
(C) Springer Verlag, Lecture Notes on Computer Science

Algorithms for Enumerating All Perfect, Maximum and
Maximal Matchings in Bipartite Graphs

Takeaki UNO
Department of Systems Science, Tokyo Institute of Technology,

2-12-1 Oh-okayama, Meguro-ku, Tokyo 152, Japan. uno@is.titech.ac.jp

Abstract: For a bipartite graph G = (V, E), (1) perfect, (2) maximum and (3) max-
imal matchings are matchings (1) such that all vertices are incident to some matching
edges, (2) whose cardinalities are maximum among all matchings, (3) which are con-
tained in no other matching. In this paper, we present three algorithms for enumerating
these three types of matchings. Their time complexities are O(|V |) per a matching.

Introduction

Let G = (V 1 ∪ V2, E) be an undirected bipartite graph with vertex sets V1 and

V2 and edge set E ⊆ V1 × V2. We denote the number of vertices and edges by n and

m. A matching M of the graph G is an edge set such that no two edges of M share

their endpoints. Edges of a matching are called matching edges. If a vertex is incident

to a matching edge, we say that the vertex is covered by the matching, and otherwise

uncovered. We call a matching with the maximum cardinality among all matchings

in G a maximum matching, and a matching which is properly contained in no other

matching a maximal matching. If all vertices of G are covered by a matching M , i.e.

M covers all vertices, then we say that M is a perfect matching. In this paper, we

consider the problems of enumerating all those matchings for a given bipartite graph.

In 1977, Tsukiyama et al. proposed an algorithm for enumerating all maximal

stable sets of a general graph [4]. It can be applied for the problem of maximal match-

ings in bipartite graphs within O(nm2) time per a maximal matching. For perfect

matchings in a bipartite graph, K. Fukuda and T. Matsui proposed an enumeration

algorithm [1]. Their algorithm takes O(n1/2m+mNp) time where Np is the number of

perfect matchings in the given graph. Our main result is to speed up this algorithm.

We also obtain algorithms for maximum and maximal matchings by modifying the

improved algorithm. They take only O(n) time per a matching.

An Algorithm for Perfect Matchings

In this section, we describe an algorithm for enumerating perfect matchings of

bipartite graphs. In our algorithm, we utilize a directed graph D(G, M) defined for a

graphG and a matchingM . Its vertex set is V , and its arc set is given by orienting edges

ofM from V1 to V2, and the other edges of G in the opposite direction. For any directed

cycle or path of D(G, M), edges of M and the other edges appear alternatively in the

corresponding cycle or path in G. We call these cycles and paths in G alternating cycles

and paths (see Fig. 1). Especially, we call alternating paths in D(G, M) “feasible” if

their end-vertices are not covered by matching edges outside

V1

V2

G D(G,M)

Fig. 1. The graph D(G, M) and a cycle and a path

corresponding alternating cycle and feasible path in G.

them. We can obtain a new matching different from M by exchanging matching edges

with the other edges along an alternating cycle or a feasible path. On the other hand,

the symmetric difference between M and a different matching is composed of some

alternating cycles and paths, which correspond to cycles and feasible paths inD(G, M).

A matching generated by an alternating cycle has cardinality equal to M . Since

a perfect matching covers all vertices, the symmetric difference between two perfect

matchings is composed only of alternating cycles. Hence there is another perfect match-

ing iff there exists an alternating cycle.

The algorithm of [1] utilizes this property. Firstly it checks whether there is a per-

fect matching in the given graph or not by finding a maximum matching. We spend

O(n1/2m) time to do this [2]. After finding the perfect matching M , the algorithm

starts enumerating all perfect matchings taking as input the graph G and the match-

ing M . Firstly, it checks whether there is another perfect matching or not. This is done

by finding a cycle in D(G, M) by depth-first search with O(m + n) time [3]. If there

is no other perfect matching, the algorithm stops. Otherwise, it constructs a perfect

matching M ′ by using the cycle and outputs M ′. Next it chooses an edge e included

in both M and the cycle. That is, e is included in M but not in the generated per-

fect matching M ′. The algorithm generates two subproblems, to enumerate all perfect

matchings including e and not including e. For these subproblems, the algorithm con-

structs two subgraphs G+(e) and G−(e) of G. G+(e) is the graph obtained by deleting

e and both endpoints and all edges adjacent to e. G−(e) is the graph obtained by

deleting e from G. We have one-to-one corresponding between all perfect matchings in

G+(e) and all perfect matchings in G including e, and between all perfect matchings

in G−(e) and all perfect matchings in G not including e. The algorithm solves the

subproblems by two recursive calls. One of them inputs a graph G+(e) and a perfect

matching M \ e of G+(e), and the other inputs G−(e) and M ′ (see Fig. 2).
Since all of these operations take O(n) time, the bottle neck part of the algorithm

on the time complexity is depth-first search with O(m+ n) time. Thus, the algorithm

takes O(m) time per a perfect matching. The memory complexity is bounded by

O(m). In each recursive call, we store the given graph. This requires O(m) space, but

by storing only deleted edges when a recursive call occurs, we can reduce the size of

the required memory space. Since the number of these deleted edges does not exceed

m, the accumulating storing space is bounded by O(m).

Our algorithm is speeded up by adding some improvements to the algorithm. One of

these improvements is to trim unnecessary edges which are included in no cycle before

generating a subproblem. Since it treats only arcs included in cycles of D(G, M), we

can delete arcs included in no cycle. The arcs included in no cycle of a directed

e

G (e)+

e e

G\e

Fig. 2. A perfect matching M ′ is generated from M by exchanging edges along an

alternating cycle. Two subproblems with the graph G+(e) and M , and G−(e) and
M ′ are generated. Dotted lines are deleted edges from the graph G.

graph can be found in O(m+n) time by strongly connected component decomposition.

The second improvement is that we choose an edge satisfying some good properties to

generate subproblems. The choosing criterion of the edge is the key to our algorithm.

We show the details later. The whole algorithm may be described as follows.

ALGORITHM Enum Perfect Matchings (G)

Step 1: Find a perfect matching M of G and output M . If M is not found, stop.

Step 2: Trim unnecessary edges from G by a strongly connected component

decomposition algorithm with D(G, M)

Step 3: Call Enum Perfect Matchings Iter (G, M).

ALGORITHM Enum Perfect Matchings Iter (G, M)

Step 1: If G has no edge, stop.

Step 2: Choose an edge e.

Step 3: Find a cycle containing e by a depth-first search algorithm.

Step 4: Find a perfect matchingM ′ by exchanging edges along the cycle.OutputM ′

Step 5: Trim unnecessary edges from G+(e).

Step 6: Enumerate all perfect matchings including e by Enum Perfect

Matchings Iter with the obtained graph and M .

Step 7: Trim unnecessary edges from G−(e).
Step 8: Enumerate all perfect matchings not including e by

Enum Perfect Matchings Iter with the obtained graph and M ′.

Since one iteration still spends O(m) time, the algorithm seems to take O(n1/2m+

mNp) time. In the next section, we analyze the time complexity more carefully, and

bound it by O(n1/2m+ nNp).

Properties for Bounding the Time Complexity

In this section, we bound the time complexity by proving some properties. To

analyze the time complexity, we introduce the enumeration tree T expressing the

movement of the algorithm. It is defined for the algorithm and an input, which is the

given graph. Each vertex of T corresponds to a recursive call of the algorithm, and if a

recursive call occurs in another one, an edge connects the corresponding vertices. The

root of the tree corresponds to the start of the algorithm. The algorithm generates

two subproblems if it outputs a perfect matching, thus all internal vertices of T have

exactly two children and have a one-to-one correspondence to all perfect matchings.

Each recursive call corresponding to a vertex x of T inputs a graph. We denote

the input graph by Gx. The time complexity of the algorithm is given by the sum of

|E(Gx)|+ |V (Gx)| over all vertices of T where E(Gx) and V (Gx) are the edge set and

the vertex set of the graph Gx. To bound it, we will show that if the input graph G has

more than 4|V (G)| edges, then there is an edge e such that at least �|E(G)|/4� arcs
are included in some cycle of D(G+(e), M). We will propose an algorithm running in

O(m+n) time for finding such edges later. We also show that if all arcs inD(G, M) are

included in some cycles, then G has at least m−n perfect matchings. From these facts,

for any internal vertex x of T , the child of x corresponding to the recursive call with

G+
x (e) has at least (|E(Gx)| − |V (Gx)|)/4 descendants. For each vertex x of T with

|E(Gx)| ≥ 4|V (Gx)|, we assign its O(|E(Gx)|) computing time to the descendants of
its child with G+(e) uniformly. Since the subproblem with G+

x (e) exactly less vertices

than the original problem, a vertex is assigned O(1) time by at most n ancestors. Thus

the sum of assigned time for a vertex is O(n) and the total time complexity is O(nNp).

We next show proofs of these statements. Through the section, we assume that G

contains a perfect matching M and all arcs in D(G, M) are included in some cycles.

Lemma 1. G contains at least m − n perfect matchings.

Proof. Let H be a strongly connected component of D(G, M), and T be a depth-first

search tree of H . We assume that the search traverses an arc from its tail to head.

Since H is strongly connected, T spans all vertices of H . We put indices to all vertices

of H by the post-ordering of the depth-first search. In the ordering, a vertex has a

larger index than any of its descendants, and for any non-back arc of H , the index of

its tail is larger than of its head. A non-back arc is an arc not in T such that its head

is not an ancestor of its tail. An arc not in T such that its head is an ancestor of its

tail is called a back arc. Note that a back arc has a smaller index on its tail than head.

Let the index of an arc in T be 0, and the index of an arc not in T be the index of

its tail. We will show that there are distinct cycles for each arc in H \T . For each back

arc e of T in H , we can generate a cycle by adding e to T so that e has the maximum

index in the cycle. For each non-back arc e of T in H , let P be a directed path from

its head to tail. As T is a depth-first search tree, P includes some ancestors of the tail

of e (see Fig.3). To see the reason, we claim the following fact.

Claim. A directed path from a vertex v to a vertex u with larger index than v includes

a common ancestor of u and v.

Proof. If it does not include, there exists a simple directed path P from v to u not

including common ancestors. Let w be the ancestor of v which is the child of the

e

Fig. 3. Dotted lines compose the generated cycle for an arc e �∈ T by using T .

nearest common ancestor of v and u. By connecting the path from w to v on T and

P , we obtain a path from w to u without any ancestor of w. This contradicts to the

depth-firstness. �
From the claim, any path from the head of e to the tail of e includes at least one

ancestor of the tail of e. Let v be the first vertex in P to appear among these ancestors.

Note that v is always a common ancestor of the head and tail from the claim. We can

make a cycle by merging the subpath P ′ of P from the head of e to v, the path in

T from v to the tail of e and e. In this cycle, e is the maximum index arc. We prove

this by contradiction. Let us assume that there is an arc ê in P ′ with a larger index
than e. Then we have some arcs in P ′ with a larger index on their heads than e and

a smaller index on their tails than e. Let e′ be the first arc in P ′ to appear among
them. Because of the post-ordering, e′ is a back arc. Since ê is on the behind of e′. the
head of e′ is not v, and not an ancestor of the tail of e. From the depth-firstness, if the

tail of e is not a descendant of an ancestor of the tail of e′, the ancestor has a smaller
index than the tail of e. Hence it contradicts that the head of e′ is not v. Since all arcs

in a cycle have distinct tails, the maximum index arc is unique.

Now we have distinct cycles for each arc not in T . Their number is |E(H)|−|V (H)|
for all strongly connected components H in D(G, M). Therefore we have |E(G)| −
|V (G)| = m − n perfect matchings in G. �

Next, we show that if m ≥ 4n, then there exists an edge e such that G+(e) has

�m/4� edges after trimming unnecessary edges. In the rest of this section, we assume
that G has at least 4n edges. Let D′(G, M) be the graph obtained by contracting

all arcs corresponding the edges of M in D(G, M). D′(G, M) has m − (n/2) arcs

and n/2 vertices. Each vertex of D′(G, M) corresponds to each matching edge, and

D′(G+(e), M \e) is equal to the graph obtained by removing the vertex corresponding

to e from D′(G, M). To bound the time complexity, we will obtain a vertex such that

�m/2−n� ≥ �m/4� arcs are included some cycles after removing the vertex. We show
the existence of the arc corresponding to the vertex by proving the following lemma.

Lemma 2. For a strongly connected directed graph D′(G, M), there is a vertex such

that the graph obtained by removing v includes at least one third of the arcs of the

original graph.

Proof. To obtain the vertex, we find a depth-first search tree T in D′(G, M) with the

root vertex r. Suppose that v denotes the vertex last visited by the search. Then v is

a leaf of T . Indices are assigned to all vertices by post-ordering of the search. Let e

be a non-back arc whose head u is not an ancestor of v. Since D′(G, M) is strongly

connected, there is a directed path P from u to v. From Claim , P must include a

common ancestor w of v and u. By merging e, the subpath of P from u to w, and the

path from w to the tail of e on T , we obtain a cycle including e. Since the subpath of P

and the path on T do not include v, the cycle does not contain v. Therefore, any non-

back arc whose head is not an ancestor of v is included in some cycles after removing

v. Since any back arc not incident to v is included in some cycle after removing v,

the arcs not included in a cycle after removing v are non-back arcs connecting two

ancestors of v.

If there are at least �m/2−n� arcs included in cycles after removing v, we obtain a

vertex satisfying the condition. We suppose that at least �m/2 + n� arcs are included
only in cycles containing v in D′(G, M). They are composed of edges of T and non-

back arcs connecting two ancestors of v. Let u1 be the vertex with the largest index

among ancestors of v which are heads of some arcs of these non-back arcs. Let P be

a path from v to r, and u2 be the ancestor of v with the largest index included in P

except for r. We denote by u the parent of the vertex with the largest index u1 and

u2. We denote non-back arcs by A which are not incident to u and connecting two

ancestor of v. Since only the non-back arcs incident to u, of T and in A may be not

included in the cycle, A includes at least �m/2− n� arcs.
Let us consider how many non-back arcs are included in cycles in the graph ob-

tained by removing u. If u is r, then u2 is a child of r since there is no non-back arc

from r to a child of r. By jointing the subpath of P from v to u2 and the path from

u2 to v, we can obtain a cycle including v and u2 which is a child of r. Thus we can

obtain a cycle including an arc of A by adding it to the cycle. Therefore all arcs of A

are included in some cycles in the graph. Otherwise, we have some paths from v to

each ancestor of u via P and r in the graph, since u is not included in P . If u is the

parent of u1, then we have some paths from r to u1 via an arc of A whose head is u1.

If u is the parent of u2, we have a subpath of P from v to u2. Therefore we have a

path from v to each descendant of u. Since u is an ancestor of u1, there is a path to

v from the tail of any arc of A after removing u. Hence all arcs of A are included in

some cycles in the graph. The number of arcs in A is at least �m/2�. At most n arcs

can be incident to u, therefore at least �m/2− n� arcs are included some cycles after
removing u from D′(G, M). �

From the lemma, we can construct an algorithm for finding such a vertex. We

describe the algorithm as follows.

Step 1: Find a depth-first search tree T in D′(G, M) with the root vertex r.

Step 2: Apply a strongly connected component decomposition algorithm for the

graph obtained by removing the last visited vertex v. If �m/2− n� edges
are included in some cycles, output v and stop.

Step 3: Find u1 and u2.

e

e

Fig. 4. Exchanging along a length 2 feasible path and generating graph G+(e).
All edges changed their directions are eliminated

and no edge of G+(e) is not changed its direction.

Step 4: Output the vertex nearest from r among parents of u1 and u2.

Since each step takes O(m + n) time, the time complexity of the algorithm is

O(m+ n). By utilizing the algorithm, we obtain the following theorem.

Theorem 1. Perfect matchings in a bipartite graph can be enumerated in O(n1/2m+

nNp) time and O(m) space.
�

Enumerating Maximum Matchings

We have shown an algorithm for finding all perfect matchings in a bipartite graph.

In this section, we add some modifications and construct an algorithm for enumerating

all maximum matchings in a bipartite graph.

The framework of the algorithm is almost like that for perfect matchings. The

algorithm inputs a graphG and a maximum matchingM , and checks whether the other

maximum matching exists or not. The symmetric difference between two maximum

matchings is composed of some cycles and paths with even length. (Since they are

maximum, no odd length alternating path is included.) Moreover, if an even length

feasible path exists, the subpath of length 2 starting at an uncovered endpoint is also

feasible (see Fig. 4). For any length 2 feasible path, one of its endpoints is incident

to no matching edge. Conversely any length 2 path in D(G, M) starting at uncovered

vertex is feasible. Thus, length 2 paths exist if there are some uncovered vertices.

In our algorithm, we first try to find a cycle in D(G,M) in the same manner as

the previous section. If no cycle is found, then we try to find a feasible path. In this

algorithm, we also trim unnecessary edges for finding cycles, but these trimmed edges

may be included in some maximum matchings. Hence we delete unnecessary edges

from only the graph D(G, M). When a recursive call occurs, we remove an edge e,

or e and edges adjacent to e from G and D(G,M). (Now, D(G, M) is treated as a

variable. D(G, M) is not always given by orienting edges of G.)

If we cannot find any cycle in D(G, M), then we choose an uncovered vertex v,

and find a feasible length 2 path P starting at v. It can done in O(n) time. If there is

no such path in G, the algorithm terminates. Let e be the unique edge in P \M . After

finding the path, we construct a new matching M ′ by exchanging edges along P , and

generate two subproblems with G−(e) and M , and G+(e) and M ′. Since G includes

no alternating cycle, D(G−(e), M) obviously also includes no cycle. And as the other

edge in P is incident to e, no edge in D(G+(e), M ′ \e) has the opposite direction from

the corresponding edge in D(G, M). Hence D(G+(e),M ′) contains no cycle. If there
is no cycle in D(G, M), we do not have to trim D(G, M) and to try to find cycles in

subproblems. The details of our algorithm are as follows.

ALGORITHM Enum Maximum Matchings (G)

Step 1: Find a maximum matching M of G and output M .

Step 2: Trim unnecessary arcs from D(G, M) by a strongly connected component

decomposition algorithm.

Step 3: Call Enum Maximum Matchings iter (G, M, D(G, M)).
ALGORITHM Enum Maximum Matchings iter (G, M, D(G, M))

Step 1: If G has no edge, stop.

Step 2: If D(G, M) contains no cycle, Go to Step 8.

Step 3: Choose an edge e as the same manner in Enum Perfect Matchings iter.

Step 4: Find a cycle containing e by a depth-first-search algorithm.

Step 5: Exchange edges along the cycle and output the obtained maximum matching M ′.
Step 6: Enumerate all maximum matchings including e by Enum Maximum

Matchings iter with G+(e), M and trimmed D(G+(e), M \ e).

Step 7: Enumerate all maximum matchings not including e by Enum Maximum

Matchings iter with G−(e), M ′ and trimmed D(G−(e), M ′). Stop.
Step 8: Find a feasible path with length 2 and generate a new maximum matching M ′.

Let e be the edge of the path not included in M .

Step 9: Call Enum Maximum Matchings iter (G+(e), M ′, ∅).
Step 10:Call Enum Maximum Matchings iter (G−(e), M , ∅).

The algorithm Enum Maximum Matchings takesO(n1/2m) time. The algorithm

Enum Maximum Matchings iter takes O(n) time except for trimming in Step 9

and 10. In Step 9 and 10 of each recursive call, we spend time proportional to the size

of D(G,M). But in the previous section, we showed that this time can be assigned to

their descendants such that the total assigned time for each vertex of the enumeration

tree does not exceed O(n). Therefore the total time spent by the algorithm is O(n)

time per a maximum matching.

Theorem 2. Maximum matchings in a bipartite graph can be enumerated in O(mn1/2+

nNm) time and O(m) space, where Nm is the number of maximum matchings in G.�

Enumerating Maximal Matchings

This last section describes an algorithm for maximal matchings. Those two algo-

rithms in the previous sections are very similar. The algorithm in this section utilizes

them, but the enumerating method is not so similar. In the previous problems, we can

easily enumerate all perfect or maximum matchings including or not including a cho-

sen edge e. In the problem of maximal matchings, we cannot enumerate such maximal

matchings not including e so easily. Hence, we have to utilize some other schemes.

Let us consider two types of maximal matchings, on which covers a vertex v and

v

Fig. 5: A maximal matching and a vertex v. The subgraph circled by dotted line is Ĝ.

the other which does not. All maximal matchings covering v include exactly one edge

incident to v. All maximal matchings not covering v include no such edge, and from

the maximality, all vertices adjacent to v are covered by these maximal matchings.

Enumerating all maximal matching covering v is easy. For all edges e incident to v,

we enumerate all maximal matchings in G+(e). For an edge e, a maximal matching in

G+(e) and e forms a maximal matching in G, and conversely all maximal matchings

including e contain maximal matchings in G+(e). Thus we can enumerate all maximal

matchings covering v by enumerating all maximal matchings including edges incident

to v. For matchings not covering v, let Ĝ be the subgraph composed of edges incident

to vertices adjacent to v, except for edges incident to v (see Fig. 5). Any maximal

matching not covering v includes a matching of Ĝ with the cardinality d(v) where

d(v) is the degree of v, the number of vertices adjacent to v. Conversely, for any

matching M̂ of Ĝ with cardinality d(v), some maximal matchings in G must include

it. Thus, by finding all matchings having cardinality d(v) and enumerating maximal

matchings including them, we can enumerate all maximal matchings not including

v. To enumerate maximal matchings including M̂ , we remove all edges and vertices

adjacent and incident to edges of M̂ from G and enumerate all maximal matchings in

the obtained graph.

Now we can enumerate all maximal matchings by finding all maximal matchings

covering v and not. We show the details of the algorithm.

ALGORITHM Enum Maximal Matchings (G)

Step 1: If all vertices of G have degrees 0 or 1,

output the unique maximal matching of G and stop.

Step 2: Choose a vertex v with degree at least 2.

Step 3: For each edge e in G incident to v, construct G+(e) and enumerate all maximal

matchings including e by recursive calls.

After the recursive call, reconstruct G from G+(e).

Step 4: Find a maximum matching M in Ĝ. If |M | = d(v), then enumerate all

maximum matchings in Ĝ by Enum Maximum Matchings iter (M , Ĝ).

Step 5: For each matching, enumerate all maximal matchings including it.

The algorithm spends O(n) time in Step 1 and 2, and O(n) time in Step 3 and 5 for

a recursive call. We spend O(d(v)m) time to find a maximum matching of Ĝ in Step

4. Therefore it seems to be O(d(v)m) time algorithm for an output, but we will show

that it terminates in shorter time. To bound the time complexity of the algorithm,

we introduce the enumeration tree of the algorithm. Each vertex corresponds to each

recursive call, and each leaf of the tree corresponds to each maximal matching. Since we

choose a vertex with degree at least 2 in Step 2, any internal vertex of the enumeration

tree has at least two children. Therefore the number of internal vertices is less than Nl.

where Nl is the number of maximal matchings. Now we show the following property.

Lemma 3. G contains at least �(m − n)/2� maximal matchings.

Proof. Let M be a maximum matching of G. For each edge e not in M , we generate

a maximal matching by exchanging e and the matching edges adjacent to e. If the

generated matching is not maximal, we add some edge so that it is maximal. The

removed and added edges compose an alternating path or an alternating cycle. Since

M is maximum, the length of the generated cycles and paths are at most 4. Thus,

each matching is generated by at most two edges. Thus there are at least �(m−n)/2�
maximal matchings. �

From the lemma, for each edge e incident to v, we have at least �(|G+(e)|−n)/2� ≥
�(m − 2n)/2� maximal matchings in G+(e). Thus we have at least d(v)�(m − 2n)/2�
maximal matchings in G. For a vertex x of the enumeration tree corresponding to a

recursive call, d(vx)�(|E(Gx)| − 2|V (Gx)|)/2� ≥ 1
2
d(vx)|E(Gx)| if |E(Gx)| ≥ 4|V (Gx)|

where vx is the vertex chosen at Step 2 in the corresponding recursive call. In this

case, we assign O(d(vx)|E(Gx)|) time to all descendants of it. Each descendant is

assigned only O(1) time. In the case that |E(Gx)| < 4|V (Gx)|, the algorithm takes

O(d(vx)|V (Gx)|) time in Step 4, and we assign their time to all its children. Since the
number of children is at least d(vx), each children is assigned at most O(n) time by

its parent. Since each vertex of the enumeration tree is assigned at most O(n) time by

its parent and O(1) time by its at most n ancestors, the total time spent by Step 4 is

bounded by O(nNl) time. We now obtain the following theorem.

Theorem 3. Maximal matchings in a bipartite graph can be enumerated in O(n) time

per a maximal matching and O(m) space. �

Acknowledgment

We greatly thank Professor Akihisa Tamura of University of Electro-Communications

for his kindly advice. We would like to express my sincere thanks to Professor Yoshiko

Tamura Ikebe.

References

[1] K. Fukuda and T. Matsui, “Finding All the Perfect Matchings in Bipartite Graphs,”

Appl. Math. Lett. 7 1 (1994) 15-18

[2] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum matching in

bipartite graphs,” SIAM J. on Comp., Vol. 2: 225-231, 1973.

[3] R. E. Tarjan, “Depth-First Search and Linear Graph Algorithm,” SIAM J. Comp.

1, 146-169, 1972.

[4] S.Tsukiyama, M.Ide, H.Ariyoshi and I.Shirakawa, “A New Algorithm for Generat-

ing All the Maximum Independent Sets,” SIAM J. Comp.,Vol.6, No.3: 505-517,1977.

