is O(min{∆2, |E| + |V |}), thus computation time for each pseudo
clique is O(min{∆2, |E|+ |V |}).

Recently, it has become popular to use dense structures to represent related
objects. One of the problems on practice is that the number of output solutions
is often larger than that of the cliques. The ”maximal” pseudo clique enumera-
tion may help, but it is not straightforward to introduce maximality because the
family of pseudo cliques does not satisfy the monotone property. Detailed char-
acterizations of the dense structures which would allow us to develop efficient
algorithms are important for applications, and an interesting open problem.

Acknowledgment
This research was partly supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for Specially Promoted Research, 18017015 for devel-
oping high-speed high-quality algorithms for analyzing huge genome database.
References

1. J. Aslam, K. Pelekhov and D. Rus, A Practical Clustering Algorithms for Static
and Dynamic Information Organization, SODA 99, ACM Press, 1999.



2. S. Arora, D. Karger and M. Karpinski, Polynomial time approximation schemes
for dense instances of NP-hard problems, Proc. ACM Symp. on Theory of Comp.,
pp. 284–293, 1995.

3. D. Avis and K. Fukuda, Reverse Search for Enumeration, Discrete Applied Math-
ematics 65, pp. 21–46, 1996.

4. U. Feige, D. Peleg and G. Kortsarz, The dense k-subgraph problem, Algorithmica
29, pp. 410-421, 2001.

5. K. Fukuda and T. Matsui, Finding All Minimum-Cost Perfect Matchings in Bi-
partite Graphs, Networks 22, pp. 461–468, 1992.

6. K. Fujisawa, Y. Hamuro, N. Katoh, T. Tokuyama and K. Yada, Approximation
of Optimal Two-Dimensional Association Rules for Categorical Attributes Using
Semidefinite Programming, LNCS 1721, pp. 148–159, 1999.

7. M. R. Garey, D. S. Johnson and L. Stockmeyer, Some Simplified NP-complete
Problems, Proc. ACM Symp. on Theory of Comp., pp. 47–63, 1974.

8. D. Gibson, R. Kumar and A. Tomkins, Discovering Large Dense Subgraphs in
Massive Graphs, Proc. VLDB, pp. 721–732, 2005.

9. M. Haraguchi, Y. Okubo, A method for clustering of web pages with pseudo-clique
search, LNAI 3847, pp. 59–78, 2006.

10. H. Hu, X. Yan, Y. Huang, J. Han and X. J. Zhou, Mining Coherent Dense Sub-
graphs Across Massive Biological Networks for Functional Discovery, Bioinformat-
ics 21, pp. 213–221, 2005.

11. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins Extracting Large-Scale
Knowledge Bases from the Web, Proc. VLDB, pp. 639–650, 1999.

12. K. Makino and T. Uno, New Algorithms for Enumerating All Maximal Cliques,
LNCS 3111, pp. 260–272, 2004.

13. S. Nakano and T. Uno, Constant Time Generation of Trees with Specified Diam-
eter, LNCS 3353, pp. 33–45, 2004.

14. G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the Overlapping Com-
munity Structure of Complex Networks in Nature and Society, Nature, 435 7043,
pp. 814–818, 2005.

15. R. C. Read and R. E. Tarjan, Bounds on Backtrack Algorithms for Listing Cycles,
Paths, and Spanning Trees, Networks 5, pp. 237–252, 1975.

16. E. Tomita, A. Tanaka and H. Takahashi, The worst-case time complexity for gen-
erating all maximal cliques and computational experiments, Theoretical Computer
Science 363, pp.28-42, 2006.

17. T. Uno, Algorithms for Enumerating All Perfect, Maximum and Maximal Match-
ings in Bipartite Graphs, LNCS 1350, pp. 92–101, 1997.

18. T. Uno, Two General Methods to Reduce Delay and Change of Enumeration Algo-
rithms, National Institute of Informatics (in Japan) Technical Report, 004E, 2003.

19. S. Warner, E-prints and the Open Archives Initiative, Library Hi Tech 21, pp.
151–158, 2003.

20. Y. Zhang, C. H. Chu, X. Ji and H. Zha, Correlating Summarization of Multisource
News with k Way Graph Biclustering, ACM SIGKDD Explo. Newslett. arch. 6,
pp. 34–42, 2004.


