
研究論文

A Fast Algorithm for Enumerating Non-Bipartite Maximal Matchings

一般グラフの極大マッチングを列挙する高速アルゴリズム

Takeaki UNO

National Institute of Informatics

宇野 毅明

国立情報学研究所

ABSTRACT

For a graph G = (V,E), a stable set in G is a vertex set such that no pair of vertices in the set are connected

by an edge. Stable set enumeration problems have been studied because of their applications to optimization,

computational geometry, etc. However, the problem of speeding up enumeration algorithms for stable sets is still

open. In this paper, we consider the problem of enumerating all maximal matchings of a given non-bipartite

graph G = (V,E), which is a special case of the stable set enuemration problem, and propose an algorithm with

a simple structure. By applying the stable set enumeration algorithms to this problem, the computation time is

O(|V ||E|2N). Our algorithm runs in O(|E|+ |V |+ ∆N) time, very fast compared with those algorithms. Here N

denotes the number of maximal matchings in G, and ∆ denotes the maximum degree of G.

要旨

グラフ G = (V, E) の頂点集合で, 任意の２頂点間に枝の無いものを安定集合という. 集合の意味で極大な安定集合

を列挙する問題は, 最適化, 計算幾何学などの多種の応用から研究されてきた. しかし, それを解くアルゴリズムに対し

て, 計算量を減少させる意味での高速化ができるかどうかは, まだ分かっていない. 本論文ではこの問題の特殊形であ

る, 極大なマッチングを列挙する問題を考え, 高速化が行えることを証明する. 単純に一般グラフの極大マッチングを列

挙する問題を考え, 簡単な構造を持つアルゴリズムを提案する. 極大安定集合を列挙するアルゴリズムを単純にこの問

題に当てはめた場合, 計算量は O(|V ||E|2N) となるが, 提案するアルゴリズムの計算量は O(|E| + |V | + ∆N) となり,

大幅な改善が行われた. ここで N は極大マッチングの数, ∆ は G の頂点の最大次数である.

[Keywords]

enumeration, enumeration tree, listing, maximal matching

[キーワード]

列挙, 列挙木, 列挙アルゴリズム, 極大マッチング

1

1. Introduction

For a graph G = (V,E), a stable set in G is a vertex

set such that no pair of vertices in the set are connected

by an edge. Stable set is a fundamental object in com-

binatorial problems, and optimization problems of sta-

ble sets have numerous applications. Although several

kinds of stable set optimization problems (for an ex-

ample, finding a maximum weight stable set) are quite

hard, for that reason, many approaches and algorithms,

such as branch and bound, cutting plane, heuristics,

etc., have been proposed. Enumeration problems of

stable sets have also been studied. Enumeration of

stable sets also has applications, such as optimization

problems of triangulation. Since enumeration of maxi-

mum stable sets in a non-bipartite graph is quite hard,

enumeration of maximal stable sets has been studied.

In 1977, S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shi-

rakawa[8] proposed an algorithm for enumerating max-

imal stable sets. Its time complexity is O(|E||V |N)

where N is the number of output (number of stable

sets), and its space complexity is O(|V |+ |E|). In prac-

tical terms, the algorithm is quite slow. One remark-

able point of this field of study is that no improved

algorithm has been proposed since 1977 while many

linear time or constant time algorithms have been pro-

posed for enumeration problem of other combinatorial

objects, such as spanning trees, paths, and bipartite

matchings. Here a linear time enumeration algorithm

means an algorithm running in linear time of input size

per output, and a constant time enumeration algorithm

means an algorithm running in constant time per out-

put. Speeding up stable set enumeration algorithm ap-

pears to be a difficult task.

On the other hand, for this reason, several closely

related problems have been studied. In 1992, T.

Kashiwabara , S. Masuda, K. Nakajima and T. Fuji-

sawa studied the case of bipartite graphs and circu-

lar arc graphs, and proposed algorithms for enumer-

ating maximum stable sets. The algorithms run in

O(|E||V |1/2 + N) time and O(|E||V |3/2 + N) time, re-

spectively.[6] The success of these algorithms is built

on properties of the subject graphs.

In this paper, we consider another special case of the

enumeration problem of stable sets, the enumeration

of maximal matchings in a non-bipartite graph. Since

matchings have good properties which are not satisfied

by stable sets, we can obtain a significant improvement,

i.e. the time complexity is reduced to O(|E| + |V | +

∆N), where ∆ denotes the maximum degree of G.

Again, we introduce our problem in detail. Let

G = (V, E) be a non-bipartite undirected graph with

vertex set V and edge set E = {e1, ..., em}. We denote

the number of vertices by n. Let ei have an index i.

We assume that there are neither isolated vertices nor

parallel edges. ∆ denotes the degree of a vertex of the

maximum degree in G. A matching M of the graph G is

an edge set such that no two edges in M share their end-

points. For a matching M of G = (V,E), let Ê(G, M)

denote the edges of E \ M adjacent to no edge of M.

Note that Ê(G, M) = E if M = ∅. We call a match-

ing which is contained in no other matching a maximal

matching. M is a maximal matching of G if and only

if Ê(G, M) = ∅. This paper considers the problem of

enumerating all maximal matchings in G.

A matching in a graph G is equivalent to a stable set

in the line graph of G. The line graph of G is (E, Ẽ)

such that (e, e′) ∈ E × E is included in Ẽ if and only

if e and e′ are adjacent in G. The problem of enumer-

ating maximal matchings is reducible to the problem

of enumerating stable sets of the line graph, hence we

can enumerate maximal matchings by using the algo-

rithm of Tsukiyama et al.[8] Since the line graph of G

has m vertices and O(nm) edges, their algorithm takes

O(nm2N) time and O(nm) space where N denotes the

number of maximal matchings in G. The computation

time is probably too slow to be practical. In 1988, D.

S. Johnson, M. Yannakakis, and C. H. Papadimitriou[4]

proposed another algorithm for enumerating maximal

stable sets, however their algorithm has the same time

complexity as Tsukiyama et al’s.

Matchings have some “good” properties that stable

sets do not have, hence many matching problems can

be solved more easily than stable set problems. For

example, we can find a maximum matching of a graph

in polynomial time,[2, 3] but the maximum stable set

problem is known to belong to the class of NP-hard

problems. Therefore, there naturally seem to exist pos-

sibilities of making a fast algorithm for enumerating

2

e1

e2
e3

e5

e4G
G1

G2

G3

G4

G5

Figure 1: An instance of enumeration tree.

maximal matchings, if not for stable sets. In this pa-

per, we use such “good” properties, and improve on

the algorithm of Tsukiyama et al. by adapting it to

maximal matchings.

Our improvements also are composed of two areas.

The first is that we use several techniques to speed up

iterations. In this way, we reduce the time complexity

from O(nm2N) to O(mN). The second is that we in-

troduce a preprocessing of the input to the algorithm to

decrease the number of iterations and amortized time

complexity. By detailed analysis, we reduce the time

complexity to O(∆N). Our improvements also result in

optimal memory complexity.

In the following sections, we describe our enumera-

tion algorithm and its method of analysis in detail. We

describe the framework of our algorithm and the im-

provements in the first area in section 2. In section 3,

we explain the improvements we made in the second

area, and analyze the time complexity in detail so that

we can show the reduction in time complexity.

2. Reverse Search Algorithm for Maximal Matchings

In this section, we describe the framework of our

algorithm obtained by modifying the algorithm of

Tsukiyama et al. We also show our techniques to re-

duce the computation time of an iteration.

For constructing enumeration algorithms, we have

a scheme called reverse search .[1] The algorithm of

Tsukiyama et al. can be considered as a type of reverse

search, and our algorithm is thereby based on reverse

search. Reverse search is a scheme for enumerating all

elements of a set. It utilizes a parent-child relationship

among elements of the set, which has to satisfy the fol-

lowing two conditions:

(1) any element except one element has its unique

parent

(2) no element is a proper ancestor of itself.

The graph expression of this relationship, composed of

vertices corresponding to its elements and edges con-

necting children to their parents, forms a tree under

these conditions. The tree is called an enumeration

tree. Reverse search traverses all vertices of the tree in

a depth first search manner, and outputs all elements

in the order in which they are visited. A feature of

reverse search is that its memory complexity does not

depend on the number of output.

Reverse search does not store the whole enumera-

tion tree in the memory, but stores only the vertex

3

of the tree that is currently being traversed. Reverse

search finds the root vertex of the enumeration tree,

then finds a child of the root. The search then moves to

the child, and enumerates all descendants of the child,

recursively. After visiting all descendants of the child,

reverse search returns to the root vertex, and finds an-

other child of the root vertex. If there is no other child,

reverse search stops. Otherwise, reverse search enumer-

ates all descendants of the child in the same way. The

depth first traversal of the enumeration tree is thus

achieved in this way. Therefore, a reverse search algo-

rithm can be based on simply finding all children of the

vertex currently being traversed. An important part of

a reverse search algorithm is to construct a fast algo-

rithm for this task.

Let us look at the operation of reverse search

for maximal matchings arising from the method of

Tsukiyama et al. Let Gi = (V, Ei) where Ei =

{e1, ..., ei}. A maximal matching M of a subgraph Gi is

called an i-maximal matching, and is denoted by (M, i).

Our parent-child relationship in the following is defined

among all the i-maximal matchings. The 1-maximal

matching, which is the unique maximal matching of

G1, has no parent in our relationship. The parent of an

i-maximal matching (M, i), i �= 1, denoted by p(M, i),

is defined by the (i−1)-maximal matching obtained by

the following procedure.

Procedure Obtain parent ((M, i))

(OP1) If ei /∈ M then output (M, i − 1) ; stop

(OP2) M ′ := M \ {ei}
(OP3) If Ê(Gi−1, M

′) = ∅ then output (M ′, i − 1) ;

stop

(OP4) M ′ := M ∪ { the edge with the minimum

index among Ê(Gi−1, M
′)}

(OP5) Go to (OP3)

From this algorithm, p(M, i) is defined uniquely, and

no i-maximal matching is its proper ancestor. Hence,

we obtain an enumeration tree the vertices of which

correspond to all the i-maximal matchings. The leaves

of the tree correspond to all the maximal matchings in

G (see Figure 1).

Next we explain how to find all children of an (i−1)-

maximal matching (M, i − 1). The method is based on

w1 w2

u1 u2

Figure 2: Generating a type-2 child: bold edges are

edges of M. We obtain a matching M ′ by adding

(w1, w2) to M and removing (w1, u1) and (w2, u2). If

(w1, u1) has a larger index than e1 or e2, then M ′ is a

type-2 child of M. If there is an edge (u1, u2), then M

is not maximal.

the following lemma. Let E(M, i) be the set of edges

of M that are adjacent to ei.

Lemma 1 (M ′, i) is a child of (M, i − 1) if and only

if one of the following conditions hold.

(a) E(M, i) �= ∅, and M ′ = M

(b) E(M, i) = ∅, and M ′ = M ∪ {ei}
(c) E(M, i) �= ∅, p(M ′, i) = (M, i − 1), and M ′ =

M ∪ {ei} \ E(M, i).

Proof: We first state the “if” part. In each case of

(a), (b) and (c), M ′ is an i-maximal matching. If (a)

holds, then ei is adjacent to an edge of M ′. Hence,

p(M ′, i) = (M, i − 1). If (b) holds, then ei is included

in M ′. Since M ′ \ {ei} is an (i − 1)-maximal match-

ing, p(M ′, i) = (M, i − 1). If (c) holds, then obviously

p(M ′, i) = (M, i − 1).

We next state the “only if” part. Suppose that

(M ′, i) is a child of (M, i − 1). If M ′ does not include

ei, then M = M ′ and E(M, i) �= ∅. Hence, (a) holds. If

M ′ includes ei and M ′ \ {ei} is an (i − 1)-maximal

matching, then M = M \ {ei}, and E(M, i) = ∅.
Hence, (b) holds. If M ′ includes ei and M ′ \ {ei} is

not an (i − 1)-maximal matching, then E(M, i) �= ∅,
and M ′ = M ∪ {ei} \ E(M, i). Hence, (c) holds.

Therefore, the lemma holds.

We illustrate the case of (c) of the lemma in Fig-

ure 2. From the proof of the lemma, we can see that

any i-maximal matching has a child satisfying (a) if

E(M, i) �= ∅, and a child satisfying (b) if E(M, i) = ∅.
Moreover, any i-maximal matching has at most one

4

child satisfying (c). We call a child satisfying (a) or (b)

a type-1 child, and a child satisfying (c) type-2 child.

From this, we can see that there are no fewer i-maximal

matchings than there are (i − 1)-maximal matchings.

A type-1 child (M ′, i) of (M, i − 1) is obtained from

(M, i) in O(1) time by adding ei if ei is adjacent to no

edge of M. There is not always a type 2 child. Hence,

we have to check for the existence of a type-2 child.

Checking for the existence in a simple way takes O(m)

time. Hence, to speed this up, we introduce the fol-

lowing variables and state several lemmas. For an i-

maximal matching (M, i) and a vertex v, let A(v, M, i)

be the set of edges (v, u) ∈ Ei such that u is incident

to no edge of M. If v is incident to an edge ej of M, we

define l(v, M, i) by the number of edges el of A(v, M, i)

with l < j. Let w1 and w2 denote the endpoints of ei.

An instance of A(v,M, i) and l(v, M, i) is illustrated in

Figure 3.

Lemma 2 Suppose that |E(M, i − 1)| = 1, and

E(M, i−1) = {(u1, w1)}. Then, (M, i−1) has a type-2

child if and only if the following conditions (1-a) and

(1-b) hold.

(1-a) A(u1, M, i − 1) = ∅.
(1-b) l(w1, M, i − 1) = 0, and (u1, w2) has a larger

index than (u1, w1) if (u1, w2) ∈ Ei.

Proof: Suppose that (M ′, i) is a type-2 child of

(M, i− 1). Then M ′ = M \ {(u1, w1)} ∪ {ei}, and u1 is

incident to no edge of M ′. Hence, any vertex adjacent

to u1 is incident to an edge of M ′. Since w1 is inci-

dent to (u1, w1), (1-a) holds. From this, it follows that

Ê(Gi, M
′\{ei}) is composed of edges in A(w1, M, i−1),

and includes (u1, w2) if (u1, w2) ∈ Ei. Hence, (1-b)

holds.

Let M ′ = M \ {(u1, w1)} ∪ {ei}. Suppose that (1-a)

and (1-b) both hold. From (1-a), Ê(Gi, M \{(u1, w1)})

is composed of edges in A(w1, M, i − 1) ∪ {(u1, w2)}.
Hence, Ê(Gi, M

′) = ∅, M ′ is an i-maximal match-

ing, and p(M ′, i) includes exactly one edge e′ that is

not included in M ′. From (1-b), e′ = (u1, w1). Hence,

p(M ′, i) = (M, i − 1).

Lemma 3 Suppose that |E(M, i − 1)| = 2, and

E(M, i − 1) = {(u1, w1), (u2, w2)} where (u1, w1) has

v

e1
e2

e3

e4

e5

e6

Figure 3: An instance of A(v, M, i) and l(v, M, i): The

bold edges are edges of M. In this case, A(v, M, i) =

{e2, e5} and l(v, M, i) = 1.

a smaller index than (u2, w2). Then, (M, i − 1) has a

type-2 child if and only if the following conditions, (2-

a), (2-b), and (2-c), hold.

(2-a) A(uj , M, i − 1) = ∅ for each j, and (u1, u2) /∈
Ei−1.

(2-b) l(w1, M, i − 1) = 0 and any of (w2, u1) and

(w1, u2) has a larger index than (w1, u1).

(2-c) l(w2, M, i − 1) = 0.

Proof: This case is illustrated in Figure 2. Re-

fer the figure for reading the proof. Suppose that

(M ′, i) is a type-2 child of (M, i − 1). Then M ′ =

M \ {(u1, w1), (u2, w2)} ∪ {ei}, and each uj is ad-

jacent to no edge of M ′. Hence, Ei does not in-

clude (u1, u2). Since each wj is incident to (uj , wj),

A(uj , M, i − 1) = ∅. Hence, (2-a) holds. From this, it

follows that Ê(Gi, M
′ \ {ei}) is composed of edges in

A(w1, M, i− 1)∪A(w2, M, i− 1), and includes (u1, w2)

and (u2, w1) if they exist in Ei. Hence, (2-b) holds.

From (2-b), Ê(Gi, M
′\{ei}∪{(u1, w1)}) = A(w2, M, i−

1). Hence, (2-c) holds.

Let M ′ = M \ {(u1, w1), (u2, w2)} ∪ {ei}. Sup-

pose that (2-a), (2-b) and (2-c) hold. From (2-a),

Ê(Gi, M
′) = ∅, and M ′ is an i-maximal matching.

p(M ′, i) is obtained by removing ei and adding the min-

imum index edges among Ê(Gi, M
′ \ {ei}) repeatedly.

Hence, from (2-b) and (2-c), p(M ′, i) = (M, i − 1).

By using this, we obtain the following reverse search

5

algorithm. In each iteration of the algorithm, Av and

lv are equal to A(v,M, i) and l(v, M, i). Setting Av and

lv to A(v, {e1}, 1) and l(v, {e1}, 1), respectively, and

then executing Enum Maximal Matching ({e1}, 1),

we can enumerate all maximal matchings in G. To out-

put maximal matchings, we use the compact output

method [5, 7] in (EM1), (EM2) and (EM18). We describe

the details later.

ALGORITHM Enum Maximal Matching (M, i)

(EM1) Oi := edges in M \ p(M, i) adjacent to ei and

adjacent to no edge ej with i < j

(EM2) Output edges of Oi

(EM3) If i = n then output “matching” ;

go to (EM18)

(EM4) If ei+1 is adjacent to an edge of M

then M ′ := M else M ′ := M ∪ {ei+1}
(EM5) Update each Av and lv to A(v, M ′, i + 1)

and l(v, M ′, i + 1)

(EM6) Call Enum Maximal Matching (M ′, i + 1)

(EM7) Update each Av and lv to A(v, M, i)

and l(v, M, i)

(EM8) If ei+1 is adjacent to no edge of M

then go to (EM18)

(EM9) For each (v, wj) ∈ E(M, i + 1)

if Av �= ∅ or lv > 0 then go to (EM18)

(EM10) If |E(M, i + 1)| = 2 then do

(EM11) If (u1, u2) ∈ Ei then go to (EM18)

(EM12) For each ej ∈ {(u1, w2), (u2, w1)}
If j < any index of any edge in E(M, i + 1)

then go to (EM18)

(EM13) End If

(EM14) M ′ := M ∪ {ei+1} \ {(u1, w1), ..., (uk, wk)}
(EM15) Update each Av and lv to A(v, M ′, i + 1)

and l(v, M ′, i + 1)

(EM16) Call Enum Maximal Matching (M ′, i + 1)

(EM17) Update each Av and lv to A(v, M, i)

and l(v, M, i)

(EM18) Output “delete” and the edges of Oi

Here we explain the compact output method used in

(EM1), (EM2) and (EM18). In (EM1), since edges of

Oi are adjacent to no edge ej with i < j, any edge of Oi

is included in all j-maximal matchings with j > i which

are descendants of (M, i). Since edges of Oi are adjacent

to ei, any edge of Oi is not included in any Oj with

j < i. Hence, in the case i = n, we have M =
∑n

i=1
Oi.

Therefore, instead of outputting edges of M, we can

output maximal matchings by outputting edges of Oi

at the beginning of an iteration, and cancel it at the

end of the iteration. This idea is called the compact

output method. For the aim, (EM1) outputs edges of

Oi, if i = n then (EM3) outputs a message “matching”

instead of outputting edges of M, and (EM18) cancels

the output edges of Oi. To execute (EM1), we have to

check at most two edges of M. Hence, it can be done in

O(1) time. Therefore, the computation time for output

is reduced to O(1) time per iteration.

(EM4) constructs the type-1 child, and (EM6) gen-

erates a recursive call with respect to the type-1 child.

(EM8) through (EM13) check the existence of a type-2

child. If a type-2 child exists, then (EM14) generates

the type-2 child, and (EM16) generates a recursive call

with respect to it. (EM5), (EM7), (EM15) and (EM17)

update Av and lv .

Lemma 4 The time complexity of

Enum Maximal Matching is O(mN) and the

space complexity of it is O(m + n).

Proof: The memory complexity is obviously O(m).

As we saw, an iteration takes O(1) except for (EM5),

(EM7), (EM15) and (EM17). We note that E(M, i+1)

can be obtained in O(1) time by putting a pointer from

each vertex v to the edge of M that is incident to v,

and maintaining these pointers as M changes in each

iteration. Next, we explain the computation time re-

quired to update Av and lv . Without loss of generality,

we explain this for the case of computing A(v, M ′, i+1)

and l(v, M ′, i + 1) from A(v, M, i) and l(v, M, i), where

(M, i) is the parent of (M ′, i + 1).

Let F�F ′ denote the symmetric difference between

two sets F and F ′. For an edge set F, V (F) denotes the

vertices incident to an edge of F. Any vertex v satisfying

A(v, M, i) �= A(v, M ′, i+1) or l(v, M, i) �= l(v, M ′, i+1)

is adjacent to a vertex of V (M�M ′). Since V (M�M ′)

includes at most four vertices, |A(v, M, i)�A(v, M ′, i+

1)| ≤ 4. Hence,

∑

v|(v,u)∈E,u∈V (M�M ′)

|A(v, M, i)�A(v, M ′, i + 1)|

6

≤
∑

v∈V (M�M ′)

4d(v)

= O(∆),

where d(v) is the degree of v. Therefore, A(v,M ′, i+1)

for all vertices v can be obtained from A(v, M, i) in

O(∆) time. For any vertex v /∈ V (M�M ′), we can

also obtain l(v, M ′, i + 1) from l(v, M, i) in O(1) time

since no edge of M�M ′ is adjacent to v. For a ver-

tex v ∈ V (M�M ′), we can obtain l(v, M ′, i + 1)

in O(d(v)) time. Hence, to obtain l(v, M ′, i + 1)

for all vertices v, we take O(
∑

v∈V (M�M ′) d(v)) time.

From these, (EM5), (EM7), (EM15) and (EM17) take

O(
∑

v∈V (M�M ′) d(v)) = O(∆) time. If (EM15) and

(EM17) are executed, then a type-2 child is generated.

Since the number of type-2 children generated over all

iterations is N−1, the total computation time required

for (EM15) and (EM17) is O(∆N).

Let C be the set of (M, i) of the enumeration tree

such that (M, i) is a type-2 child of p(M, i). Consider a

graph obtained from the enumeration tree by deleting

edges ((M,i), p(M, i)) for each (M, i) ∈ C. The graph is

composed of paths. We call each of these paths type-1

child paths, and use P to denote the set of all the type-

1 child paths. An isolated vertex is also considered

to be a type-1 child path. An example of generation

of P is shown in Figure 4. Since any internal vertex

has a type-1 child, one of the endpoints of any P ∈ P
must be a leaf, hence |P| = N. For a path P in the

enumeration tree, let T (P) be the total computation

time except for (EM15) through (EM17) required by

iterations corresponding to vertices in P.

Suppose that P ∈ P is composed of maximal match-

ings (Mk, k), ..., (Mn, n). From the above,

T (P) = O(

n−1∑

i=k

∑

v∈V (Mi�Mi+1)

d(v))

= O(2
∑

v∈V (Mn\Mk)

d(v))

= O(m)

since any pair of Mi and Mi+1 satisfies Mi ⊆ Mi+1.

Therefore, the time complexity of this algorithm is

O(mN).

In the next section, we reduce the time complexity

without modifying the algorithm. We introduce a way

of assigning indices to edges to decrease the number of

iterations.

3. Reduce the Time Complexity

This section describes a further improvement of our

algorithm. In the previous section, we bound the time

complexity by O(mN) since any type-1 child path can

have a length up to m. If the mean length of type-

1 child paths is smaller than Θ(m), then we can re-

duce the time complexity. The lengths of type-1 child

paths change with the indices of the edges changes.

So, by finding a good ordering of edges, we may obtain

a smaller time complexity. Consider an enumeration

tree. If any type-1 child path P includes a number of

vertices having type-2 children that is proportional to

the length of P, then the computation time per type-1

child path can be reduced. Conversely, if several type-

1 child paths have subpaths composed of matchings

that have no type-2 child, then we may not be able

to produce no ‘good’ analysis. Thus, we introduce an

ordering of edges in consideration of these conditions.

Let us look at the following algorithm for generat-

ing desired indices of edges. The algorithm takes G

as its input, then assigns indices by using a partition

B1, ..., Bk of E which are generated in the computation

of the algorithm.

Algorithm Put Indices (G = (V, E))

(PI1) b, b′ := edges adjacent to each other

(PI2) If no such pair exists then i := 1 ; B1 := E ;

K0 := 0

(PI3) Else S := {b, b′, and all edges adjacent to b or b′}
(PI4) E := E \ S ; i := Put Indices (G) ; E := E ∪ S

(PI5) bi := b ; b′i := b′ ; Bi := S

(PI6) End if

(PI7) Ki := Ki−1 + |Bi|
(PI8) Assign unique indices ranging from Ki−1 + 1

to Ki to all edges of Bi

(PI9) Return i

Each Ki satisfies Ki =
∑i−1

j=1
|Bj |, hence the edges

are assigned unique indices. The indices satisfy the

property that the index of any edge e ∈ Bi is smaller

than that of any edge e′ of Bj if i < j. For any i, we

7

Figure 4: Partitioning the enumeration tree: the left side is partitioned into type-1 paths, and the right side is

partitioned to paths of P̂ .

have |Bi| < 3∆ and bi and b′i are adjacent to no edge

of Bj , for any j < i. Since any edge of G is deleted only

once by the algorithm, this algorithm takes O(m + n)

time and O(m + n) memory.

Consider a partition of a type-1 child path obtained

by removing edges ((M, Kj + 1), p(M,Kj + 1)) for all

possible K ′
js. Let P̂ be the set of all subpaths obtained

by partitioning each type-1 child path. An example of

the generation of P̂ is shown in Figure 4. For a path

P ∈ P̂ , let the head of P be the vertex of P which

is an ancestor of all the other vertices of P. Since B1

is a matching, any Gi that has i ≤ K1 has only one

maximal matching. Hence, only a path P0 satisfies the

property that the head (M, i) of P0 satisfies i < K2

among all paths in P̂ . When the indices assigned by the

algorithm are used, P̂ satisfies the following properties.

Property 1 For any P ∈ P̂ , T (P) = O(∆).

Proof: Suppose that P is composed of maximal

matchings {(Mp, p), (Mp+1, p + 1), ..., (Mq, q)}. If P =

P0, then the maximum degree of any Gi, p ≤ i ≤ q is

one, hence T (P) = O(p − q + 1) = O(∆). Consider the

case P �= P0. Since all edges of Bi are adjacent to bi

or b′i, Mq \ Mp includes at most three edges. Hence,

from the proof of Lemma 4, the condition can be seen

to hold.

Property 2 For any vertex (M, Ki), 1 < Ki < n, at

least two Ki+1-maximal matchings are descendants of

(M, Ki).

Proof: Since Ki > 1, both bi and b′i are defined.

Since bi and b′i are incident to no edge of Bj for

any j < i, there are two Ki+1-maximal matchings

(M ′
1, Ki+1), M∪{bi} ⊆ M ′

1 and (M ′
2, Ki+1), M∪{b′i} ⊆

M ′
2. To obtain the parent of any (M ′, j), no edge with

an index smaller than j is deleted. Hence, for each

(M ′
j , Ki+1), the ancestor (M̂ , Ki) of (M ′

j , Ki+1), which

is a Ki-maximal matching, includes all edges of M.

Since M is a Ki-maximal matching, M = M̂.

Property 3 P̂ includes at most 2N paths.

Proof: We describe a function f : P̂ \ {P0} → C
such that for any c ∈ C, at most two paths P ∈ P̂ \
{P0} satisfy f(P) = c. Note that |C| = N − 1. For any

P ∈ P̂ \ {P0}, if the head c of P is an element of C,

then we define f(P) = c. If not, from Property 2, at

least one vertex of P has a type-2 child c′. Hence, we

define f(P) = c′. From this, f is defined on all paths in

P̂ \ {P0}, and at most two paths P ∈ P̂ \ {P0} satisfy

f(P) = c for any c ∈ C. Thus, we have |P̂| ≤ 2N.

From these properties, we can bound the time com-

plexity of the algorithm.

8

Theorem 1 All maximal matchings of a non-bipartite

graph G = (V,E) can be enumerated in O(|E| + |V | +

∆N) time within O(|E| + |V |) memory space where N

is the number of maximal matchings in G, and ∆ is the

degree of the maximum degree vertex of G.

Proof: From the above properties, we have

∑

P∈P
T (P) =

∑

P∈P̂

O(∆)

= |P̂|O(∆)

= O(∆N).

Hence, the time complexity of the algorithm is O(∆N)

and the space complexity is O(m + n).

4. Conclusion

We have considered the problem of enumerating all

maximal matchings of a given non-bipartite graph G =

(V, E). We have constructed a simple algorithm by im-

proving the algorithm of Tsukiyama et al., and proved

that the time complexity of the algorithm is bounded

by O(∆N) by assigning indices to the edges in our way.

The space complexity of the algorithm is O(|E|), the

same as that of the algorithm of Tsukiyama et al. Here

N denotes the number of maximal matchings in the

graph, and ∆ denotes the maximum degree of G. The

second area where we have made improvements is not

based on modification of the algorithm, which can be

considered interesting from the viewpoint of algorithm

engineering. However, the problem of decreasing the

time complexity of stable set enumeration is still open.

Further research may achieve solid results in this area.

Acknowledgement

We gratefully acknowledge Professor Masakazu Ko-

jima of Tokyo Institute of Technology for giving a va-

riety of comments. We also owe a special debt of grat-

itude Professor Akihisa Tamura of Kyoto University.

References

[1] Avis D. ; Fukuda K., “Reverse Search for Enumer-

ation,” Discrete Appl. Math. 65, pp.21-46, 1996.

[2] Edmonds J., “Paths, Trees and Flowers,” Canadian

J. Math. 17, pp.1-13, 1965.

[3] Hopcroft J. E. ; Karp R. M., “An n5/2 Algorithm for

Maximum Matching in Bipartite Graphs,” SIAM J.

Comp., 2, pp.225-231, 1973.

[4] Johnson D. S. ; Yannakakis M. ; Papadimitriou

C. H., “On Generating All Maximal Independent

Sets,” Info. Processing Lett., 27, pp.119-123, 1988.

[5] Kapoor H. N. ; Ramesh H., “Algorithms for Gener-

ating All Spanning Trees of Undirected, Directed

and Weighted Graphs,” Lec. Notes Comp. Sci.,

519, Springer-Verlag, pp.461-472, 1992.

[6] Kashiwabara T. ; Masuda S. ; Nakajima K. ; Fu-

jisawa T., “Generation of Maximum Independent

Sets of a Bipartite Graph and Maximum Cliques of

a Circular-Arc Graph,” J. Algorithms, 13, pp.161-

174, 1992.

[7] Shioura A. ; Tamura A. ; Uno T., “An Opti-

mal Algorithm for Scanning All Spanning Trees of

Undirected Graphs, ” SIAM J. Comp., 26, No. 3,

pp.678-692, 1997.

[8] Tsukiyama S. ; Ide M. ; Ariyoshi H. ; Shirakawa

I., “A New Algorithm for Generating All the

Maximum Independent Sets,” SIAM J. Comp., 6,

pp.505-517, 1977.

9

